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ABSTRACT 

Cross-cultural musical analysis requires standardized sym-
bolic representation of sounds such as score notation. 
However, transcription into notation is usually conducted 
manually by ear, which is time-consuming and subjective. 
Our aim is to evaluate the reliability of existing methods 
for transcribing songs from diverse societies. We had 3 ex-
perts independently transcribe a sample of 32 excerpts of 
traditional monophonic songs from around the world (half 
a cappella, half with instrumental accompaniment). 16 
songs also had pre-existing transcriptions created by 3 dif-
ferent experts. We compared these human transcriptions 
against one another and against 10 automatic music tran-
scription algorithms. We found that human transcriptions 
can be sufficiently reliable (~90% agreement, κ ~.7), but 
current automated methods are not (<60% agreement, κ 
<.4). No automated method clearly outperformed others, 
in contrast to our predictions. These results suggest that 
improving automated methods for cross-cultural music 
transcription is critical for diversifying MIR. 

1. INTRODUCTION 

Cross-cultural analysis is essential to explore diversity and 
universality of music [1-2]. Such analyses require sym-
bolic representations of sounds such as score notation. 
However, transcription into notation is usually conducted 
by ear, which is time-consuming and subjective [3-4].  

Automated methods of music transcription and melody 
extraction might potentially solve these problems [5-7]. 
However, automated extraction of fundamental frequency 
(F0) alone is not sufficient. Instead, a continuous funda-
mental frequency must be segmented into discrete notes 

with the categorical pitches and rhythms that are distinc-
tive features of almost all the world’s music [8]. This chal-
lenge is particularly important for variable pitch instru-
ments such as the voice (the most universal instrument [8-
9]). However, to our knowledge, agreement among human 
and automated transcription has not been objectively quan-
tified using cross-cultural samples or multiple human tran-
scribers. 

The main objective of this paper is to evaluate the de-
gree of agreement among human and automated transcrip-
tions for a global song sample. We demonstrate that the 
degree of agreement between human transcriptions is sub-
stantially higher than the agreement between humans and 
machines. Our evaluation also reveals that no single algo-
rithm outperforms the others, and there are no clear differ-
ences between signal-processing-based methods and data-
driven methods. 

2. RELATED WORK 

2.1 Subjectivity of manual transcription 

Manual transcription is central to musicological research, 
but to our knowledge, agreement among different human 
transcriptions of the same songs has never been objectively 
measured. Even qualitative evaluation is rare. A notable 
exception was a 1963 symposium on transcription where 
four leading ethnomusicologists independently transcribed 
a single recording (“A Hukwe* song with musical bow”), 
resulting in “four rather different transcriptions” [1, 4]. In 
contrast, List compared transcriptions of three songs (“Ru-
manian carol”, “Yiddish lullaby”, “Thai lullaby”) by be-
tween 2-9 transcribers and concluded that “transcriptions 
made by ear in notated form are sufficiently accurate, suf-
ficiently reliable to provide a valid basis for analysis” [3]. 
More recently, Mehr et al. [9] combined transcriptions by 
3 experts of 118 diverse traditional songs into a single set 
of “consensus” transcriptions, and had 10 experts rate their 
accuracy on a subjective scale from 1 (“Terrible”) to 8 
(“Perfect”), finding a median rating of 6 (“Very accurate”). 
Yet none of these studies provided an objective measure-
ment of the degree of agreement between individual tran-
scribers. 
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Figure 1. Map of the 32 songs transcribed and analyzed.

2.2 Reliability of automated transcription 

Automatic transcription reliability has been evaluated ex-
tensively for piano music and some other genres of West-
ern music, but rarely for non-Western music. Ycart et al. 
[10] evaluated the performance of four automated tran-
scription systems against perceptual ratings from 186 par-
ticipants over 153 examples of piano music taken from the 
MAPS dataset of MIDI-aligned piano recordings [11]. 
They found an average Fleiss’ Kappa coefficient of 0.59, 
or “borderline between moderate and substantial agree-
ment” on participant ratings. Holzapfel and Benetos asked 
16 musicologists from 3 European universities to tran-
scribe 8 excerpts of sousta, a traditional Greek in-strumen-
tal dance genre, either from scratch or starting from an au-
tomatic transcription, finding “no quantitative advantage 
of using [automatic music transcription]” [12]. Although 
computer-assisted transcription studies exist [13], recent 
reviews by musicologists argued that computational tools 
for musical analysis are either useful for only low-level 
analysis or not widely adopted within mainstream musi-
cology [14-15]. Overall, there is a clear need for objective 
measurements of agreement among automated and human 
transcriptions for a cross-cultural sample of songs. 

3. METHODS AND DATASET 

3.1 Audio data 

To examine the degree of agreement among human and 
automated transcriptions of diverse songs, we collected a 
sample of 14-second excerpts from 32 traditional songs 
evenly distributed across 8 geographic regions (Fig. 1). 16 
songs were sampled from the publicly available 14-second 
excerpts of the Natural History of Song (NHS) Discogra-
phy dataset [9] and manually extracted 14-second excerpts 
of the Global Jukebox audio files [16], respectively. We 
choose these datasets since they cover traditional songs 
from a global sample of societies. Sampling is randomly 
conducted using the following criteria: 

l Songs are sampled equally from each of the eight 
regions previously used by NHS for their sampling 

(i.e. 4 songs per region from North America, Oce-
ania, etc.). 

l To assess capabilities of extracting vocal melodies 
from instrumental accompaniment, songs are sam-
pled to consist of half solo singing without instru-
ments and half solo singing with instruments. 

One exception is that the NHS dataset contains no audio 
recordings of solo singing with instruments in the Middle 
East region, so two solo singing excerpts without instru-
ment examples were chosen from this region instead. We 
deliberately let sampled audio recordings contain various 
degrees of noise, reflecting the real-world challenges of 
analyzing traditional recordings. We did not include songs 
with polyphonic singing since polyphonic transcription is 
substantially more challenging for both humans and auto-
mated methods [5], and is beyond the scope of this study. 

3.2 Automated methods 

We selected 10 automatic music transcription/vocal mel-
ody extraction/pitch detection methods. We first choose 
methods listed in [10] as a baseline. However, that study 
focused on the systems designed for piano music, so we 
add methods designed for extracting pitch from human vo-
cals. Considering the difference in the approach of the 
pitch estimation, our selection consists of automated meth-
ods from non-data-driven models and data-driven models. 
If the model employs a machine learning method (such as 
artificial neural networks) to learn model parameters from 
data in a training step, we call it data-driven, otherwise 
non-data-driven. Table 1 summarizes the selected auto-
mated methods. Regarding pYIN [17], we used the TONY 
[18] software to obtain its F0 estimation. Recently, several 
symbolic-level automatic transcription methods have been 
developed [19-21]. However, some models were evaluated 
with only MIDI synthesized sounds and were not specifi-
cally designed for singing voice, so we did not select those 
methods. 

3.3 Transcription process 



  
 
Twelve-tone equal temperament (12-TET) with A4 = 440 
Hz is used to transcribe audio into staff notation by humans. 
Equal temperament is also applied to automated methods 
to standardize their outputs. As explained in the introduc-
tion, it is essential to obtain symbolic representations of 
pitch contours to analyze acoustic stimuli as melody. How-
ever, 12-TET is not completely appropriate since the pitch 
quantized into 12-TET does not always correspond to the 
actual scales/modes and perceptual tonal models even for 
Western singing, let alone non-Western [30-31].  

Method Target sound Unit Category 

pYIN [17] Monophonic vocal Frame 
Non data-
driven: pa-
rameters 
specified 
manually 

TONY [18] Monophonic vocal Note 

Melodia [22] Vocal melody Frame 

STF [23] Multiple 12-tone ET Frame 

CREPE [24] Monophonic vocal Frame 

Data-
driven: pa-
rameters 
optimized 
by training 
with da-
tasets. 

SPICE [25] Monophonic vocal Frame 

SS-nPNN [26] Vocal melody Frame 

AD-NNMF [27] Multiple piano sound Note 

OAF [28] Multiple piano sound Note 

madmom [29] Multiple piano sound Note 

Table 1. Summary of the selected automated methods. 
Unit indicates if the F0 estimation is frame-level or note-
level [5] that the latter predicts onset and offset timing. 

While binning continuous F0 into a simplified discrete 
set of 12 100-cent intervals loses information about micro-
tonal nuance, 100 cents (1 semitone) is both the most com-
monly used system and roughly corresponds to general 
levels of variability in singing intonation (imprecision and 
inaccuracy) [31-32], making it a reasonable choice to use 
to evaluate accuracy. It's also what was used by Mehr et al. 
[9] when creating the dataset we use, enabling us to com-
pare our results with theirs. In summary, we decide to take 
advantage of the convenience and comparability of 12-
TET, while acknowledging that it does not capture all mu-
sical nuances. 

This study focuses on the evaluation of agreement 
among melodies, and we discard temporal/rhythmic infor-
mation so we only extract pitch from transcriptions to cre-
ate a sequence of notes. However, regarding the notes rep-
resenting unison melodic intervals (i.e. repeated notes), we 
create two transcription patterns. This is because not all 
selected automated methods can perform note segmenta-
tion. The change in pitch class can be used to segment two 
notes in the case of the other intervals, but the determining 

 
1  Mehr et al.’s full consensus transcriptions are published at 
https://osf.io/jh7t5/ 

boundary between the notes of the same pitch class would 
require a note segmentation algorithm. 
Firstly, the raw note sequences are created as a note se-
quence which includes the unison interval. Based on this 
version, we also create a note sequence which discards re-
peated notes and treats the notes of the unison interval as a 
tied single note (i.e. “CCFGGC” becomes “CFGC”). We 
call this version “non-unison”. This treatment enables us 
to evaluate how much the pitch estimation itself, which is 
a baseline function of automatic transcription, determines 
performance. In addition, 12-TET has enharmonic equiva-
lent pitch classes, so we only use flat notes for the same 
sounding sharp and flat notes. 

3.3.1 Transcription by humans 

We asked three Japanese experts with professional training 
in Western classical music to independently transcribe the 
32 recordings. One of them has professional experience of 
transcribing non-Western music using Western staff nota-
tion. None of them had seen the transcriptions contained in 
the NHS dataset. They were instructed to use MuseScore3 
[33] as a tool to create transcriptions. Following Mehr et 
al. [9]1, we also created a consensus version of our 3 new 
human transcriptions. Importantly, however, while Mehr 
et al. only analyzed and published their consensus tran-
scription, we include the three independent transcriptions 
as well as their combined consensus version to allow us to 
measure agreement between individual human transcribers. 
Our three coauthors who undertook transcription were 
blinded from our hypothesis testing and were asked to cre-
ate transcriptions prior to discussions about coauthorship. 

3.3.2 Transcription by automated methods 

In order to standardize the output of each method, we apply 
post-processing steps including manual work, such as the 
quantization of frequency, smoothing of pitch contour, or 
the selection of melody contour by the Viterbi algorithm 
with manually specifying frequency range of melody for 
the case of multi-pitch estimation methods (cf. supplemen-
tary materials for details). Note that songs used in the eval-
uation contain solo singing with instrumental accompani-
ment but chosen methods are not designed to estimate the 
F0 of those styles of singing except for Melodia and SS-
nPNN. Therefore the automated methods other than Melo-
dia and SS-nPNN may include the pitch estimation of in-
strumental sounds, which is excluded from human tran-
scriptions. 

3.4 Sequence alignment and evaluation metrics 

We use the Needleman-Wunsch algorithm [34] to align 
note sequences (cf. supplementary materials for further de-
tails). Agreement between two string sequences can be 
quantified in various ways. We mainly use Fleiss' Kappa 
inter-rater reliability coefficient (κ), which measures how 
much the observed agreement exceeds chance [35]. How-
ever, κ does not provide other relevant information such as 
how many notes actually differ among note sequences or 
whether differences are due to disagreement about note 



  
 

 

Figure 2. Overview of the agreement evaluation using an example 8-second excerpt from NAIV-075 (Healing song, 
Kwakwaka'wakw people, 00:06-00:14 from https://osf.io/y29wp). Red indicates disagreement with our new consensus 
transcription (#4, made by combining the three individual transcriptions #1-3).  For visibility, only the automated transcrip-
tion produced by TONY is shown, and octave information is omitted from the note sequences. The degree of human-human 
and human-machine agreement is calculated based on the note sequences (c). For example, #4.5 (NHS consensus) is 95% 
identical to our consensus #4 (14 out of 15 notes each), while TONY is only 48% identical (7 identical notes out of average 
note length of 14.5), corresponding to Fleiss’ Kappa values of .94 and .34, respectively. *NB: NHS consensus transcriptions 
were not available for the 16 songs from the Global Jukebox sample. 

pitch (i.e., substitution) or note segmentation (i.e., inser-
tion/deletion). We also report such quantities by using per-
cent identity (PID) [36-37] (cf. Fig. 2 for an example and 
for Supplementary Material for detailed explanation and 
additional analyses using Levenshtein distances). Alt-
hough our approach did not utilize the real time infor-
mation of note events, we confirmed it can still make 
meaningful alignment of notes as in the previous study 
[37] from the pilot experiment. Meanwhile, we also admit 
there is the technical difficulty of the extraction of note 
event timing (i.e. segmentation of sounds). Importantly, 
our work differs from the related studies evaluating the 
agreement between human and automated methods' mel-
ody annotation [38-39] in aiming symbolic-level note 
comparison rather than frame-level F0 comparison. In ad-
dition, previous studies only reported individual metrics 
(e.g. either distance-like metrics or inter-rater reliability, 
but not both), while our study explored agreement of sym-
bolic-level melody using multiple metrics. 

3.5 Transposition 

We applied transposition in the note sequence alignment 
process to exclude the effect of disagreement by the  
discrepancy of the key when calculating κ, PID and Le-
venshtein distance. The transposition interval was 
searched from -2 semitones to +2 semitones. For human-
human transcription comparison, the transposition was 
performed to maximize PID. Regarding the human-ma-
chine transcription comparison, the transposition interval 
was searched to maximize the average PID of all 10 hu-
man-machine pairs for each song and each human tran-
scriber. 

4. HYPOTHESES 

 
2 https://osf.io/bjemd 

We pre-registered2 the following two primary hypotheses 
and 10 corresponding predictions based on pilot analysis 
of 4 songs not included in our main analyses:  

H1: Human transcriptions are sufficiently reliable. 
This predicts a Fleiss’ Kappa coefficient significantly 
greater than 0 when comparing our consensus transcription 
against the consensus transcriptions of Mehr et al. [9]. 
Note sequences including unison intervals are used. 

H2: TONY is the most reliable method of automated 
singing transcription. We predicted this because unlike 
other methods TONY was designed to perform note seg-
mentation for human vocal melody, better matching hu-
man standards for transcription. This predicts that Fleiss’ 
Kappa comparing TONY with our consensus note se-
quences will be significantly greater than for the other 9 
algorithms when evaluated against the note sequences in-
cluding unison intervals.  

5. RESULTS 

5.1 Q1. To what degree do humans’ transcriptions 
agree? 

The left-hand side of Figure 3 shows inter-rater reliability 
and percent identity results comparing human transcribers. 
As predicted, there was significant agreement between our 
new consensus transcriptions and the pre-existing NHS 
consensus transcriptions (median κ = .74, p < .001; median 
PID = 88%). When we compare the results using individ-
ual transcriptions rather than consensus transcriptions, we 
see that agreement is slightly lower but still relatively high 
(lowest median κ of .64 and PID 83% for Transcribers A 
& B).  The left-most two boxes show that individual vs. 
consensus yields higher agreement than individual vs. in-
dividual combinations (e.g. A-Cons, A-B, A-C) for all 



  
 

 

Figure 3. Agreement among human-human and human-machine transcribed note sequences. “A”, “B”, and “C” represent 
the three individual transcribers. The dashed line at κ = 0 and 8.3% identity indicates chance levels of agreement. The 
numbers appearing above the violin plots indicate effect sizes for our 10 pre-registered predictions, and * and ^ indicate 
significant p-value and posterior probability, respectively (cf. text for details). Black circles indicate medians, and bars 
represent 95% confidence intervals of the median [40]. Results using alternative transcription methods, and full p-value 
and posterior probabilities are available in the supplementary material (figure S3-S7 and table S2-S3). 

transcribers. This means that consensus is indeed reflect-
ing the elements of those three transcribers' transcriptions 
rather than the particular pairs. These results suggest that 
transcription of pitch contour could be reliable even for 
non-Western music. 

We also analyze some low agreement results. There are 
25 pairwise κ values lower than 0.4, all of which involved 
7 songs (NAIV-033, NAIV-100, NAIV-117, T5431R27, 
T5482R03, NAIV-015 and NAIV-048). In particular, 
NAIV-033 (Maya healing song) is a near-monotone chant, 
and so the degree of agreement by chance is so large that 
it negates the proportion of agreement. As the unison in-
terval dominates, the note sequences of this song are 
highly homogeneous (PID > 0.9 for all 6 pairs). Other than 
this song, the remaining disagreement is mainly caused by 
disagreement of the pitch rather than segmentation. (cf. 
supplementary material table S1). In other words, tran-
scribers generally captured the same note events, but the 
assigned pitch sometimes differs by 1-2 semitones. 

Incidentally, we observed that using raw note sequences 
yielded the median of κ very close to zero (κ = -0.019) due 
to cases where the tonal center differed by a semitone (and 
sometimes a whole tone, cf. supplementary material figure 
S1-S2 for a sample figure and the results). Therefore, our 
evaluation actually focused on whether relative pitch, or 
the shape of the pitch contour, matches between transcrib-
ers. 

5.2 Q2. Which automated method agrees best with 
transcription of non-Western music by humans? 

The right-hand side of Figure 3 shows κ and PID obtained 
by comparing the machine note sequences and our consen-
sus version's note sequences. Contrary to our prediction, 
there is no evidence for the superiority of TONY except 
when compared with AD-NNMF and SPICE. The figure 
also indicates generally low reliability of automated tran-
scription methods (median κ values are all below 0.4). In 
particular, SPICE and AD-NNMF both had median κ be-
low 0, suggesting they performed worse than chance. Es-
pecially, AD-NNMF failed to pick up notes correctly in 
many cases and indeed, sometimes the length of note se-
quence of AD-NNMF is zero (cf. supplementary material 
figure S8-S9). In such cases, the proportion of agreement 
between human note sequences also becomes around zero, 
but chance agreement probability is still positive by its def-
inition, resulting in many negative Kappa values. 

In addition, SPICE and CREPE had difficulty estimat-
ing F0 of the particular tracks of monophonic singing, 
which is apparent from the drop in the plot of note se-
quence length (cf. supplementary material figure S8-S9). 
As predicted, κ of automated methods designed for mono-
phonic vocal melody (i.e. TONY, pYIN, CREPE and 
SPICE) show a relatively large difference dependent on in-
strumental accompaniment compared to the other methods, 



  
 
but STF also suffered from instrumental sounds. (cf. Fig-
ure 3 and supplementary material figure S10). 

See supplementary material for additional analysis de-
tails including results of measuring agreement with Le-
venshtein distances (which were generally similar to re-
sults found using PID). 

6. DISCUSSION AND FUTURE WORK 

Overall, we observed that the degree of agreement of tran-
scriptions of diverse traditional songs among human tran-
scribers was relatively high (~90% agreement, κ ~0.7; Fig. 
3), while the degree of agreement between human and au-
tomated methods was relatively low (< 60% agreement, κ 
<.4; Fig. 3). Automated methods where less than 60% of 
estimated notes agree with human judgments are unlikely 
to produce satisfactory results for the kinds of tasks we 
hope to use them for, such as cross-cultural comparison of 
scale and interval systems [41-42]. Landis and Koch [43] 
suggested that κ of .61-.8 be considered "substantial" 
agreement .21-0.4 as "fair" agreement, but some have sug-
gested that less than .4 is unacceptably low [44]. Our qual-
itative examination of the transcriptions (e.g., Fig. 2) sup-
ports the interpretation that human transcriptions of di-
verse traditional songs can be sufficiently reliable, but cur-
rent state-of-the-art automated methods are not. However, 
high agreement does not necessarily equate to high quality. 
The quality of transcription may depend on its goal [45-
46], so future research should expand on our results to 
evaluate transcriptions for specific applications (e.g., tonal 
analysis [41-42]). 

Different combinations of human transcribers and 
songs had varying levels of agreement, but overall the 
agreement among three female Japanese experts and the 
consensus transcription by three white American male ex-
perts was surprisingly high, with more differences appear-
ing between individuals than between the two groups. Of 
course, by definition the experts had been trained in West-
ern music and transcription methods - future studies should 
explore perceptual variability among listeners with vary-
ing degrees of training in different musical systems [47]. 

Disagreement among humans appeared to primarily in-
volve assignment of pitch to different pitch classes. In con-
trast, disagreement in automated methods appeared to pri-
marily reflect segmentation, rather than F0 estimation. Fu-
ture studies might be able to clarify this point by collecting 
both F0 annotations and score transcriptions by humans. 
This might also allow us to compare our results with more 
conventional metrics used in research on pitch estimation 
algorithms such as frame-wise and note-wise F0 agree-
ment and the use of true positive and false positive scores 
[10] (though we emphasize that our work brings into ques-
tion the idea that a single 'ground-truth' annotation might 
even exist that all can agree on for diverse songs). [48] de-
veloped a method for evaluating the degree of agreement 
of F0-estimates among multiple automated methods, and 
such a method would be especially advantageous to assess 
the overall reliability of automated methods against global 
songs once F0 annotation is collected. 

We were surprised that all automated methods per-
formed so poorly even for the relatively simple task of 
transcribing only pitch sequences for monophonic songs. 

Some might argue it is unfair to evaluate MIR methods de-
signed primarily for F0 transcription of Western instru-
mental music using symbolic notation transcriptions of 
(mostly) non-Western songs. Our feelings are somewhat 
opposite - it is unfair and unethical to limit MIR to a nar-
row slice of the world’s music [49]. Since our goal was to 
evaluate the ability of existing MIR algorithms to tran-
scribe global songs using symbolic notation, we believe it 
is fair and necessary to evaluate state of the art algorithms 
even though - in fact especially because - they were not 
designed for this application. Our results thus confirm the 
strong need for automatic music transcription and other 
MIR tasks to expand algorithms and datasets beyond the 
traditional focus on Western classical and popular music 
to be suitable for more diverse musical styles [49]. Moving 
from a reliance on convenient but restricted datasets (e.g., 
the MAPS dataset of MIDI-aligned piano recordings com-
monly used to evaluate automatic transcription [11]) to 
cross-cultural datasets like the one presented here and else-
where [9, 16, 50] will be essential for diversifying MIR. 

The formalization of a general algorithm that agrees 
with human pitch recognition and note segmentation is an 
ongoing challenge related to a central issue in MIR: the 
“correctness” of the algorithm depends on the degree of 
perceptual variability in the human ground-truth data [51]. 
Thus, accounting for diversity and subjectivity in human 
transcriptions is equally critical to advance research on the 
automatic analysis of music. For example, while we found 
relatively high agreement among expert transcribers using 
Western 12-TET notation, we do not know whether the 
singers whose songs we transcribed would agree with our 
transcriptions, or whether transcription using a different 
notation system (e.g., Middle Eastern 24-note microtonal 
notation, ‘Are’Are 7-note equiheptatonic notation [52], 
Killick’s “global notation” [53], etc.) would give better or 
worse results. We see our current results using 12-TET - 
with all its known problems and cultural baggage [1-5, 45-
46] - as a baseline against which future studies can test 
whether other methods of cross-cultural transcription may 
be able to improve. 

Furthermore, here we solely focused on pitch, but a 
more comprehensive description of music necessitates 
other dimensions such as rhythm, timbre, and social con-
text [54]. Other cross-cultural systems of music analysis 
such as Cantometrics [54-55] and CantoCore [56] have 
been designed to capture such features. Somewhat coun-
terintuitively, our current results show substantially higher 
agreement using Western staff notation to analyze a global 
song sample (κ ~0.7) than was found using these cross-
cultural song classification systems (κ ~0.3-0.5 [8, 16, 56]). 
This suggests a need for MIR to better account for diver-
sity in human ground-truth representations of all dimen-
sions of music, not only pitch [57]. 

Musical diversity is a crucial challenge and opportunity 
for MIR. Quantifying diversity in human “ground-truth” 
cross-cultural data is an important first step for diversify-
ing MIR. Our study demonstrates that there is still substan-
tial room for improvement for automated methods of mu-
sic transcription, and provides quantitative estimates of di-
versity among human transcriptions to help guide develop-
ment of future MIR methods. 
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Supplementary Materials for 

AGREEMENT AMONG HUMAN AND AUTOMATED 
TRANSCRIPTIONS OF GLOBAL SONGS

A. PROCEDURE OF CREATING CONSENSUS NOTE SEQUENCE 

We create a consensus transcription of each song by the following steps. Firstly, we automatically align the note sequences 
and then perform manual correction with rhythmic information. Secondly, disagreements of each note among note se-
quences are resolved by majority rule, following [9]. If there is a note that is different in all three note sequences, we ask 
our collaborators via email to choose which note would fit the consensus notes selected by the majority rule. If disagreement 
still remains, we choose the median of the pitch from the disagreeing notes. However, subjective decisions were made 
when disagreement involved alignment gaps. We then asked transcribers by email to confirm the soundness of the resultant 
consensus transcriptions, and further updated some transcriptions based on this feedback. 

B. DETAILS OF POST-PROCESSING PROCEDURE 

In order to standardize the output of each method, we applied the following processes. 
 

1. For methods that do not quantize F0 to twelve-tone equal temperament, the estimated F0 is rounded to the nearest 
frequency of the twelve-tone equal temperament. 

2. For methods that do not estimate note duration or note tracking, a median filter with the length of 0.25 seconds is 
applied to smooth the pitch contour. Furthermore, the sequences of F0 shorter than 0.15 seconds are ignored from 
transcription. 0.15 is determined to make the length of note sequence similar to the humans’ sequences. These param-
eters were tuned to minimize the possibility that the automated methods would produce long sequences made up of 
unrealistically short notes as a by-product of the instability of pitch targets in human singing. If the unit of the discrete 
time interval of generated time-frequency representation is less than 0.01 second, decimation is applied to make the 
interval close to 0.01 second to smooth the pitch contour. 

3. For methods predicting multiple pitches in a single timeframe, we apply the following steps to obtain the stream of 
single pitch prediction. Firstly, we observe that these methods tend to predict an overtone as a separate note, so the 
frequency range of the melody is manually specified, and the F0 prediction out of this range was removed. After that, 
the Viterbi algorithm is applied to the remaining multi-pitch F0 prediction results to obtain the dominant time-fre-
quency energy sequence as a melody [58].  

4. Regarding CREPE, F0s having a confidence score larger than or equal to 0.8 are picked up. Note that there is no 
guideline of what value to be used for a threshold. If we used a lower threshold, the final note sequence would become 
longer due to including more pitches, and that would result in lower PID and Kappa than the currently presented 
results. 

5. We use a song excerpt as the input of automated methods to obtain the pitch estimation of a specified 14-second 
segment. However, pitch estimation process would depend on the information available on the broader time range of 
audio data to estimate the F0 of local time-frame, so feeding an entire song as input and extracting the target segment 
from its output will produce different pitch estimation results. In this study, we only have the excerpt of songs regard-
ing the NHS, so we decided to consolidate the input by an audio excerpt. 

 
Incidentally, OAF estimates onset and offset of note, but it is fairly precise, so the above post-processing is applied to 

make a more meaningful comparison with the other methods.  

C. SEQUENCE ALIGNMENT METHOD 

We perform pairwise alignment to create the alignment of note sequences by the Needleman-Wunsch algorithm using 0.0 
for gap opening penalty, -1.0 for gap extension penalty and -1.0 for mismatch (substitution) penalty. This is a linear gap 
setting, and we choose this setting that makes the alignment score equivalent to Levenshtein distance whose operations (i.e. 
insertion, deletion, substitution) are all equally weighted. We use octave information for the evaluation, so the element of 
the sequence consists of two characters: pitch class and octave level (e.g. "A4"). When multiple sequence alignment is 
necessary for creating the baseline of consensus note sequences, we use the center star method to solve alignment heuris-
tically since the computation of the global optimal multiple sequence alignment is not feasible due to its computational 
complexity [59-60]. The center sequence is determined by the sum-of-pairs scoring [59-60], and each score is calculated 
by the Needleman-Wunsch algorithm as described above. 

D. METRICS OF AGREEMENT AMONG SEQUENCES 



  
 
Regarding the computation of Fleiss' Kappa, we regard note transcriptions as a transcriber’s categorization of the F0 of a 
given note. We do not apply partial agreement in this study. The length of the sequence corresponds to the number of 
subjects, and the number of sequences corresponds to the number of raters. When calculating the inter-rater reliability 
coefficients, we also treat gaps inserted during the alignment as coding rather than absence. Gap insertion indicates that 
some transcribers interpret the sound as a pitch, but the others do not, which we treat as a coding disagreement.  

On the other hand, the practice of reporting the raw percent agreement score along with inter-rater reliability coefficients 
is also discussed due to its simplicity [35, 61]. Percent identity (PID) measures the proportion of concordance elements of 
two sequences which is conceptually equivalent to percent agreement, and we use this metric to evaluate how much two 
note sequences are identical. In the case of multiple sequences appearing in group-wise agreement evaluation, we average 
the PID by all combinations of pairs in the sequences. PID has originally been used in the computational analysis of protein 
and DNA sequences to express the similarity between two sequences [36, 60, 62], as well as the comparative study of 
traditional music melodies [37]. There are several variations in PID [36], and we use the following version. 
 

                                   (1) 

 

 

Although Kappa coefficients and PID can provide the reliability of agreement and the proportion of equality of note 
sequences respectively, these quantities do not tell how many notes actually differ between note sequences. Therefore, we 
also use Levenshtein distance to quantify such difference by the number of insert/delete/substitution operations. The pen-
alty of each operation is equally weighted by 1. The score is also averaged in groupwise evaluation cases as well as PID. 

E. STATISTICAL ASSUMPTIONS OF THE TESTS 

Inter-rater reliability coefficients, PID, and Levenshtein distance all quantify the degree of concordance among sequences. 
The underlying distribution of inter-rater reliability coefficients is considered to depend on the raters (i.e. transcribers) and 
subjects (audio recording) [35]. Furthermore, our agreement metrics are collected from various combinations of transcrib-
ers and audio samples, and the domain of Kappa is finitely bounded, so the resultant distributions of agreement metrics 
would not necessarily fit normal or location-scale family distributions.  

Based on the above assumption, we consider the appropriate testing methods to handle the metrics to be nonparametric 
methods. We choose the sign test for one-sample test case and the two-sample Anderson-Darling test [63] and two-sample 
Bayesian nonparametric testing using Pólya trees [64] for two-sample test scenarios. Regarding the two-sample test, we 
assess the probability of type I error by the two-sample Anderson-Darling test. Besides, to complement the lack of infor-
mation about how much we can be confident in accepting alternative hypotheses, we also employ Bayesian hypothesis 
testing. Although these two tests are different procedures, both are proved to be asymptotically consistent under the null 
hypothesis (𝐹(𝑥) = 𝐺(𝑥)) and the alternative hypothesis (𝐹(𝑥) ≠ 𝐺(𝑥)) [63-64]. Please refer to the next section for the 
detailed setting of Bayesian nonparametric testing. 

Regarding the effect size to be used for our nonparametric tests, we choose the departure from the expected proportion 
under the null hypothesis proposed by Cohen [65] for the one-sample test and the probability-based effect size measure 𝐴 
which is known as the probability of one group's superiority over another for two-sample tests [66]. The departure effect 
size (or Cohen's g) in our study can be interpreted as follows. The sign test uses the number of samples whose value is 
larger than the expected median under the null hypothesis as test statistics. If the null hypothesis of the sign test is true, 
then the proportion of data (i.e. κ in our case) above the expected median (i.e. 0 in our case) should be around 50% of all 
samples. However, if the actual median is larger than 0, then the proportion of samples above the expected median would 
be larger than 0.5. We calculate the proportion of samples larger than 0 and show the difference between that proportion 
and the expected proportion under the null hypothesis (i.e. 0.5). Note that in this case, the range of the effect size is from 0 
to 0.5 and Cohen [67] suggests interpreting the value larger than 0.25 as the existence of a "Large" effect. 

The probability-based effect size uses empirical distributions of data to quantify how much data in a group takes a larger 
value than another group, and it is robust to violations of the parametric assumptions. We use this effect size to interpret 
how much TONY's κ is large compared to the others. Note that 𝐴 can be converted to a common standardized mean dif-
ference such as Cohen's d if the normality assumption of data holds [66]. 

In summary, we put non-normality assumptions for the distributions of κ. Thus, we chose testing methods including 
Bayesian tests and effect size from nonparametric techniques. We performed the one-tailed one-sample sign test assuming 
the median of Fleiss' Kappa to be 0 as a null hypothesis for the hypothesis testing of human-human agreement evaluation. 
Regarding the hypothesis testing of examining the automated method producing transcriptions that best agree with humans' 
transcriptions, the null hypothesis to be tested is  𝐹TONY(𝜅) = 𝐺OTHER(𝜅), which is the 9 two-sample tests of comparing the 
empirical distribution of κ by TONY and the others. The superiority of TONY can be quantified by whether the probability-
based effect size measure 𝐴 exceeds 0.5 or not. 



  
 
F. SETTING OF BAYESIAN NONPARAMETRIC TESTING 

We set c = 1and the normal distribution as the centering distribution as the parameters of the Pólya trees (see [64] for the 
definition of parameterization of this test). However, we use the mean and standard deviation to create partitions of samples 
instead of the median and quantiles used in the original study. We set the equal probability for the null hypothesis and the 
alternative hypothesis (= 0.5) as the prior distribution of our Bayesian hypothesis testing, so the posterior odds are equal to 
Bayes factor. 

G. CONTROL OF SIMULTANEOUS INFERENCE 

There are 10 null hypothesis significance tests in our analysis: one-sample Sign test × 1 + two-sample Anderson-Darling 
test × 9 (machine pairs). Since our discussion on the reliability of transcription is interrelated to these test results, we use 
the False Discovery Rate method to control the p-value threshold for all hypothesis tests regarding these as multiple testing 
and simultaneous inference. In particular, we will use the Benjamini–Hochberg step-up procedure [68] at level α = 0.05 as 
the threshold to determine the rejection of 10 null hypothesis testing. Incidentally, we will interpret that the Bayesian test 
at least substantially supports the alternative hypothesis if the posterior probability exceeds 0.8 which corresponds to the 
Bayes factor = 4 in our setting (i.e. the prior distribution being equally weighed to the null and alternative hypothesis). 

H. SEMITONE DISCREPANCY 

 
Figure S1. Example of semitone discrepancy (NAIV-100). Octave information is omitted for visibility. 

I. RESULTS OF AGREEMENT USING RAW NOTE SEQUENCES 

 

Figure S2. Agreement of human transcriptions not applying transposition. 

J. SUMMARY OF DISAGREEMENT FACTORS OF LOW DISAGREEMENT SONGS 

  
Song Segmentation Pitch Both	

NAIV-015 1 0 1 
NAIV-048 0 0 1 
NAIV-100 3 3 0 
NAIV-117 0 4 0 
T5431R27 0 0 3 
T5482R03 0 3 0 

Table S1. Qualitative classification of major disagreement factors of 19 pairs. The number indicates the count by seg-
mentation disagreement, pitch disagreement or both factors. 

K. AGREEMENT BETWEEN AUTOMATED METHODS AND INDIVIDUAL TRANSCRIBERS  



  
 

 

Figure S3. Pairwise agreement of automated methods vs. human ground-truth transcriptions. 

 

Figure S4. Pairwise agreement of automated methods vs. human ground-truth transcriptions. 

 

Figure S5. Pairwise agreement of automated methods vs. human ground-truth transcriptions. 

 



  
 

Figure S6. Pairwise agreement of automated methods vs. human ground-truth transcriptions. 

 

Figure S7. Pairwise agreement of automated methods vs. human ground-truth transcriptions. 

L. RESULTS OF HYPOTHESIS TESTING 

 
Median of κ = 0 p-value α (BH) ES (g) 
Consensus vs. NHS <0.001  0.010 0.5 

Table S2. Result of the one-sample test. α (BH) is a threshold adjusted by the Benjamini–Hochberg step-up procedure 

TONY vs. p-value α (BH) 𝑝(𝐻(|𝑋)	 ES (𝐴) 
AD-NMF <0.001  0.005 1.000  0.985 
CREPE 0.104 0.020 0.443 0.623 
madmom 0.655  0.040 0.371  0.499 
OAF 0.639  0.030 0.152  0.541 
SPICE 0.001  0.015 0.970  0.732 
SS-nPNN 0.923  0.045 0.145  0.462 
Melodia 0.962  0.050 0.193  0.524 
STF 0.210  0.025 0.214  0.613 
pYIN 0.655  0.035 0.334  0.556 

Table S3. Results of the two-sample tests. α (BH) is a threshold adjusted by the Benjamini–Hochberg step-up procedure. 

M. NOTE LENGTHS OF NOTE SEQUENCES BY AUTOMATED METHODS 

 
Figure S8. Lengths of note sequences by automated methods. The dashed line corresponds to the human note sequences, 
and the gap against that indicates that notes are segmented more or less than human transcription. 



  
 

 
Figure S9. Lengths of note sequences by automated methods. The dashed line corresponds to the human note sequences, 
and the gap against that indicates that notes are segmented more or less than human transcription. 

N. DIFFERENCE IN THE ORDER OF AGREEMENT SCORE BY SONG STYLE 

 
Figure S10. Difference of the average of ranking of scores by song styles. Scores of the 32 songs were ranked by de-
scending order. The gap of average ranking indicates the automated method performed well for one style compared to the 
other. 

O. FACTORS AND PATTERNS OF DISAGREEMENT BY LEVENSHTEIN DISTANCE 

The below figures show varying patterns of disagreement among the note sequences of human and automated methods. 
We picked up 4 automated methods as representative samples. Furthermore, we chose the "non-unison" version to be 
able to evaluate the F0 prediction performance more directly. 

 
Figure S11. Type of disagreement decomposed by operation types. 



  
 

 
Figure S12. Type of disagreement decomposed by operation types. 

 
Figure S13. Type of disagreement decomposed by operation types. 

 
Figure S14. Type of disagreement decomposed by operation types. 

P. SUMMARY OF TOP 10 OVERLAPPED BEST AGREEMENT RESULTS BY AUTOMATED METHODS 

We first picked up the top 10 agreement songs in reference to our consensus note sequences from each automated method. 
After that, we further picked up the top 10 overlapping songs from that result.  

Song Song style # of top-10 ranking in Max κ Automated method 
NAIV-054 Solo singing without instruments 8 0.59 Melodia 
NAIV-117 Solo singing without instruments 8 0.81 SS-nPNN 
T5468R28 Solo singing without instruments 8 0.56 TONY 
T5522R80 Solo singing without instruments 8 0.72 OAF 
T5528R18 Solo singing with instruments 8 0.62 SS-nPNN 
NAIV-021 Solo singing without instruments 7 0.56 TONY 
NAIV-029 Solo singing with instruments 5 0.65 TONY 



  
 
T5482R03 Solo singing with instruments 5 0.40 TONY 
NAIV-075 Solo singing without instruments 4 0.47 madmom 
T5421R17 Solo singing with instruments 4 0.67 SS-nPNN 

Table S4. Results by the “unison” note sequence version. 

Song Song style # of top-10 ranking in Max κ Automated method 
NAIV-054 Solo singing without instruments 9 0.93 OAF 
NAIV-104 Solo singing without instruments 8 0.58 CREPE 
NAIV-117 Solo singing without instruments 8 0.84 SS-nPNN 
T5468R28 Solo singing without instruments 8 0.67 TONY 
T5522R80 Solo singing without instruments 7 0.77 OAF 
T5528R18 Solo singing with instruments 7 0.70 SS-nPNN 
NAIV-021 Solo singing without instruments 6 0.61 pYIN 
NAIV-029 Solo singing with instruments 4 0.64 TONY 
T5421R17 Solo singing with instruments 4 0.67 SS-nPNN 
T5487R13 Solo singing with instruments 4 0.72 SS-nPNN 

Table S5. Results by the “non-unison” note sequence version. 
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