420 research outputs found

    Efficient Maliciously Secure Multiparty Computation for RAM

    Get PDF
    A crucial issue, that mostly affects the performance of actively secure computation of RAM programs, is the task of reading/writing from/to memory in a private and authenticated manner. Previous works in the active security and multiparty settings are based purely on the SPDZ (reactive) protocol, hence, memory accesses are treated just like any input to the computation. However, a garbled-circuit-based construction (such as BMR), which benefits from a lower round complexity, must resolve the issue of converting memory data bits to their corresponding wire keys and vice versa. In this work we propose three techniques to construct a secure memory access, each appropriates to a different level of abstraction of the underlying garbling functionality. We provide a comparison between the techniques by several metrics. To the best of our knowledge, we are the first to construct, prove and implement a concretely efficient garbled-circuit-based actively secure RAM computation with dishonest majority. Our construction is based on our third (most efficient) technique, cleverly utilizing the underlying SPDZ authenticated shares (Damgård et al., Crypto 2012), yields lean circuits and a constant number of communication rounds per physical memory access. Specifically, it requires no additional circuitry on top of the ORAM\u27s, incurs only two rounds of broadcasts between every two memory accesses and has a multiplicative overhead of 2 on top of the ORAM\u27s storage size. Our protocol outperforms the state of the art in this settings when deployed over WAN. Even when simulating a very conservative RTT of 100ms our protocol is at least one order of magnitude faster than the current state of the art protocol of Keller and Scholl (Asiacrypt 2015)

    3-Party Secure Computation for RAMs: Optimal and Concretely Efficient

    Get PDF
    A distributed oblivious RAM (DORAM) is a method for accessing a secret-shared memory while hiding the accessed locations. DORAMs are the key tool for secure multiparty computation (MPC) for RAM programs that avoids expensive RAM-to-circuit transformations. We present new and improved 3-party DORAM protocols. For a logical memory of size NN and for each logical operation, our DORAM requires O(logN)O(\log N) local CPU computation steps. This is known to be asymptotically optimal. Our DORAM satisfies passive security in the honest majority setting. Our technique results with concretely-efficient protocols and does not use expensive cryptography (such as re-randomizable or homomorphic encryption). Specifically, our DORAM is 25X faster than the known most efficient DORAM in the same setting. Lastly, we extend our technique to handle malicious attackers at the expense of using slightly larger blocks (i.e., ω(log2N)\omega(\log^2 N) vs. Ω(logN)\Omega(\log N)). To the best of our knowledge, this is the first concretely-efficient maliciously secure DORAM. Technically, our construction relies on a novel concretely-efficient 3-party oblivious permutation protocol. We combine it with efficient non-oblivious hashing techniques (i.e., Cuckoo hashing) to get a distributed oblivious hash table. From this, we build a full-fledged DORAM using a distributed variant of the hierarchical approach of Goldreich and Ostrovsky (J. ACM \u2796). These ideas, and especially the permutation protocol, are of independent interest

    TGh: A TEE/GC Hybrid Enabling Confidential FaaS Platforms

    Full text link
    Trusted Execution Environments (TEEs) suffer from performance issues when executing certain management instructions, such as creating an enclave, context switching in and out of protected mode, and swapping cached pages. This is especially problematic for short-running, interactive functions in Function-as-a-Service (FaaS) platforms, where existing techniques to address enclave overheads are insufficient. We find FaaS functions can spend more time managing the enclave than executing application instructions. In this work, we propose a TEE/GC hybrid (TGh) protocol to enable confidential FaaS platforms. TGh moves computation out of the enclave onto the untrusted host using garbled circuits (GC), a cryptographic construction for secure function evaluation. Our approach retains the security guarantees of enclaves while avoiding the performance issues associated with enclave management instructions

    Lightweight Techniques for Private Heavy Hitters

    Full text link
    This paper presents a new protocol for solving the private heavy-hitters problem. In this problem, there are many clients and a small set of data-collection servers. Each client holds a private bitstring. The servers want to recover the set of all popular strings, without learning anything else about any client's string. A web-browser vendor, for instance, can use our protocol to figure out which homepages are popular, without learning any user's homepage. We also consider the simpler private subset-histogram problem, in which the servers want to count how many clients hold strings in a particular set without revealing this set to the clients. Our protocols use two data-collection servers and, in a protocol run, each client send sends only a single message to the servers. Our protocols protect client privacy against arbitrary misbehavior by one of the servers and our approach requires no public-key cryptography (except for secure channels), nor general-purpose multiparty computation. Instead, we rely on incremental distributed point functions, a new cryptographic tool that allows a client to succinctly secret-share the labels on the nodes of an exponentially large binary tree, provided that the tree has a single non-zero path. Along the way, we develop new general tools for providing malicious security in applications of distributed point functions. In an experimental evaluation with two servers on opposite sides of the U.S., the servers can find the 200 most popular strings among a set of 400,000 client-held 256-bit strings in 54 minutes. Our protocols are highly parallelizable. We estimate that with 20 physical machines per logical server, our protocols could compute heavy hitters over ten million clients in just over one hour of computation.Comment: To appear in IEEE Security & Privacy 202

    Towards End-to-End Private Automatic Speaker Recognition

    Full text link
    The development of privacy-preserving automatic speaker verification systems has been the focus of a number of studies with the intent of allowing users to authenticate themselves without risking the privacy of their voice. However, current privacy-preserving methods assume that the template voice representations (or speaker embeddings) used for authentication are extracted locally by the user. This poses two important issues: first, knowledge of the speaker embedding extraction model may create security and robustness liabilities for the authentication system, as this knowledge might help attackers in crafting adversarial examples able to mislead the system; second, from the point of view of a service provider the speaker embedding extraction model is arguably one of the most valuable components in the system and, as such, disclosing it would be highly undesirable. In this work, we show how speaker embeddings can be extracted while keeping both the speaker's voice and the service provider's model private, using Secure Multiparty Computation. Further, we show that it is possible to obtain reasonable trade-offs between security and computational cost. This work is complementary to those showing how authentication may be performed privately, and thus can be considered as another step towards fully private automatic speaker recognition.Comment: Accepted for publication at Interspeech 202

    DORAM revisited: Maliciously secure RAM-MPC with logarithmic overhead

    Get PDF
    Distributed Oblivious Random Access Memory (DORAM) is a secure multiparty protocol that allows a group of participants holding a secret-shared array to read and write to secret-shared locations within the array. The efficiency of a DORAM protocol is measured by the amount of communication and computation required per read/write query into the array. DORAM protocols are a necessary ingredient for executing Secure Multiparty Computation (MPC) in the RAM model. Although DORAM has been widely studied, all existing DORAM protocols have focused on the setting where the DORAM servers are semi-honest. Generic techniques for upgrading a semi-honest DORAM protocol to the malicious model typically increase the asymptotic communication complexity of the DORAM scheme. In this work, we present a 3-party DORAM protocol which requires O((κ+D)logN)O((\kappa + D)\log N) communication and computation per query, for a database of size NN with DD-bit values, where κ\kappa is the security parameter. Our hidden constants in a big-O nation are small. We show that our protocol is UC-secure in the presence of a malicious, static adversary. This matches the communication and computation complexity of the best semi-honest DORAM protocol, and is the first malicious DORAM protocol with this complexity
    corecore