
Efficient Constructions and Implementations for

Secure Multi-Party Computation

Kazuma Ohara

The University of Electro-Communications

September 2019

Efficient Constructions and

Implementations for

Secure Multi-Party Computation

The University of Electro-Communications

Graduate School of Informatics and Engineering

a dissertation submitted for

Doctor of Philosophy in Engineering

By

Kazuma Ohara

September, 2019

Efficient Constructions and

Implementations for

Secure Multi-Party Computation

Supervisory Committee

Chairperson: Mitsugu Iwamoto

Member: Kazuo Ohta

Member: Kazuo Sakiyama

Member: Hiroshi Yoshiura

Member: Yasutada Oohama

c⃝ Copyright 2019

by

Kazuma Ohara

Abstract

Multi-Party Computation (MPC) enables a set of parties to compute joint functions

on their private inputs while concealing the parties’private inputs. In recent years,

privacy is recognized as an important issue in the field of handling personal informa-

tion such as cloud computing, data mining, machine learning, etc. MPC is attracting

attention as a method that can solve this issue and thus the practical realization of

MPC is desired as soon as possible.

We approach efficient realization method for MPC that meet practical perfor-

mance in the real-world applications from both theory and implementation. In this

thesis, we aim to provide efficient MPC protocols design and implementation achiev-

ing high-throughput. Since MPC requires communication among multiple parties,

the efficiency of MPC is physically limited by the performance of the communication

bandwidth. Therefore, we explore the optimal method by improvement of computa-

tion and communication cost, particularly communication.

The results in this thesis are as follows:

• Foundation (1): High-throughput semi-honest secure 3-party com-

putation based on replicated SS with honest-majority: In this thesis,

we describe a new information-theoretic protocol (and a computationally-secure

variant) for secure three-party computation with an honest majority. The pro-

tocol has very minimal computation and communication; for Boolean circuits,

each party sends only a single bit for every AND gate (and nothing is sent for

XOR gates). We demonstrate the practical potential of our protocol by im-

plementing a MPC-based system for Kerberos authentication, which is a well-

known network authentication protocol based on symmetric-key cryptosystems.

• Foundation (2): Optimizing cheating detection for honest-majority

v

MPC: We provide general techniques for improving efficiency of cut-and-

choose protocols on multiplication triples and utilize them to significantly im-

prove the recently published protocol of Furukawa et al. Most notably, we de-

sign cache-efficient shuffling techniques for implementing cut-and-choose with-

out randomly permuting large arrays (which is very slow due to continual

cache misses). We provide a combinatorial analysis of our techniques, bound-

ing the cheating probability of the adversary. Our results demonstrate that

high-throughput secure computation for malicious adversaries is possible.

• Application (1): Compiler for SS-based MPCs: Today, we have proto-

cols that can carry out large and complex computations in very reasonable time

(and can even be very fast, depending on the computation and the setting).

Despite this amazing progress, there is still a major obstacle to the adoption

and use of MPC due to the huge expertise needed to design a specific MPC

execution.

In this thesis, we design and implement a MPC compiler for our three-party hon-

est majority MPC. Our implementation is an extension of a well-known MPC

compiler called “SPDZ compiler” so that it can work with general underlying

protocols. In this thesis we called the compiler we made “generalized SPDZ

compiler”. Moreover, our SPDZ extensions were made in mind to enable the

use of SPDZ for arbitrary protocols and to make it easy for others to integrate

existing and new protocols.

• Application (2): Dedicated MPC protocols for high-level functionali-

ties Although our SS-based 3-party MPC proposed in the above results is very

efficient in general, the SS-based MPCs are still inefficient for several heavy com-

putations like algebraic operations, as they require a large amount and number

of communication proportional to the number of multiplications in the opera-

tions (which is not the case with other SS-based MPCs). In this thesis, we pro-

pose the following two dedicacted MPC protocols for high-level functionalities;

(1)Arithmetic-to-Boolean/Boolean-to-Arithmetic conversion and (2) modular

exponentiation, to accelerate SS-based MPC further.

vi

Abstract (in Japanese)

「マルチパーティ計算（Multi-Party Computation; MPC）」は，複数の参加者がその

個人情報を他の参加者に秘匿したまま，それらを入力とする関数の計算を参加者間の

協調計算で行う暗号プロトコルの一種である．近年のクラウドコンピューティングや

データマイニング，機械学習などの個人情報を扱う分野で，データの取り扱いに関す

るプライバシの問題が課題として認識される中で，MPCはこの課題を解決し得る手

法として注目されており，一刻も早い実用化が求められている．

理論的には，MPCは任意の関数を計算可能であることが知られている．しかしな

がら，MPCの実用化にあたってはその効率が大きな課題となっている．30年以上研

究がなされた現在においてもなお，MPCは実社会が要求する機能・性能を達成でき

ているとは言い難い．

実システムにおいては，処理の応答の速さ（レイテンシ）や，単位時間当たりの

処理件数（スループット）が求められる．特に，データ分析（データマイニングなど）

のユースケースでは、リアルタイム処理は必ずしも重要ではないため，スループット

がより重要視される．しかしながら，MPCは参加者間での通信を必要とするため，そ

の効率は通信路の物理的性能によって制限される．従来のMPC技術は，その通信量

の多さに由来するスループットの限界を抱えていた．

本研究の目的は，MPCの高速な実現方法について理論・実装の両面からアプロー

チし，高スループットなMPCプロトコルの設計・実装を提供することにある．

本論文では，得られた成果は以下の通りである．

[Part I（基礎）: 任意の回路を計算するより効率的な 3射MPCフレームワーク]

• I-(1): 受動的攻撃者に対して安全な低通信量 3者間MPCフレームワークの提案

（第 3章）本研究では，複製型秘密分散法（Replicated Secret Sharing Schemes;

RSSS）を用いた情報理論的安全性を持つ 3者間MPC方式とその高速実装を提

案した．また，Kerberos認証と呼ばれる共通鍵ベースの認証プロトコルをMPC

で行うシステムを実装し，SSSベースのMPCが現実的な性能要件を満たし得

vii

るスループットを実現できることを示した．

• I-(2): 能動的な攻撃者に対するMPCの不正検知手法の効率改善（第 4章）(1)

で提案したプロトコルは，受動的な攻撃者に対してのみ安全なMPCプロトコ

ルである．本研究では，(1)のMPCにおける能動的な攻撃者を検知する手法を

併せて提案する．提案手法は，既存手法の通信量を理論的改善によって 30%削

減した．また，本プロトコルにおける計算量的に高コストな部分を改善するた

めの手法を提案し，実装評価によってこの手法の効果を実証した．

[Part 2（応用）:より複雑な関数を効率的に実現する手法の提案]

• II-(1): MPCのプログラムを自動生成する「MPCコンパイラ」の設計と実装

（第 5章）ある関数をMPCで実行するには，その関数をMPCで実現可能な低

レベルのコンポーネントで表現する必要があるが，これを人手で行うことは複

雑な関数においては現実的ではない．また，MPC専用のプログラム記述には

MPCに対する知識を必要とする．これを解決するため，MPCの研究ではしば

しば，専用のプログラム記述から秘密計算の実行形式を自動生成する「MPCコ

ンパイラ」がプロトコルと合わせて提案される．本論文では (1)のフレームワー

クのための専用命令セットをサポートするMPCコンパイラを設計・実装し，本

論文で提案する効率的なMPCを現実のさまざまな問題に適用するためのツー

ルとして提供する．

• II-(2): より高機能な関数のための専用MPCプロトコル（第 6章）(1)(2)のフ

レームワークは，加算や乗算などの低レベルなコンポーネントを組み合わせる

ことで任意の関数計算を実現するが，より複雑な関数を実現したい場合には専

用の「MPCモジュール」を設計することによって更なる効率化を実現し得る．

本論文では，利用頻度の高い関数として，論理型・算術型の値の相互変換を行

う「型変換」，および暗号系処理などで特に用いられる「べき乗余関数」のよ

り効率的なMPCプロトコルを提案し，実装によってこのアプローチの有効性

を実証した．

viii

Acknowledgments

I would like to express my sincere thanks to my supervisor, Assoc. Prof. Mitsugu

Iwamoto and Prof. Kazuo Ohta for their valuable input, feedbacks and discussions.

Their insightful comments always made me aware of my deficiencies and improved my

dissertation and presentation. Their enthusiasm and great mathematical skills have

been an inspiration throughout the thesis. It has been an absolute pleasure working

with and learning from them. I owe what I am today to their education.

I am also indebted to the members of the supervisory committee, Prof. Kazuo

Sakiyama, Prof. Hiroshi Yoshiura and Prof. Yasutada Oohama. Their all valuable

comments and discussions gave me a lot of perception and was helpful for improve

the thesis.

I am very thankful to NEC and to all my colleagues for their kind support. Espe-

cially, I would like to acknowledge co-authors, Dr. Jun Furukawa, Dr. Toshinori Araki,

Mr. Hikaru Tsuchida. Since I was joined NEC, Dr. Jun Furukawa and Dr. Toshi-

nori Araki helped me very well as my supervisors and as colleagues. Mr. Tsuchida

joined from the middle of our project and support us strongly. I also would like to

acknowledge Mr. Koichi Konishi and Dr. Takao Takenouchi, who are managers of our

team, for their understanding, support and all effort on business development for our

research.

I would like to express my gratitude to the co-authors, Prof. Yehuda Lindell,

Mr. Assi Barak, Mr. Ariel Nof, Ms. Adi Watzman, Mr. Tamar Lichter, Mr. Or We-

instein in Bar-Ilan University, and Marcel Keller in Data 61. I believe they are the

world’s leading teams in the area, and I have learned a lot of things from them. Es-

pecially, Prof. Yehuda Lindell showed me how to write papers, and how to manage a

research project. and more. Mr. Assi Barak showed me a lot of techniques for soft-

ware design and engineering. Being able to see their work up close led to my great

growth. In addition, I also thank to the all member of Bar-Ilan University for giving

ix

a lot of great time during my long stay in Israel. In particular, I am highly thankful

to Prof. Benny Pinkas for interesting conversations for researches and more, and to

Ms. Yonit Yonit Homburger for all kind support on my stay. The time I spent with

them was a lot of fun and became a great asset to me.

I am deeply grateful to Dr. Yohei Watanabe in National Institute of Information

and Communications Technology (previously in University of Electro-Communications)

for a lot of discussion on the state-of-the-art research and daily conversation. On the

result of Chapter 6, I receive a lot of valuable comments from him and it make the

paper better quality. However, the most important thing is that the time of discussion

with him was very enjoyable and gave me a lot of fun and stimulation in my doctoral

course.

Finally, it is my pleasure to thank my father, mother and sister for their supporting

and encouraging me for my education.

September, 2019

Kazuma Ohara

Tokyo, Japan

x

List of Figures and Tables

Chapter 1

• Table 1.1: Known Feasibilities on MPC

Chapter 3

• Table 3.1: Reported times for semi-honest 3-party computation & honest ma-

jority; the throughput is measured in AES computations per second (the last

two rows with similar configurations)

• Table 3.2: Experiment results running AES-CTR. The CPU column shows the

average CPU utilization per core, and the network column is in Gbps per server.

Latency is given in milliseconds

• Figure 3.1: Bit-slice operation

• Figure 3.2: Unpack operation of AVX instruction set

• Figure 3.3: Moving masked bit operation of AVX instruction set

• Figure 3.4: Throughput per core (AES computations)

• Figure 3.5: Latency versus throughput (AES)

• Figure 3.6: The Kerberos authentication using MPC

Chapter 4

• Table 4.1: Implementation results; throughput

• Table 4.2: Implementation results; B denotes the bucket size; security level 2−40

xi

• Figure 4.1: Microbenchmarking of the baseline implementation (the protocol

of [56]), using the CxxProf C++ profiler

• Figure 4.2: Cache-efficient shuffling method

• Figure 4.3: Microbenchmarking of Protocol 4.4, using the CxxProf C++ profiler

• Figure 4.4: Architecture of implementation

• Figure 4.5: Microbenchmarking of best protocol variant, using the CxxProf

C++ profiler (run on a local host)

Chapter 5

• Table 5.1: Decision tree computation (seconds).

• Table 5.2: Running times for batch vectorization in seconds. Batch × N means

running N executions in parallel (i.e., with vectors of length N).

• Figure 5.1: SPDZ Python code for oblivious selection from an array

• Figure 5.2: High-level SPDZ compiler architecture

• Figure 5.3: Representing a program as a directed acyclic graph

• Figure 5.4: Multiplication in the original SPDZ compiler vs using new instruc-

tion extension

• Figure 5.5: The extensions applied to the SPDZ compiler of [42]

• Figure 5.6: Benchmarking on Mean computation (X-axis=num. inputs)

• Figure 5.7: Benchmarking on Variance computation (X-axis=num. inputs)

• Figure 5.7: Benchmarking on Variance computation (X-axis=num. inputs)

• Figure 5.8: Benchmarking on US Census SQL query (X-axis=num. inputs)

xii

Chapter 6

• Table 6.1: Reference for local re-sharing for bit-decomposition

• Table 6.2: Truth table for computing xj via majority

• Table 6.3: Truth table for checking correctness on xj

• Table 6.4: Reference for local re-sharing for ring composition

• Table 6.5: Different parameters and their cost

• Table 6.6: Optimal block-size and costs for the variable-length approach (com-

putation is from right-to-left)

• Table 6.7: Costs for the conditional-sum adder approach

• Table 6.8: Complexity of decomposition and ring composition

• Table 6.9: Comparison of Complexity of 32-bit Integer Conversions for Secure

3-Party Computation

• Table 6.10: Complexity of MPC for Modular Exponentiation over Replicated

Secret Sharing

• Table 6.11: Appropriate data length of discrete-log based cryptosystem for

128/256-bit security

• Figure 6.1: Comparison for communication bits between previous scheme and

scheme 1 in this paper

• Figure 6.2: Latency-field size with 128-bit security parameter (log q = 256 bit)

• Figure 6.3: Latency-field size with 256-bit security parameter (log q = 512 bit)

xiii

List of Functionalities

Chapter 3

• Functionality 3.1: Fmult – multiplication

• Functionality 3.2: Fcr – corr. randomness

Chapter 6

• Functionality 6.1: Fmpc – The Mixed MPC Functionality

xiv

List of Protocols

Chapter 3

• Protocol 3.1: Sharing input to the parties

• Protocol 3.2: Computing XOR gate

• Protocol 3.3: Computing AND gate

• Protocol 3.4: Generating computational correlated randomness

• Protocol 3.5: Computing arithmetic addition gate over Zq

• Protocol 3.6: Computing arithmetic multiplication gate

• Protocol 3.7: Computing Fmult

• Protocol 3.8: Computing Fcr

Chapter 4

• Protocol 4.1: Computing a function f with Malicious Adversaries

• Protocol 4.2: Generating Valid Triples – Cache-Efficiently

• Protocol 4.3: Computing f with Malicious Adversaries – Smaller Buckets

• Protocol 4.4: Computing f with Malicious Adversaries – On-Demand Shuffling

and Smaller Buckets

Chapter 6

• Protocol 6.1: Communication-Efficient Bit Decomposition from Z2n to (Z2)
n

• Protocol 6.2: Communication-Efficient Ring Composition from (Z2)
n to Z2n

xv

• Protocol 6.3: Previous work: modular exponentiation with public base

• Protocol 6.4: Skew Exponentiation

• Protocol 6.5: Modular Exponentiation with prime modulus

• Protocol 6.6: Modular Exponentiation with the case where modulus is power

of 2

• Protocol 6.7: Modular Exponentiation in the special case where p = 2q + 1

• Protocol 6.8: Modular Exponentiation in the special case where p > 3q + 1

xvi

List of Notation

Set notation

• Z : a set of integer

• N : a set of the natural number (including 0)

• R : a set of the real number

• Zq = {0, 1, . . . , q − 1} : a quotient ring with positive integer q

• {0, 1}k : a set of bit strings with length k

• {0, 1}∗ := ∪k∈N{0, 1}k

• [0, 1] : a closed interval; ∀x ∈ [0, 1], 0 ≤ x ≤ 1.

Miscellaneous symbol

• ≡: perfectly indistinguishable

• s≡: statistically indistinguishable

• c≡: computationally indistinguishable

• κ: security parameter

MPC parties notation

• P : a set of parties

• Pi ∈ P : a party with the identifier i (for 3-party case, i ∈ {0, 1, 2})

xvii

Representation on secret sharing and MPC

• π ≡ f :the real protocol π securely computes a functionality f (for the definition

of “securely compute”, see also Definition 2.4.3)

• πg ≡ f : the real protocol π securely computes a functionality f in the g-hybrid

model

• [x]q: x is shared among the parties by a (linear) secret sharing scheme with

modulus q.

• [x]qi : Pi’s share for the secret x.

• [x]qi,j: j-th element of Pi’s share for the secret x. Namely, if Pi’s share is a vector

of length m, [x]qi = ([x]qi , 0, . . . , [x]
q
i,m−1).

x0, x1, x2: sub-shares of [x]q in the case of replicated secret sharing (x0 + x1 +

x2 mod q = x).

• xj: j-th significant bit of x.

• [a]qi ||[b]
q
i : concatenation of Pi’s shares [a]qi and [b]qi . Namely, ([a]qi ||[b]q,i) =

([a]qi,0||[b]
q
i,0, [a]

q
i,1||[b]

q
i,1, . . . , [a]

q
i,m−1||[b]

q
i,m−1).

MPC protocols

• add: addition (if Boolean circuit, it implies XOR)

• mult: multiplication (if Boolean circuit, it implies AND)

• bit decomp: bit decomposition

• skew decomp: skew decomposition

• ring comp: ring composition

• pub expo: modular exponentiation with public base (previous work)

• skew expo: skew exponentiation

• modexpp: modular exponentiation with public base and prime modulus

xviii

• modexp2n: modular exponentiation with public base and the modulus of 2 pow-

ers

• modexp sp: modular exponentiation with public base and p = 2q + 1

• modexp sp2: modular exponentiation with public base and p = 3q + 1

xix

Contents

Abstract v

Abstract (in Japanese) vii

Acknowledgments ix

List of Figures and Tables xi

List of Functionalities xiv

List of Notation xvii

1 Introduction 1

1.1 Theoretical Background on Secure Multi-Party Computation 1

1.2 Practical Background on Secure Multi-Party Computation 9

1.3 Motivation and Our Results . 11

1.4 Organization of the Thesis . 15

2 Preliminaries 17

2.1 Notation . 17

2.2 Indistinguishability . 18

2.3 Secret Sharing . 19

2.3.1 (k, n)-threshold schemes . 19

2.3.2 Replicated Secret Sharing . 20

2.4 The Model of Secure Computation 20

2.4.1 Settings . 21

2.4.2 Security Criteria . 21

2.4.3 Simulation-based Security . 23

xx

2.4.4 Representation of Functionalities for Secret Sharing-based 3PC 26

I Foundations: Secure 3-Party Computation for General

Circuits — Theory and Implementations for More Efficient

Primitives 27

3 Foundation (1): Semi-Honest Secure 3-Party Computation based on

Replicated Secret Sharing 28

3.1 Introduction . 28

3.2 Related Work . 30

3.3 The New Communication-Efficient Protocol for 3-Party Computation 31

3.3.1 Securely Computing Boolean Circuits 32

3.3.2 Generating Correlated Randomness 35

3.3.3 The Ring with General Modulus: 2n and Fields 36

3.3.4 Protocol Efficiency and Comparison 38

3.4 Security against Semi-Honest Adversaries 39

3.4.1 Computing f in the Fmult-Hybrid Model 40

3.4.2 Computing Fmult in the Fcr-Hybrid Model 46

3.4.3 Computing Fcr in the Plain Model 49

3.4.4 Wrapping Up . 51

3.5 Security against Malicious Adversaries in the Client-Server Model . . 52

3.6 Experimental Evaluation . 54

3.6.1 Implementation Aspects . 54

3.6.2 Result (1): Fast AES . 56

3.6.3 Result (2): Kerberos KDC with Shared Passwords 58

4 Foundation (2): Maliciously Secure 3-Party Computation based on

Replicated Secret Sharing 62

4.1 Introduction . 62

4.2 Related Work . 66

4.3 The Baseline Protocol . 67

4.3.1 An Informal Description . 67

4.3.2 Implementation Results and Needed Optimizations 70

xxi

4.4 Optimized Cheater Identification . 72

4.4.1 Cache-Efficient Shuffling for Cut-and-Choose 72

4.4.2 Reducing Bucket-Size and Communication 80

4.4.3 Smaller Buckets With On-Demand Secure Computation 85

4.4.4 Hash Function Optimization 92

4.5 Trade-off between Security and Efficiency: The Combinatorics of Cut-

and-Choose . 93

4.5.1 The Potential of Different-Sized Buckets 94

4.5.2 Moderately Lowering the Cheating Probability 96

4.6 Experimental Evaluation . 99

4.6.1 Implementation Aspects . 99

4.6.2 Results and Discussion . 102

II Applications: How to Realize MPCs for Complex Func-

tionalities — Bridging from Efficient Primitives to Efficient

Applications 104

5 Application (1): Generalized SPDZ Compiler for MPC based on

Secret Sharing 105

5.1 Introduction . 105

5.2 Related Work . 105

5.3 Review on the SPDZ Protocol and Compiler 109

5.3.1 Overview . 109

5.3.2 Circuit Optimizations . 110

5.3.3 Higher-Level Algorithms . 112

5.4 Software Design and Implementation for Making SPDZ a General Com-

piler . 113

5.4.1 Modifications to the SPDZ Compiler 114

5.4.2 Incorporating BMR Circuits 118

5.5 Experimental Evaluation . 119

5.5.1 Implementation Aspects . 119

5.5.2 Results and Discussion . 120

xxii

6 Application (2): 3-Party Computation for High-Level Functions 126

6.1 MPC for Bit Decomposition and Ring Composition 126

6.1.1 Introduction . 126

6.1.2 Related Work . 128

6.1.3 Communication-Efficient Bit Decomposition 129

6.1.4 Communication-Efficient Ring Composition 133

6.1.5 Variants: Reducing the Round Complexity 136

6.1.6 Security . 140

6.1.7 Efficiency . 142

6.2 MPC for Exponentiation . 144

6.2.1 Introduction . 144

6.2.2 Related Work . 146

6.2.3 A Key Technique: Skew Exponentiation 147

6.2.4 Communication-Efficient Modular Exponentiation 149

6.2.5 Security . 153

6.2.6 Efficiency . 154

6.3 Experimental Evaluation . 156

6.3.1 Implementation Aspects . 156

6.3.2 Results and Discussion . 157

7 Conclusion 159

References 160

List of Publications 177

Author Biography 180

xxiii

Chapter 1 Introduction

1.1 Theoretical Background on Secure Multi-Party Compu-

tation

Modern cryptography has been studied as a methods for secure communication in

the environment with third parties called adversaries. In particular, since the stan-

dardization of the symmetric key cryptosystem DES in the late 1970s [103] and the

proposal of public key cryptosystem by Diffie and Hellman [47], researches on cryp-

tography have been rapidly developed and many research fields have been explored.

One of the most important primitives in cryptography is an encryption, which is a

technology for securely transmitting data to the receiver so as not to leak contents of

the data to the eavesdropper (adversary). On the other hand, cryptography in a broad

sense covers wider technologies besides encryption, such as key distribution, authen-

tication, digital signature, pseudorandom number generation. In addition, one of the

long-standing interests in cryptography is how/what kind of advanced functionalities

can be achieved from these cryptographic primitives.

One of the oldest protocols that realizes such advanced applications is the “mental

poker” protocol [113] by Shamir, Rivest and Adleman, which is a way to realize poker

over the phone (without trusted third entity). In the same period, several crypto-

graphic protocols were proposed, such as Yao’s millionaires’ problem [125] (how to

know which of two persons is richer) and Even et al.’s document exchange protocol [50]

(a method of exchanging documents simultaneously via telephone).

Later, in 1986, Yao generalized the above problems for the two party case [126].

Micali, Goldreich and Wigderson [60] also extended this to the n party case. These

are the beginning of the research field known as Multi-Party Computation (MPC) in

modern cryptography.

Examples of MPCs MPC protocols involves various applications of wide range.

We introduce several examples of these protocols in the following.

• Electronic auction [52, 89, 95, 63, 19, 23]: The parties are auctioneers and

1

2 Chapter 1. Introduction

bidders. The auctioneer offers his/her goods, service or some contract. The

bidders submit their own bits, and then the winner (e.g., who bids the highest

price in the case of goods, or lowest price in the case of contract) gets the offered

things. They want to perform auction without revealing each bidder’s bid. The

auctioneers and bidders finally know only the winner and his/her bids.

• Electronic voting [32, 15, 22, 55, 105, 96, 106]: The parties are voters and

authorities managing the vote system. The voters want to confirm the result of

auction without revealing each voters vote. In addition, the authorities want to

ensure that the result of votes is correct (i.e., all vote is not tampered/substi-

tuted).

• Database queries [76, 54, 9, 2, 120]: The parties are client(s) and server(s).

The client wants to ask queries against a database without revealing what he/she

has been asked. The server wants to respond the queries without revealing

contents of the database beyond the response for the queries. The queries

involves keyword search, sorting, aggregation and so on.

• Threshold cryptosystem [21, 38, 45, 46, 58, 114, 115, 90, 86]: The parties

are multiple users (typically signers or receivers). The threshold cryptosytems

is a kind of cryptosystems that multiple parties cooperatively perform crypto-

graphic operation such as signing or decryption. Such schemes are constructed

so that if all (or a number more than threshold) of parties join the protocol,

then signing/decryption procedure is succeeded. The purpose of threshold cryp-

tosystems involves decentralizing authorities, or key escrow without revealing

certificate or secret key against any user.

Since the research area of MPC is extraordinarily wide, it is difficult to talk about

all of the MPC applications here. However, basically, MPC could be a good solution

if we want to process any private date on a distributed environment. In recent days,

it is considered that one of the most attracting applications of MPCs is so-called

“privacy-preserving data analysis (mining)”. We will describe this topic in more

detail in Section 1.2.

Models of MPCs We briefly describe a model of MPCs in the following.

Section 1.1. Theoretical Background on Secure Multi-Party Computation 3

Now we consider a network composed of n participants (a participant is called as

“party”). Suppose that each party Pi (i ∈ {0, . . . , n − 1}) holds his/her own secret

xi. We consider the following problem: When a function (also called functionality)

f (for example, the sum or the maximum value) is given, each party wants to obtain

y = f(x0, . . . , xn−1) (e.g. y = x0 + · · ·+ xn−1, y = max{x0, . . . , xn−1}) while keeping

their own information secret. The parties try to realize a functionality such that

all of the parties finally know the value of y correctly, by the distributed computing

among n parties. In particular, during the computation, each party can communicate

with other parties. It is also required that the communication must not reveal their

secret. The protocol that realizes such a functionality is called a MPC protocol for

the functionality f .

Assuming a trusted third party (TTP) and the secure channel, this functionality

is trivially realized by the following way: each party Pi sends xi to TTP using the

secure channel, and TTP calculates y and then send it back to each Pi. However, the

assumption of a reliable TTP is strong and depends on non-technical factors (opera-

tion and maintenance in TTP, credit examination for TTP, etc.). Therefore, generally

in MPC, only technically reasonable assumptions such as existence of secure channel

(presence of symmetric key cryptosystem) and existence of public key cryptosystem

are considered.

We also assume that adversaries are included among the n participants. We can

consider two types of attacks by the adversaries: (1) to steal other parties’ secret

inputs or (2) to tamper the output of MPC protocol illegally. For achieving both

attacks, the adversaries can arbitrarily collude to achieve their goals. If an MPC

protocol does not allow to steal or to tamper the output by t parties out of n, the

MPC protocol is said to be t-secure. This security guarantees are also to be consid-

ered how adversaries behave in the protocol. There are two typical adversary models:

semi-honest adversaries and malicious adversaries. (1) semi-honest adversaries: the

adversaries follow the protocol specification but may try to learn more than allowed

from the protocol transcript. (2) malicious adversaries: the adversaries can run any

arbitrary polynomial-time attack strategy (i.e., adversary can deviate from the pro-

tocol specification).

4 Chapter 1. Introduction

On the type of assumptions for guaranteeing security, two models can be con-

sidered: information-theoretic model and computational model. In the information-

theoretic model, security is obtained unconditionally and even in the presence of com-

putationally unbounded adversaries (“information-theoretically secure” is also said as

“unconditionally secure”).

More precisely, we say that a scheme is perfectly secure if any information the

adversaries can obtain by the execution of the scheme (e.g., ciphertexts, transcripts)

does not increase the success probability of an attack. On the other hand, we say

that a scheme is statistically secure if the information that can be obtained from the

scheme does not increase success probability of an attack except tiny probability.

More precisely, if the probability that the adversaries succeed the attack is exactly

0, the security is called as perfect security, and else if we allow the adversaries to suc-

ceed with a negligible probability, the security is called as statistical security. In con-

trast, in the computational model, security is obtained in the presence of polynomial-

time adversaries and relies on computational hardness assumptions.

Research Direction First construction of secure 2-party computation was proposed

in Yao’s paper in 1986 [126]. After that, first MPC protocol for n-party case and

general functionality was shown [60], which depends on Yao’s idea, zero-knowledge

proof [61] and verifiable SS [35]. In [60], the following result was shown: assuming

the existence of public key encryption (one-way trapdoor function), there is a t-secure

multi-party protocol for any functionality1 f and t < n/2 .

With these results as a start point, a large number of MPC protocols have been

explored. Since the feasibility on MPC protocols for any functionality is already shown

in the above results, the main interest on these research was mainly concentrated

on improvement in terms of assumptions, threshold of the adversaries and efficiency.

Generally it is required to design appropriate MPC protocols according to the purpose

in each context, while considering these features.

• On assumptions — From what kind of assumptions can we construct

MPC protocols?: One interest topic on assumptions is to characterize nec-

essary/sufficient assumptions required to realize a functionality on MPC. In

other words, we want to construct MPC protocols from weaker assumption as

1When we argue about “any function”, we regard f as a Boolean circuit. Note that a circuit can
approximate arbitrary continuous function with arbitrary precision

Section 1.1. Theoretical Background on Secure Multi-Party Computation 5

much as possible. For example, [61] assumes the existence of public key en-

cryption. We can consider much weaker assumption like the existence of secure

channel, or the existence of broadcast channel [36] (a channel for transmitting

the same information to all parties simultaneously). For instance, the exis-

tence of secure channel is a weaker assumption than the existence of public

key cryptography. Note that the existence on public key encryption is well

known to depend on computational assumption (existence of a one-way trap-

door function), whereas the existence of secure channel requires for constructing

information-theoretically secure protocols.

• On the thoreshold — How can we obtain MPC protocols with larger

t?: As mentioned above, the security for MPC protocols with n parties are

characterized by the threshold t which implies the maximum number of adver-

saries, and the first result [60] shows a feasibility on t < n/2 (namely, the case

where honest parties are majority). It is considered the threshold t should be as

large as possible. In addition, upper/lower bounds of t are also a theoretically

interesting topic.

• On efficiency — Can we construct more efficient MPC protocols?:

Theoretically, the efficiency of MPC protocols is evaluated by two metrics: com-

munication complexity and round complexity. The communication complexity

means the total amount of communication bits during the execution of MPC

protocols. The round complexity means that the number of communication

(interaction) during the MPC protocols.

In 1988, Ben-Or et al. [14] and Chaum et al. [33] showed the following result:

“assuming secure channel, for any functionality f and for t < n/3, there exist t-

secure MPC protocols for f”. After that, in 1989, Rabin and Ben-Or [109] improved

the upper bound of t to t < n/2. More precisely, they showed that “assuming the

secure channel and broadcast channel, for any functionality f and t < n/2, there

exists t-secure MPC protocols for f”.

The above results [14, 33, 109] hold under on information-theoretic assumption.

It seems that achieving larger upper bound of t than t ≥ n/2 is difficult. There-

fore, there are researches that aim to improve upper bound of t under computational

6 Chapter 1. Introduction

assumptions. For example, Goldreich, Micali and Wigderson [60], Beaver and Gold-

wasser [12] show that: “assuming the existence of an oblivious transfer [108], for any

functionality f and t < n, there exists t-secure MPC protocols for f” (with negligible

error).

We summarize these known feasibility results in Table 1.1.

Table 1.1: Known Feasibilities on MPC

On the efficiency, the MPC protocols described above are all requires polynomial

order of round complexity. Namely, when we want to compute large circuit on these

MPC, it requires larger number of rounds. However, in 1990, Beaver et al [11] show

that there exists MPC protocol whose round is constant (independent of f). In

addition, it is also shown that there exists more dedicated construction for MPC

protocols for several special functionality (comparison and so on) [39, 99, 119, 97, 98]

(although these constant-round MPC protocols is asymptotically efficient but still

have drawback that communication complexity in reasonable parameter is very large).

Well-known framework for constructing MPC protocols Here we intro-

duce well-known frameworks for constructing MPC protocol for any functionality

f (general-purpose MPC). In this thesis,“MPC protocol”means general-purpose

MPC unless otherwise noted.

• How can we obtain MPC protocols for “any functionality”?: Since

a functionality f can be considered as a circuit, we consider how to construct

Section 1.1. Theoretical Background on Secure Multi-Party Computation 7

MPC protocol for any circuit. Here we introduce a concept of “functional com-

pleteness” [49] in the theory of logical operations. It is known that there exists

a specific set of logical operators (gates) can represent an arbitrary circuit2. If a

set of logical gate can represent circuits for arbitrary f , we call the set of logical

gate is functionally complete.

Namely, if we can construct MPC protocols for a certain functionally complete

set of logical gates, we can obtain a MPC protocol for any functionality f . An

example of functionally complete set of logical gate is {XOR,AND}, where

XOR and AND are binary operators over {0, 1} (namely, Z2). In addition,

instead of {XOR,AND}, we can consider {+, ·} where “+” and “·” are operator
for addition and multiplication over Zq where q ∈ N (q ≥ 2). Note that if

x, y ∈ {0, 1} then x XOR y = (x + y) − (x · y) and x AND y = (x · y). It

means that {+, ·} can be reduced to {XOR,AND}, and therefore {+, ·} also

can construct any functionality.

Particularly important methods to realize MPC protocols are the “garbled circuit

(GC)” introduced by Yao [126] and MPC based on the secret sharing (SS) [112, 16]

introduced by Ben-Or et al. [14] and Goldreich et al. [60].

GC-based: Garbled circuit is an method of 2-party computation for general Boolean

circuit. In GC, the functionality f to be computed is represented as the com-

position of XOR gate and AND gate. For each gate, one of the parties (called

“garbler”) make encrypted truth table by symmetric key encryption and send

it to other party (called “evaluator”). Then, garbler also send the secret keys

for encrypting truth table that corresponding to each parties input value. This

procedure requires oblivious transfer [108], which is a cryptographic protocol in

which the sender can not know which of the data sent by the sender has been

received by the receiver.

SS-based: SS is one of the most important building blocks to construct MPC pro-

tocols independently introduced by Shamir [112] and Blakley [16]. SS divide

the secret into n pieces (called “shares”), and each share is held by n parties.

2“arbitrary circuit” here means that arbitrary truth table for n-input and m-output function
f : {0, 1}n → {0, 1}m for any n,m ∈ N

8 Chapter 1. Introduction

This shares has the properties that (1) the original secret information can be

restored only when k shares among the n shares are collected, and (2) any infor-

mation about the original secret is leaked from any k − 1 shares. In particular,

if the reconstruction of the secret from the shares is a linear mapping, the SS

is called as linear secret sharing (LSS). For constructing MPC based on SS, a

LSS is often deployed.

Now, suppose that secret information a and b are respectively distributed to n

parties by a LSS. At this time, the share of a+b can be obtained only by adding

up the shares held by each participant due to the linearity of LSS. In other

words, we can easily construct a MPC protocol for “addition”, which computes

the share of a + b from the share of a and the share of b. Therefore if we can

construct MPC for multiplication, we can compute arbitrary functionalities on

MPC by combination of addition and multiplication. Although many SS-based

MPC have been proposed until today, almost of known schemes are consist of

“MPC for addition by LSS + individually designed MPC for multiplication”.

In recent days, MPC protocols can not be classified simply into these two styles,

since several MPC protocols are consist of both of GC and SS.

The standard GC is for 2-party as mentioned above. However, Beaver et al. [13]

introduced that how to extend the GC into n-party case by combining SS (this tech-

nique is called “BMR protocol” from the initial letters of the authors). Even in today,

it is the well-used baseline for efficient constant round MPC protocol [88, 64].

ABY framework [44, 92] is a mixed-protocol of SS-based and GC-based MPC.

The aim of this scheme is efficiently combining arithmetic operation and Boolean

operation to utilize each own advantage of GC and SS.

On the efficiency of these techniques Comparing the above two methods, the

advantage of GC is the small round complexity: it takes small constant round for

any Boolean circuit MPC. On the other hand, GC requires encrypting truth tables

for each gate f by symmetric key encryption, and it involves a much amount of

communication than SS-based MPCs (since even for 1-bit information, a ciphertext

of symmetric key encryption takes κ bits where κ is a security parameter). By recent

progress [127], the number of ciphertext for each gate is reduced two, whereas the

original Yao’s GC requires four ciphertexts for each gate. However, [127] also proved

Section 1.2. Practical Background on Secure Multi-Party Computation 9

that “two ciphertexts per gate” is lower bound in the standard garbling method.

SS-based MPC has opposite features to GC. Namely, it requires less amount of

communication bits but takes large number of communication round. SS-based MPCs

are basically requires communication for every multiplication. Therefore, its commu-

nication round depends on the “depth” of multiplication in the functionality f . How-

ever, the amount of computation once is very small. This is because the SS is based

on information theoretic security, so it does not require the amount of communication

dependent on security parameters like size of ciphertext.

1.2 Practical Background on Secure Multi-Party Computa-

tion

So far we have introduced the theoretical background of MPC. In the following, we

will touch on the history of research on applications and implementations of MPC.

The root of applied research on MPC is “Privacy Preserving Data Mining” [87] by

Lindell and Pinkas (Agrawal has also published a paper of the same name in another

field in the same year [3]). In this paper, ID3 (Iterative Dichotomiser 3) algorithm,

which is a kind of machine learning algorithm, is constructed using MPC protocol.

Noteworthy, in this paper, a dedicated protocol is proposed to efficiently execute some

processing such as logarithmic function required to realize ID3 in MPC. This paper is

an important since it points out that the effectiveness of dedicated design for practical

application, as opposed to the common knowledge of that “MPC can theoretically

execute arbitrary processing”.

In 2004, the first implementation of MPC named “FairPlay” was proposed by

Malkhi et al. [91]. Their implementation was based on Yao’s Garbled Circuit, and

had no dedicated functionalities for advanced processing. The performance was 13ms

per one logic gate (one billion times slower compared with a normal PC at that time),

but it was the result that the efficiency of general purpose MPC was shown for the

first time.

As an application to actual data, an experiment on application to a sugar beet

auction by Bogetoft et al. was conducted in 2008 [19]. The adopted protocol is a

scheme based on Shamir’s SS, and calculations mainly consist of addition, multiplica-

tion and comparison were performed in about 30 minutes. This work has been taken

over by an auction solution provided by Partisia, Denmark.

10 Chapter 1. Introduction

Beginning with the above, many application of MPC are being searched. Among

them, the recent trend of data analysis based on machine learning can not be ignored.

Machine learning has a much deeper history than modern cryptography. However, the

recent theoretical improvements and computer performance improvements allows de-

veloping remarkable application of deep neural networks (a.k.a deep learning). These

achievements triggered the public to have hope for “artificial intelligence (AI)”.

With the focus on data analysis using machine learning, the privacy of training

data has been raised as a problem. For example, according to McKinsey’s reports [66,

65], it is said that US healthcare community is able to generate more than $300 billion

in value each year if hospitals, caregivers and pharmaceutical companies can share

and utilize data. However, such data sharing between different industries is difficult

from the viewpoint of individual privacy.

Theoretically, MPC can compute arbitrary functionalities among many people

while keeping the input secret. In other words, it is also possible to execute the

machine learning algorithm while concealing the training data. In addition, the secu-

rity of MPC protocols is supported by the well-developed rich cryptographic theory.

Therefore, MPC has attracted the attention as the method for solving privacy is-

sue on machine learning, and improving efficiency of MPC protocols is an important

research theme, not only academically but also industrially.

What kind of “efficiency” is important in practical sense? From practical

point of view, the efficiency of implementation for MPC protocols are measured by

two metrics: latency and throughput. The latency means that the time from staring

MPC protocol to ending the protocol (usually including the sharing input and recon-

structing output). The throughput means that the number of MPC execution can be

performed in a certain period (e.g., per second). Generally, if the latency is improved

the throughput is also improved. The throughput is meaningful when we consider

processing a large number of data utilizing parallelization. For example, if the MPC

against single data can be done in 100ms latency, the throughput of this MPC is 10

processes/sec naively. However, if we can execute the MPC against 1,000 (indepen-

dent) data in parallel, the throughput of this MPC can be 10,000 processes/sec.

In use cases of data analysis (such as data mining), throughput is more important

than latency, since the scene requiring real-time processing is not so much. For

example, in some cases it is sufficient to take execution time from night to the next

Section 1.3. Motivation and Our Results 11

morning. In other cases, it is allowed that an analysis may take a week or a month.

Which MPC is better? On the latency, the GC and SS-based MPCs reaches

same level. Typically, in the researches on MPC implementation, MPC for AES (a

kind of symmetric key encryption) circuit are often used as benchmarking latency

and throughput of the MPC protocol. According to [80], the SS-based MPC takes

14.3ms latency for one execution of AES circuit with semi-honest adversaries. On the

other hand, [62] reported that GC takes 16ms with semi-honest adversaries.

For aiming high throughput in these method, the biggest problem is the commu-

nication complexity and physical limitation of communication channel.

As mentioned above, the GC requires larger amount of communication than SS-

based scheme. Here we briefly estimate the communication bits that GC requires.

Assuming 128-bit security and deploying AES for symmetric key encryption, one

ciphertext of AES is 128 bits. Therefore, if we apply the method of [127], the GC

requires 128× 2 = 256 bits for each AND gate in the functionality f to be computed.

We additionally let the two parties are connected by 10Gbps network. In this case, the

upper bound of the throughput depending on communication bandwidth is roughly

7,500 AES/sec. In contrast, [18] reported that their SS-based MPC perform roughly

90,000 AES/sec.

The above estimation shows us the important facts: GCs are not suitable for

the purpose of obtaining a high throughput. Due to the feature of MPC that com-

munication is necessary, the efficiency of MPC is bounded by physical ability of

communication channel. Therefore, in particular, the throughput of MPC with large

amount of communication is very limited. In addition, [127] shows that the number

of ciphertexts in GC is already optimal. Namely, it seems to be hard to improve the

throughput of GC-based MPC.

Therefore, to obtain high throughput MPC, at least we should take SS-based

approach. In this thesis, we follow SS-based approach to get high throughput MPCs.

1.3 Motivation and Our Results

From the above observation, a design of MPCs optimized for small communication

and parallelization is considered to be important to construct high throughput MPCs.

In this thesis, we aim to provide efficient MPC protocols design and implemen-

tation achieving high-throughput. This challenge in achieving this is both on the

12 Chapter 1. Introduction

computational and network levels. More precisely:

• We aim to design a high-throughput MPC. We deploy SS-based MPC in order

to reduce communication complexity, and basically do not deploy computation-

ally secure primitive for construction (except for implementing pseudo random

generator, since the information-theoretic random number generation requires

much amount of communication).

• To explore the limits of efficient MPC, we particularly focus on 3-party and

honest-majority setting as a first step. The number of parties affect the commu-

nication cost of MPC protocols since they should communicate with each other.

In addition, 3-party is the minimal case in which feasibilities on information-

theoretic assumption is shown. Despite of its advantage, the known latest result

on this setting [18] still does not seem to meet the performance requirements of

realistic tasks.

• To eliminate gaps between theory and implementation, we also aim to provide

optimized implementation design. In particular, we basically have been focused

on the overhead of communication. However, in the real world, MPC protocols

also require local computation of each parties, and it might be an obstacle for

the MPC protocols to make the best of the performance of the communication

environment. Therefore, we also focus on fast implementations of MPC to min-

imize computation cost. It involves optimizations utilizing the cache memory

and CPU instruction sets for vectorization.

The result of this papers are four-folded as follows. The results 1. and 2. are foun-

dations of this thesis, which involve efficient constructions for baseline MPC protocols

(for gate level) with semi-honest/malicious adversaries and its optimized implemen-

tations. On the other hand, the results 3. and 4. are applications, which involve

methods for efficiently constructing MPC protocols for arbitrary (more complex than

gates) functionalities from the MPC in the result 1. and 2.

1. Foundation (1): High-throughput semi-honest secure 3-party com-

putation based on replicated SS with honest-majority: In this thesis,

we describe a new information-theoretic protocol (and a computationally-secure

Section 1.3. Motivation and Our Results 13

variant) for secure three-party computation with an honest majority. The pro-

tocol has very minimal computation and communication; for Boolean circuits,

each party sends only a single bit for every AND gate (and nothing is sent

for XOR gates). Our protocol is (simulation-based) secure in the presence of

semi-honest adversaries, and achieves privacy in the client/server model in the

presence of malicious adversaries.

We demonstrate the practical potential of our protocol by implementing a

MPC-based system for Kerberos authentication, which is a well-known network

authentication protocol based on symmetric-key cryptosystems. Our MPC-

Kerberos system can support a login storm of over 40,000 user authentications

per second, which is sufficient even for very large organizations.

2. Foundation (2): Optimizing cheating detection for honest-majority

MPC: We provide general techniques for improving efficiency of cut-and-

choose protocols on multiplication triples and utilize them to significantly im-

prove the recently published protocol of Furukawa et al. [56]. We reduce the

bandwidth of their protocol down from 10 bits per AND gate to 7 bits per

AND gate, and show how to improve some computationally expensive parts of

their protocol. Most notably, we design cache-efficient shuffling techniques for

implementing cut-and-choose without randomly permuting large arrays (which

is very slow due to continual cache misses). We provide a combinatorial analy-

sis of our techniques, bounding the cheating probability of the adversary. Our

implementation achieves a rate of approximately 1.15 billion AND gates per

second on a cluster of three 20-core machines with a 10Gbps network. Thus, we

can securely compute 212,000 AES encryptions per second (which is hundreds

of times faster than previous work for this setting). Our results demonstrate

that high-throughput secure computation for malicious adversaries is possible.

3. Application (1): Compiler for SS-based MPCs: Today, we have proto-

cols that can carry out large and complex computations in very reasonable time

(and can even be very fast, depending on the computation and the setting).

Despite this amazing progress, there is still a major obstacle to the adoption

and use of MPC due to the huge expertise needed to design a specific MPC

14 Chapter 1. Introduction

execution. In particular, the functionality to be computed needs to be repre-

sented as an appropriate Boolean or arithmetic circuit, and this requires very

specific expertise. In order to overcome this, there has been considerable work

on compilation of code to (typically) Boolean circuits.

In this thesis, we design and implement a MPC compiler for our three-party hon-

est majority MPC. Our implementation is an extension of a well-known MPC

compiler called “SPDZ compiler” so that it can work with general underlying

protocols. In this thesis we called the compiler we made “generalized SPDZ

compiler”. Moreover, our SPDZ extensions were made in mind to enable the

use of SPDZ for arbitrary protocols and to make it easy for others to integrate

existing and new protocols.

We integrated three different types of protocols: (1) an honest-majority protocol

for computing arithmetic circuits over a field (for any number of parties), (2)

a three-party honest majority protocol for computing arithmetic circuits over

the ring of integers Z2n , and (3) the multi-party BMR protocol for computing

Boolean circuits. We show that a single high-level SPDZ-Python program can

be executed using all of these underlying protocols (as well as the original SPDZ

protocol), thereby making SPDZ a true general run-time MPC environment.

4. Application (2): Dedicated MPC protocols for high-level functionali-

ties Although our SS-based 3-party MPC proposed in the above results is very

efficient in general, the SS-based MPCs are still inefficient for several heavy com-

putations like algebraic operations, as they require a large amount and number

of communication proportional to the number of multiplications in the oper-

ations (which is not the case with other SS-based MPCs). In this thesis, we

propose the following two dedicacted MPC protocols for high-level functionali-

ties to accelerate SS-based MPC further.

Arithmetic-to-Boolean/Boolean-to-Arithmetic Conversion Most real-

world programs consist of a combination of arithmetic and non-arithmetic

computations, and thus need a mix of arithmetic and Boolean low-level

operations. In order to facilitate this, we propose new MPC protocols

named bit decomposition and ring composition operations, to convert a

shared ring element to a series of shares of its bit representation and back.

Section 1.4. Organization of the Thesis 15

Compared with the previous best protocols, our bit decomposition and ring

composition achieve two order of magnitude less communication bits in 32-

bit integer case, which is considered as a reasonable parameter. The proto-

cols are integrated into the generalized SPDZ compiler described above and

thus we can see the practical efficiency of these protocols in the complex

mixed operation of arithmetic and Boolean, like SQL query on fixed-point

numbers.

Modular Exponentiation As one of the most popular algebraic operations,

we propose RSSS-based three party computation protocols for modular

exponentiation on the case where the base is public and the exponent is

private. We will show the practical effect of our protocol by experiments on

the scenario for distributed signatures, which is useful for secure key man-

agement on the distributed environment (e.g., distributed ledgers). Our

protocols are more efficient in terms of both of communication complexity

and round complexity than previous standard scheme. More precisely, for

the size of secret values n, the proposed schemes require O(n) bits com-

munication whereas the previous scheme requires O(n2) bits. As for the

round complexity, a several variants in our proposal require O(n) round as

same as previous scheme, and other variants in our proposal require just

O(1) rounds.

1.4 Organization of the Thesis

The organization of this thesis is as follows.

Chapter 2 shows a common notation and definition used in the later chapters.

Each chapter after Chapter 3 corresponds to one topic of the result shown in Sec-

tion 1.3. In Chapter 3 (corresponds the result 1.) we describes a new protocol

for the SS-based MPC protocol with 3-party, semi-honest adversaries and honest-

majority settings. We also show its optimized implementation and experimental

results. Chapter 4 (corresponds to the result 2.) shows our method for improving

cheater detection protocol, and how to apply it to the semi-honest MPC described in

Chapter 3 to obtain maliciously-secure 3-party MPC. In addition, we also show the

optimized implementation the experimental results. Chapter 5 (corresponds to the

result 3.) contains our design of MPC compiler for our 3-party MPCs based on SPDZ

16 Chapter 1. Introduction

framework. We also show experimental results on comparison between other state-of-

the-art MPCs which work on SPDZ-based compiler, and see the effectivenees of our

3-party MPC protocol. Then, in Chapter 6 (corresponds to the result 4.), we describe

our new MPC protocols for arithmetic-to-Boolean/Boolean-to-Arithmetic conversions

and modular exponentiation based on SS-based MPCs in Chapter 3 and 4. We also

show the experimental results with semi-honest adversaries and see the effectiveness

of the protocol. Finally, we conclude this thesis in Chapter 7.

Chapter 2 Preliminaries

2.1 Notation

• Let Z be a set of integer, N be a set of the natural number (including 0) and R
be a set of the real number.

• Let Zq = {0, 1, . . . , q − 1} be a quotient ring with positive integer q. Note that

if q = p where p is prime Zp is a field.

• Let {0, 1}k be a set of bit strings with length k, and {0, 1}∗ = ∪k∈N{0, 1}k (a

set of bit strings with finite length).

• Let [0, 1] be a closed interval, which is a set of real numbers such that any

x ∈ [0, 1] satisfies 0 ≤ x ≤ 1.

• A probability space is a triple (Ω,F ,Pr), where Ω is called a sample space,

F ⊆ 2Ω is called an event space and Pr : F → R calls a probability measure

function such that:

– F is modeled as σ-algebra on Ω, which satisfies the following properties

(1)–(3): (1) Ω ∈ F , (2) if E ∈ F , then Ω \ E ∈ F , (3) if Ei ∈ F for all

i ∈ {1, . . . ,∞}, then ∪∞
i=1Ei ∈ F .

– Pr satisfies following properties (a)–(c): (a) for any E ∈ F , 0 ≤ Pr[E] ≤ 1,

(b) Pr[Ω] = 1, (c) for any countably infinite sequence of pairwise disjoint

events E1, E2, E3, . . ., Pr[∪∞
i=1Ei] =

∑∞
i=1 Pr[Ei].

We call Pr[E] the probability of the event E ∈ F .

• A (discrete) random variable X on a sample space Ω is a function on Ω that

takes value on finite or countably infinite number of values. Namely X : Ω→ E .
For all x ∈ E we use the notation “X = x” to denote the event X−1(x) = {s ∈
Ω | X(s) = x}, which means all the basic events of the sample space in which

the random variable X assumes the value x (namely, Pr[X = x] = Pr[X−1(x)]).

17

18 Chapter 2. Preliminaries

The probability distribution of X is defined by pX : E → [0, 1] of X such that

pX(x) = Pr[X = x].

• For a random variable X : Ω→ E , “x← X” denotes that x is sampled from E
according to the probability distribution of X.

• Let P be a set of parties and Pi ∈ P be a party with the identifier i. In this

paper we use zero-based numbering for the parties and corresponding shares.

Namely, the indices are started from the number 0.

2.2 Indistinguishability

Here we introduce a definition for the statistical distance and indistinguishability

for defining security in later sections. We note that there are three three types of

definitions for indistinguishability: perfect indistinguishability, statistical indistin-

guishability, computational indistinguishability.

Definition 2.2.1 (Perfect Indistinguishability). Let A = {Ai}i∈{0,1}∗ and B = {Bi}i∈{0,1}∗
be probability ensembles. Let κ be a security parameter. We say that A and B are

perfectly indistinguishable, denoted by A ≡ B, if

δ(Ai, Bi) = 0

for every i ∈ {0, 1}∗.

Definition 2.2.2 (Statistical Distance). Let X and Y be two random variables over

sample space Ω. The statistical distance between X and Y is defined by

δ(X,Y) =
1

2

∑
w∈Ω

|Pr[X = w]− Pr[Y = w]| .

Definition 2.2.3 (Statistical Indistinguishability). Let A = {Ai}i∈{0,1}∗ and B =

{Bi}i∈{0,1}∗ be probability ensembles. Let κ be a security parameter. We say that A

and B are statistically indistinguishable, denoted by A
s≡ B, if for every non-uniform

(computationally unbounded) algorithm D there exists a function p(·) such that for

every i ∈ {0, 1}∗ and every κ ∈ N,

δ(Ai, Bi) ≤
1

p(κ)
.

Section 2.3. Secret Sharing 19

Definition 2.2.4 (Computational Indistinguishability). Let A = {Ai}i∈{0,1}∗ and

B = {Bi}i∈{0,1}∗ be probability ensembles. Let κ be a security parameter. We say

that A and B are computationally indistinguishable, denoted by A
c≡ B, if for every

non-uniform polynomial-time algorithm D there exists a function p(·) such that for

every i ∈ {0, 1}∗ and every κ ∈ N,

|Pr[D(Ai) = 1]− Pr[D(Bi) = 1]| ≤ 1

p(κ)
.

2.3 Secret Sharing

Here we describe the formal definition of secret sharing (SS), which is an important

building block to construct MPC protocols. SS were proposed by Shamir [112] and

Blakley [16] independently.

In SS, secret information is divided into multiple data called “shares”. This share

is created so that the original secret information can be reconstructed only when

certain combinations are collected. The most popular SS scheme used in MPC is

the (k, n)-threshold scheme. It has the property that the original information can

be reconstructed by collecting any k(≤ n) shares among the n shares, and that no

information on the secret can be leaked from any k − 1 shares.

2.3.1 (k, n)-threshold schemes

Definition 2.3.1 ((k, n)-threshold scheme). A (k, n)-threshold scheme is a set of the

following two probabilistic algorithms Share and Reconst with finite space M and S
such that:

• Share: Given a secret m ∈ M, the algorithm Share outputs n shares s⃗ =

([m]0, . . . , [m]n−1) ∈ Sn.

• Reconst: Given a k-tuple of shares, the algorithm Reconst outputs a message

m ∈M.

and satisfying following two requirements.

• Correctness: We say a (k, n)-threshold scheme satisfies correctness (or a

(k, n)-threshold scheme is correct) if the following property is satisfied: ∀m ∈
M, ∀I = {i0, . . . , ik−1} ⊆ {0, . . . , n− 1} of size k,

Pr
Share(m)→([m]0,...,[m]n−1)

[Reconst([m]i0 , . . . , [m]it−1) = m] = 1.

20 Chapter 2. Preliminaries

• k-out-of-n Perfect Privacy: Let M be a random variable that takes value

on M and Si (i ∈ {0, . . . , n − 1}) be a random variable that takes value on S.
We say a (k, n)-threshold scheme satisfies k-out-of-n perfect privacy (or a (k, n)-

threshold scheme is perfectly private) if the following property is satisfied: ∀m ∈
M, ∀I = {i0, . . . , ik−2} ⊂ {0, . . . , n−1} of size k−1 and ∀[m]i0 , . . . , [m]ik−2

∈ S,

Pr[M = m] = Pr[M = m | Si0 = [m]i0 , Si1 = [m]i1 , . . . , Sik−2
= [m]ik−2

]

By [m] we denote that the secret m is shared among n parties P0, . . . , Pn−1 and

Pi holds the share [m]i. In addition, [m]q denotes that m is shared by SS over Zq

(namely, M = Zq and S = (Zq)
d where d ∈ N) and [m]qi = ([m]qi,0, . . . , [m]qi,d−1)

denotes the Pi’s share of [m]q.

2.3.2 Replicated Secret Sharing

In this thesis, we employ an instantiation of (k, n)-threshold schemes called replicated

secret sharing. The (2, 3) SS of the replicated type described in [37]. Here we follow

the replicated secret sharing which is used in Araki et al.’s scheme [6].

Definition 2.3.2. Replicated (2, 3) secret sharing is a set of the following two prob-

abilistic algorithms Share and Reconst. We additionally let all indices corresponding

the index space {0, 1, 2} are described as over modulus 3 and hereafter we omit the

description of “mod3”. For example, a certain value xi indexed by i ∈ {0, 1, 2}, x3

is handled as x0, and x−1 is handled as x2.

Share: Given a specification of Zq, an element of Zq x ∈ Zq, as (Zq, x), the algorithm

Share generates random elements x0, x1, x2 ∈ Zq under the condition of x0 +

x1 + x2 = x, generates a share of Pi denoted by [x]qi as (xi−1 + xi, xi−1) for

i ∈ {0, 1, 2}, and output a set of all shares [x]q. Here, ([x]qi,0, [x]
q
i,1) = (xi−1 +

xi, xi−1).

Reconst: Given (i, [x]qi , [x]
q
i+1) for i ∈ {0, 1, 2}, the algorithm Reconst outputs x =

[x]qi,0 + [x]qi+1,1.

2.4 The Model of Secure Computation

In this section, we describe the model of MPC in this thesis.

Section 2.4. The Model of Secure Computation 21

2.4.1 Settings

In general, we can consider two kind of settings. One is the setting traditionally

considered in the context of MPC: each party has own secret value and they per-

form and they will obtain values of some function on their private input by perform-

ing MPC. Another setting is called the “Client-Server” setting, which is introduced

Sharemind [17]. In this model, the entities performing MPC protocol are “servers”

and the entity(ies) to the role of “client(s)” serves input to servers and get output

from these servers. Namely, the servers does not obtain the result of MPC itself. Due

to this characteristic, its security guarantee is different from the general setting.

In the following, we formalize each of settings.

General Setting A multi-party protocol is specified by a (possibly probabilistic)

procedure referred to as functionality. Denote f : ({0, 1}∗)n → ({0, 1}∗)n as the

functionality, where n is the number of inputs. In the general setting, we consider

n parties: each party Pi ∈ P (i ∈ {0, . . . , n − 1}) holds a secret value xi and the

parties want to agree on some functionality f that takes n inputs. Specifically, f =

(f0, f1, . . . , fN−1) and each party Pi ∈ P (i ∈ {0, . . . , n − 1}) will obtain distinct

outputs fi(x0, . . . , xN−1) in general. In this thesis, we consider only the case where

every party will obtain the same outputs (namely, f0 = f1 = · · · = fn−1).

Client-Server Setting Here we assume there is t clients which has their private

input xi(i ∈ {0, . . . , t − 1}), and they want to agree a t-input functionality f =

(f0, . . . , ft−1) on their private inputs. The goal is that each client will obtain outputs

yi = fi(x0, . . . , xt−1) and the servers will obtain nothing. As same as the general

setting, we consider the case of f0 = f1 = · · · = ft−1 in this thesis.

In both settings, we particularly consider 3-party computation (3PC). Namely,

the parties are P0, P1 and P2.

2.4.2 Security Criteria

Basic Requirements

• Correctness: The parties P0, . . . , Pn−1 obtain correct output f(x0, . . . , xn− 1)

if the parties follow the protocol properly.

• Privacy Each party Pi cannot learn anything about the other party’s input

from the information sent during the execution of MPC protocol. Namely, The

22 Chapter 2. Preliminaries

information that each party can obtain about the secret is whatever could be

derived from the output f(x0, . . . , xn−1).

Semi-Honest vs. Malicious adversaries The security of secret sharing based

secret computation guarantees that “If the number of malicious participants among

n participants is less than a certain threshold number, the computation process will

not leak information about the private inputs”. At this time, the behavior of malicious

participants is roughly classified into two types.

• Semi-Honest adversaries: Attackers follow the protocol but do not tamper

with the data. The purpose of this adversaries is to obtain the information to

be concealed only from the information obtained by the normal execution of

the protocol.

• Malicious adversaries: Attackers can actively deviate from the protocol to

tamper any data during the execution of MPC. In this case, there are two

possible purposes of the adversaries: (1) tampering the output of MPC, and

(2) obtaining the input information by observing the output affected by the

tampering.

We call the MPC protocol secure against semi-honest/malicious adversaries “semi-

honest/maliciously secure MPC”, respectively.

Perfect Security vs. Computational Security Regarding the computational

power of the adversaries, there are two types of security criteria: perfect security and

computational security.

• Perfect security: When the security of a protocol can be proven against

computationally unbounded adversaries, we call the protocol is perfectly secure.

Perfect security is also known as unconditional security or information-theoretic

security (since the security purely underlies on information theory). For exam-

ple, the notion of k-out-of-n perfect privacy for secret sharing described in

Sect. 2.3 is a kind of perfect security in terms of that less number of the shares

than threshold leaks no information about the secret.

• Computational security: When the security of a protocol can be proven

against computationally bounded adversaries, we call the protocol is computa-

tionally secure. More precisely, the computational power of the adversaries is

Section 2.4. The Model of Secure Computation 23

assumed to be of polynomial-time). Most of cryptographic tools, like encryption

and signatures, relies on the computational security. Therefore, when we use

cryptography in a protocol, the protocol is only expected to be secure against

computationally-bounded adversaries because unconditional (unlimited) adver-

saries can break the security of computationally secure cryptographic tools.

In general, perfectly secure protocols requires large memory size but its computa-

tional complexity is very small compared with computationally secure protocols.

In the context of MPC, these characteristics has both advantages and disadvan-

tages.

2.4.3 Simulation-based Security

The goal of MPC protocol based on secret sharing is to compute shares of outputs

from shares of inputs without revealing information on the input.

The security of MPC is formalized by simulation-based security. Namely, if there

exist simulators that can generate the view of each party in the execution from given

inputs and outputs, the MPC protocol is secure. This formalization implies that the

parties learn nothing about inputs from the execution of the protocol, except for the

information derived from outputs.

We use the definition of security in the presence of semi-honest adversaries as

in [28, 59], making the necessary changes to formalize perfect security as well.

Perfect security in the presence of semi-honest adversaries. Loosely speak-

ing, a protocol is secure in the presence of one corrupted party if the view of the

corrupted party in a real protocol execution can be generated by a simulator given

only the corrupted party’s input and output. The view of party i during an execution

of a protocol π on inputs x⃗, denoted Viewπ
i (x⃗), consists of its input xi, its internal

random number ri and the messages that were received by i in the execution. The

output of all parties from an execution of π is denoted by Outputπ(x⃗).

The following is the security definition for 3-party functionalities.

Definition 2.4.1 (Perfect security for probabilistic 3-ary functionalities in the pres-

ence of semi-honest adversaries). Let f : ({0, 1}∗)3 → ({0, 1}∗)3 be a probabilistic

3-ary functionality and let π be a protocol. We say that π computes f with perfect

security in the presence of one semi-honest corrupted party for f if there exists a proba-

bilistic polynomial-time algorithm S such that for every corrupted party i ∈ {0, 1, 2},

24 Chapter 2. Preliminaries

and every x⃗ ∈ ({0, 1}∗)3 where |x1| = |x2| = |x3|:{
(S(xi, fi(x⃗)), f(x⃗))

}
≡
{
(Viewπ

i (x⃗),Outputπ(x⃗))
}

(1)

If Eq. (1) holds with computational indistinguishability, then we say that π computes

f with computational security in the presence of one semi-honest corrupted party.

The above definition is for the general case of probabilistic functionalities, where

we consider the joint distribution of the output of S and of the parties. For the case

of deterministic functionalities, however, we can separate the correctness and privacy

requirements, and use a simpler and easier to prove definition. As shown in [59] (see

Section 7.3.1), any probabilistic functionality can be securely computed in the presence

of t corrupted parties using a general protocol which computes any deterministic

functionality in the presence of t corrupted parties. Therefore, in order to prove

the security of our protocol we can use the definition for deterministic functionalities

stated below.

Definition 2.4.2 (Perfect security for deterministic 3-ary functionalities in the pres-

ence of semi-honest adversaries). Let f : ({0, 1}∗)3 → ({0, 1}∗)3 be a deterministic

3-ary functionality and let π be a protocol. We say that π computes f with perfect se-

curity in the presence of one semi-honest corrupted party for f , if for every x⃗ ∈ ({0, 1}∗)3

where |x1| = |x2| = |x3|, it holds that Outputπ(x⃗) = f(x⃗), and there exists a proba-

bilistic polynomial-time algorithm S such that for every corrupted party i ∈ {0, 1, 2},
and every x⃗ ∈ ({0, 1}∗)3 where |x1| = |x2| = |x3| :

{S(xi, fi(x⃗))} ≡ {Viewπ
i (x⃗)} .

We prove the security of our protocols using the hybrid model, where parties run

a protocol with real messages and also have access to a trusted party computing an

other functionality g for them. The theorem in [29] referred as “modular sequential

composition theorem” states that replacing the trusted party computing the func-

tionality g with a real secure protocol results in the same output distribution. For

the functionality is g, we say that the protocol works in the g-hybrid model and g is

a subfunctionality in the hybrid model.

Perfect security in the presence of malicious adversary Let ViewA,I,π(v⃗, κ)

denote the view of an adversary A who controls parties {Pi}i∈I (with I ⊂ [n]) in a

Section 2.4. The Model of Secure Computation 25

real execution of the n-party protocol π, with inputs v⃗ = (v1, . . . , vN) and security

parameter κ. We stress that in this setting, the vector of inputs v⃗ is of length N

and N may be much longer (or shorter) than the number of parties n running the

protocol. This is because N refers to the number of inputs and so the number of

clients, whereas n denotes the number of servers running the actual protocol. In

addition, the servers do not receive input any of the values in v⃗ but rather they each

receive secret shares of the value.

Definition 2.4.3 (Computational security in the client-server model in the presence

of malicious adversaries). Let f : ({0, 1}∗)N → ({0, 1}∗)N be an N-party functionality

and let π be an n-party protocol. We say that π t-securely computes f in the client-

server model in the presence of malicious adversaries if the output that each party finally

obtain is correct and if for every non-uniform probabilistic polynomial-time adversary

A, every I ⊂ [n] with |I| ≤ t, and every two series of length-N vectors V1 = {v⃗1κ}, V2 =

{v⃗2κ} {
ViewA,I,π(v⃗

1
κ, κ)

}
κ∈N

c≡
{
ViewA,I,π(v⃗

2
κ, κ)

}
κ∈N

where for every κ ∈ N, v⃗1κ, v⃗2κ ∈ ({0, 1}∗)N and all elements of v⃗1κ and v⃗2κ are of the

same length.

Loosely speaking, a protocol is private in the presence of one malicious corrupted

party if the view of the corrupted party when the input is v⃗1κ is computationally

indistinguishable from its view when the input is v⃗2κ. In order to rule out a trivial

protocol where nothing is exchanged, we also require correctness, which means that

when all parties are honest they obtain the correct output.

Universal composability. Protocols that are proven secure in the universal com-

posability framework [29] have the property that they maintain their security when

run in parallel and concurrently with other secure and insecure protocols. In [78,

Theorem 1.5], it was shown that any protocol that is proven secure with a black-

box non-rewinding simulator and also has the property that the inputs of all parties

are fixed before the execution begins (called input availability or start synchronization

in [78]), is also secure under universal composability. Since the input availability prop-

erty holds for all of our protocols and subprotocols, it is sufficient to prove security

in the classic stand-alone setting and automatically derive universal composability

from [78]. We remark that this also enables us to call the protocol and subprotocols

26 Chapter 2. Preliminaries

that we use in parallel and concurrently (and not just sequentially), enabling us to

achieve more efficient computation (e.g., by running many executions in parallel or

by running each layer of a circuit in parallel).

2.4.4 Representation of Functionalities for Secret Sharing-based 3PC

For each MPC operation, each party receives the operation code representing a func-

tionality and its input as shares. Note that the operations to be computed are public

for every parties. Here we call the representation of a functionality as “opcodes”.

The whole computation to be computed among 3 parties is represented by a sequence

of such opcodes and its input shares. For each opcode given the parties, they invoke

the function corresponding the opcodes. In the process of this function, the parties

communicate with each other as necessary.

For example, we consider the case of MPC protocol for multiplication represented

by the opcode mult. When the parties starts MPC protocol for multiplication with

shared input x and y, each party Pi (i ∈ {0, 1, 2}) takes (mult, [x]qi , [y]
q
i) as inputs,

and invoke corresponding function mult([x]qi , [y]
q
i) then get [z]qi where z = x · y (see

also definition in Sect. 3.3.1). Namely, when each party calls mult([x]qi , [y]
q
i), the pro-

cess executing mult performs MPC protocol for multiplication with each own shares

[x]qi , [y]
q
i (while communicating with other parties’ process executing mult), and fi-

nally obtain the share of [z]qi as a return value of mult. To simplify the notation, we

describe the opcodes and their corresponding functions by the same name.

Part I

Foundations: Secure 3-Party

Computation for General Circuits

— Theory and Implementations

for More Efficient Primitives

27

Chapter 3 Foundation (1): Semi-Honest

Secure 3-Party Computation

based on Replicated Secret

Sharing

3.1 Introduction

A new protocol. We describe a new three-party protocol that is both extremely

simple and has seemingly optimal bandwidth. Our protocol is suitable for arithmetic

circuits over any field or over the ring modulo 2n. Addition gates require local addition

only, and multiplication gates require that each party send just a single field/ring

element to one other party. In the Boolean case, this means that each party transmits

a single bit only per AND gate.1 Furthermore, the computation in our protocol is

extraordinarily simple: in the case of Boolean circuits, each party carries out a single

XOR operation per XOR gate, and 2 AND and 3 XOR operations per AND gate.

Since all operations are merely XOR and AND, this also lends itself to parallelization

on standard computers (in particular, XOR and AND over 128 bit registers can be

carried out in the same time as for a single bit using Intel intrinsics).

Security. We prove that our protocol is secure in the presence of semi-honest

adversaries with at most one corrupted party, under the standard simulation-based

definitions. The basis of our protocol is information theoretic (and in fact perfectly

secure). However, we save on communication by generating correlated randomness

computationally, and therefore our overall protocol is computationally secure. (This

combination enables us to achieve simple operations and save on additional band-

width.) In addition to the above, we also consider a client/server model where any

number of clients send shares of their inputs to 3 servers that carry out the computa-

tion for the clients and return the results to them (without learning anything). This

1This is “seemingly” optimal in terms of bandwidth, but this has not been proven and seems hard to do so;
see [67].

28

Section 3.1. Introduction 29

model makes sense for “outsources secure computation services” and indeed is the

business model of Cybernetica. We show that in this model, our protocol actually

achieves privacy in the presence of malicious adversaries, meaning that a single ma-

licious server cannot learn anything about the input or output. (We stress that this

notion is strictly weaker than simulation-based security in the presence of malicious

adversaries, and in particular, does not guarantee correctness. Nevertheless, it does

guarantee that privacy is not breached even if one of the servers behaves maliciously.)

Number of parties. As in Sharemind [17, 18], our protocol is specifically designed

for 3 parties with at most one corrupted. This is unlike BGW [14] that works for

any number of parties with an honest majority. An important open question left by

this paper is the design of a protocol with comparable complexity that works for any

number of parties. This seems to be very challenging, based on attempts that we

have made to extend our protocol.

Experimental results. We implemented our new protocol for Boolean circuits

in C++ and using standard optimizations. In order to take advantage of the very

simple operations required in our protocol, we used Intel intrinsics in order to carry

out many executions in parallel. This is described in detail in Section 3.6.1. We

ran our experiments on a cluster of three nodes, each with two 10-core Intel Xeon

(E5-2650 v3) processors and 128GB RAM, connected via a 10Gbps Ethernet. (We

remark that little RAM was utilized and thus this is not a parameter of importance

here.) We carried out two main experiments, both based on securely computing the

AES circuit on shared keys.

First, we computed AES in counter mode, with the aim of obtaining maximal

throughput. Using the full power of the cluster (all cores), we computed over 1.3

million AES operations per second. Furthermore, utilizing a single core we achieved

100,000 AES operations per second, and utilizing 10 cores we achieved amost 1 mil-

lion AES operations per second. As we will show below in Section 3.2, this way

outperforms all previous protocols of this type.

Second, we wished to demonstrate that this type of protocol can be incorporated

into a real system. We chose to integrate our protocol into a Kerberos KDC in order

to carry out Ticket-Granting-Ticket encryption without any single server holding the

encryption key (whether it be a server’s key or user’s hashed password). Such an

architecture protects against administrators stealing passwords, or an attacker who

30 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

breaches the network being able to steal all users’ passwords. (We stress that in

Kerberos, the raw password is never used so once the hashed password is stolen the

attacker can impersonate the user.) We obtained a latency of 110ms on the server and

232ms on the client (over a LAN) for the entire Kerberos login (excluding database

lookup). Given that this is for the purpose of user authentication, this is well within

the acceptable range. In addition, we are able to support a login storm of over 40,000

user authentications per second, which is sufficient even for very large organizations.

Our results demonstrate that secure computation can be used to solve large-scale

problems in practice (at least, for the cases that semi-honest security or privacy for

a malicious adversary suffices).

3.2 Related Work

We compare our results with previously reported results on secure AES computation

for 3 parties with an honest majority and semi-honest adversaries; see Table 3.1.

We stress that this table gives only very partial information since different hard-

ware was used for each; we provide it to show the progress made and where we fit into

it. However, fortunately, the setup used by us is almost the same as that of the latest

Sharemind results in [110] (using optimized code that was completely rewritten), and

we now provide an in-depth comparison to it. The benchmarking in [110] was carried

out between three computers with two 8-core Intel Xeon (E5-2640 v3) processors and

128GB RAM, connected via a 10Gbps Ethernet (this configuration is described in [75]

and by personal communication is that used in [110]), which is almost identical to

our configuration described above. The number that we provide in Table 3.1 for this

work is when utilizing 16 cores, and thus this is an almost identical configuration

as Sharemind [110] (with 20 cores we achieve 1,324,117 AES operations per second).

Observe that our latency (response time) is 70% of [118] and we achieve a throughput

that is 14 times faster than [110] (and so over an order of magnitude improvement).

In fact, using a single core and a 1Gbps connection, we achieve approximately 100,000

AES operations per second (and latency of only 129ms); thus we can outperform the

best Sharemind results on a very basic setup.

Section 3.3. The New Communication-Efficient Protocol for 3-Party

Computation

31

Table 3.1: Reported times for semi-honest 3-party computation & honest majority;

the throughput is measured in AES computations per second (the last two rows

with similar configurations).

Year Ref. Latency Throughput

2010 [41] 2000s -

2012 [80] 14.28ms 320

2013 [81] 323ms 3450

2016 [118, Table 5.3] 223ms 25,000

2016 [110] - 90,000

2016 this work 166ms 1,242,310

We remark that other work on GCs (e.g., two-party Yao with semi-honest ad-

versaries) achieves much lower latency (e.g., 16ms reported in [62]). However, each

garbled AES circuit is of size at least 1.3Mb (using the latest half-gates optimiza-

tion [127]), not taking into account additional messages that are sent. It is therefore

physically impossible to go beyond 7500 AES computations per second on a 10Gbps

network (where we achieve 1.4 million). In addition, the two-party GMW approach

using efficient oblivious transfer (OT) extensions is blocked by the speed of the OTs

(with two OTs required per gate). Considering the communication bottleneck, each

OT requires transmitting a minimum of 128 bits. Thus, the communication is approx-

imately the same as with a GC. (The fastest known implementation [69] can process

5 million OTs per second on a 1Gbps network giving under 500 AES computations

per second. This is not far from optimal assuming linear scale-up on a 10Gbps net-

work.) Of course, we require an additional server, in contrast to the Yao and GMW

protocols.

3.3 The New Communication-Efficient Protocol for 3-Party

Computation

In this section, we describe our new protocol for three parties. Our protocol works for

arithmetic circuits over the ring modulo 2n with Boolean circuits being a special case

(with n = 1). The protocol uses only very simple ring addition and multiplication

operations, which in the Boolean case reduces simply to bitwise AND and XOR. In

32 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

addition, the protocol has very low communication: a single ring element is sent per

multiplication gate and there is no communication for addition gates. In the Boolean

case, we therefore have that the only communication is a single bit per AND gate.

Correlated randomness. Our protocol assumes that for every multiplication gate

the three parties P0, P1, P2 are given correlated randomness in the form of random

ring elements x0, x1, x2 under the constraint that x0+x1+x2 = 0. We show how this

can be achieved in practice with great efficiency using AES. (Thus, our protocol is

information-theoretically secure with perfect correlated randomness, but the actual

implementation is computationally secure due to the use of AES to generate the

correlated randomness.)

3.3.1 Securely Computing Boolean Circuits

In order to simplify the exposition, we begin by describing the protocol for the special

case of Boolean circuits with AND and XOR gates.

　 Protocol 3.1： Sharing input to the parties

• Inputs: A dealer (one of three parties or client) holds a bit v

• The protocol:

1. The dealer run the secret sharing protocol in Definition 2.3.2 and

obtain Share(Z2, v) = ([x]20, [x]
2
1, [x]

2
2).

2. The dealer set the shares for each party as follows:

– P0’s share is [x]20 = ([x]20,0, [x]
2
0,1) = (x2 ⊕ x0, x0).

– P1’s share is [x]21 = ([x]21,0, [x]
2
1,1) = (x0 ⊕ x1, x1).

– P2’s share is [x]22 = ([x]22,0, [x]
2
2,1) = (x1 ⊕ x2, x2).

3. The dealer send [x]2i to the party Pi where i ∈ {0, 1, 2}.

Recall that no single party’s share reveals anything about v. In addition, any two

shares suffice to obtain v; e.g., given [x]20, [x]
2
1, we can compute v = [x]20,0 ⊕ [x]21,1 =

(x2 ⊕ x0)⊕ x1.

Section 3.3. The New Communication-Efficient Protocol for 3-Party

Computation

33

　 Protocol 3.2： Computing XOR gate

• Inputs: Each party Pi(i ∈ {0, 1, 2}) has the shares [x]2i , [y]
2
i for secrets x

and y, and the opcode add for addition.

• The protocol:

1. For each i ∈ {0, 1, 2}, Pi generates

[z]2i := ([x]2i,0 ⊕ [y]2i,0, [x]
2
i,1 ⊕ [y]2i,1)

and outputs (add, [z]2i).

This operation as the whole is denoted by [z]2 = add([x]2, [y]2).

XOR (addition) gates. Now we assume that each party shares [x]2 and [y]2 where

x, y ∈ {0, 1}, and the parties want to obtain the shares of [x + y]2. We describe the

MPC protocol for XOR (addition) gate in Protocol 3.2.

In order to compute a secret sharing of x+ y, each Pi locally computes the sheres

of [x]2 and [y]2 (no communication is needed).

We can easily check that [z]2 is a valid share of x + y, since [z]2i,0 + [z]2i+1 =

([x]2i,0 + [y]2i,0) + ([x]2i+1,1 + [y]2i+1,1) = ([x]2i,0 + [x]2i+1,1) + ([y]2i,0 + [y]2i+1,1) = x + y for

all i ∈ {0, 1, 2}.

AND (multiplication) gates. We now show how the parties can compute AND

(equivalently, multiplication) gates; this subprotocol requires each party to send a

single bit only. The protocol works in two phases: in the first phase the parties

compute a simple (3, 3) XOR-sharing of the AND of the input bits, and in the second

phase they convert the (3, 3)-sharing into the above-defined (2, 3)-sharing.

We describe the MPC protocol for computing (2, 3)-shares of x · y = x ∧ y in

Protocol 3 (from here on, we will denote multiplication of a and b by simply ab). Here

we assume that the parties P0, P1, P2 are able to obtain random α0, α1, α2 ∈ {0, 1}
such that α0⊕α1⊕α2 = 0. We will explain how to obtain such correlated randomness

34 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

in Section 3.3.2.

　 Protocol 3.3： Computing AND gate

• Inputs: Each party Pi(i ∈ {0, 1, 2}) has the shares [x]2i , [y]
2
i for secrets x

and y, and the opcode mult for multiplication.

• Auxiliary Input: We assume that the parties Pi hold correlated random-

ness αi, respectively, where α0 ⊕ α1 ⊕ α2 = 0.

• The protocol:

1. For each i ∈ {0, 1, 2}, Pi generates

wi = [x]i,0 · [y]i,0 ⊕ [x]i,1 · [y]i,1 ⊕ αi,

where “·” is the multiplication over Z2, and sends (mult msg, wi) to

Pi+1.

2. For each i ∈ {0, 1, 2}, Pi generates

[z]2i := (wi−1 ⊕ wi, wi−1)

and outputs (mult, [z]qi).

This operation as the whole is denoted by [z]2 = mult([x]2, [y]2).

For the correctness, we recall x = x0 + x1 + x2 mod q, y = y0 + y1 + y2 mod q

and z = x · y = (x0 + x1 + x2)(y0 + y1 + y2). wi (i ∈ {0, 1, 2}) at the Step 1 can

be represented as w0 = x0y0 + x2y0 + x0y2 + α0, w1 = x1y1 + x1y0 + x0y1 + α1.

w2 = x2y2 + x2y1 + x1y2 + α2, and we can see z = w0 + w1 + w2 mod q. Therefore,

the share of Step 2 satisfies the form of RSSS described in Sect. 2.3.

The above explanation shows that the gate computation “works” in the sense that

the invariant of the format of the shares is preserved after every gate is computed.

The fact that the protocol is secure is proved later in Section 3.4.

Section 3.3. The New Communication-Efficient Protocol for 3-Party

Computation

35

The protocol. The full 3-party protocol works in the natural way. The parties first

share their inputs using the secret sharing. They then compute each XOR and AND

gate in the circuit according to a predetermined topological ordering fo the circuit.

Finally, the parties reconstruct their output on the output wires. (In the client/server

model, external clients send the three parties sharings of their input according, and

the three parties then compute the circuit in the same way on the shares received.)

Observe that each party communicates with exactly one other party only. This

property also holds for the protocol of Sharemind [17, 18]. However, our secret-sharing

scheme and multiplication protocol are completely different.

3.3.2 Generating Correlated Randomness

Our protocol relies on the fact that the parties hold random bits α, β, γ ∈ {0, 1} such
that α0 ⊕ α1 ⊕ α2 = 0 for every AND gate. In this section, we show how the parties

can efficiently generate such α0, α1, α2.

Information-theoretic correlated randomness. It is possible to securely gen-

erate correlated randomness with perfect security by having each party Pi simply

choose a random ρi ∈ {0, 1} and send it to Pi+1 (where P2 sends to P0). Then, each

party takes its random bit to be the XOR of the bit it chose and the bit it received:

P0 computes α0 = ρ2⊕ ρ0, P1 computes α1 = ρ0⊕ ρ1 and α2 = ρ1⊕ ρ2. Observe that

α0 + α1 + α2 = 0 as required. In addition, if P0 is corrupted, then it knows nothing

about α1 and α2 except that α1 ⊕ α2 = α0. This is because α1 and α2 both include

ρ1 in their computation and this is unknown to P0. A similar argument holds for a

corrupted P1 or P2. Despite the elegance and simplicity of this solution, we use a

different approach. This is due to the fact that this would double the communication

per AND gate; it is true that this is still very little communication. However, given

that communication is the bottleneck, it would halve the throughput.

Computational correlated randomness. We now show how it is possible to se-

curely compute correlated randomness computationally without any interaction be-

yond a short initial setup. This enables us to maintain the current situation where

parties need only transmit a single bit per AND gate. This method is similar to that

of the PRSS subprotocol in [37], but simpler since Shamir sharing is not needed.

36 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

　 Protocol 3.4： Generating computational correlated randomness

• Inputs: Let κ be the security parameter, and let F : {0, 1}κ × {0, 1}κ →
{0, 1} be a pseudorandom function outputting a single bit, and a unique

identifier id ∈ {0, 1}κ which corresponds to the AND gate to be computed.

• The protocol:

– Init:

1. Each Pi chooses a random ki ∈ {0, 1}κ.

2. Party P0 sends k0 to P2, party P1 sends k1 to P0 and party P2

sends k2 to P1.

P0 holds k0, k1, P1 holds k1, k2 and P2 holds k2, k0.

– GetNextBit: Given a unique identifier id ∈ {0, 1}κ,

1. P0 computes α0 = Fk0(id)⊕ Fk1(id).

2. P1 computes α1 = Fk1(id)⊕ Fk2(id).

3. P2 computes α2 = Fk2(id)⊕ Fk0(id).

Observe that α0 + α1 + α2 = 0. Furthermore, P0 does not know k2 which is

used to generate α1 and α2. Thus, α1 and α2 are pseudorandom to P0, under the

constraint that α1 ⊕ α2 = α0. In practice, the id can be a counter that all parties

locally increment at every call to GetNextBit.

3.3.3 The Ring with General Modulus: 2n and Fields

Our protocol above works for Boolean circuits. However, in some cases arithmetic

circuits are far more efficient, for example over 2n and arbitrary fields of size greater

than 2. Fortunately, our protocol can be easily extended to the cases of arithmetic

operations. In this section, we show how to generalize the protocol above. In the

following, we describe MPC protocols for the ring modulo q where q is an positive

integer.

Section 3.3. The New Communication-Efficient Protocol for 3-Party

Computation

37

We remark that when taking q = 2 we have that addition (and subtraction) is the

same as XOR, and multiplication is the same as AND. In this case, the protocol here

is exactly that described in Section 3.3.1.

Addition gates. As in the Boolean case, addition gates are computed by locally

adding the shares modulo 2n. To confirm this, we describe the general case of the

addition in Protocol 5.

　 Protocol 3.5： Computing arithmetic addition gate over Zq

• Inputs: Each party Pi(i ∈ {0, 1, 2}) has the shares [x]qi , [y]
q
i for secrets x

and y over Zq, and the opcode add for addition.

• The protocol:

1. For each i ∈ {0, 1, 2}, Pi generates

[z]qi := ([x]qi,0 ⊕ [y]qi,0, [x]
q
i,1 ⊕ [y]qi,1)

and outputs (add, [z]qi).

This operation as the whole is denoted by [z]q = add([x]q, [y]q).

Multiplication gates: The MPC for multiplication gate also can be constructed

in similar way to AND gate. It is necessary to pay attention only to the sign during

the operation. We explicitly describe the MPC protocol for multiplication over 2n in

Protocol 6.

38 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

　 Protocol 3.6： Computing arithmetic multiplication gate

• Inputs: Each party Pi(i ∈ {0, 1, 2}) has the shares [x]qi , [y]
q
i for secrets x

and y, and the opcode mult for multiplication.

• Auxiliary Input: We assume that the parties Pi hold correlated random-

ness αi, respectively, where α0 ⊕ α1 ⊕ α2 = 0.

• The protocol:

1. For each i ∈ {0, 1, 2}, Pi generates

wi = [x]qi,0 · [y]
q
i,0 − [x]qi,1 · [y]

q
i,1 + αi,

where “·” is the multiplication over Z2, and sends (mult msg, wi) to

Pi+1.

2. For each i ∈ {0, 1, 2}, Pi generates

[z]qi := (wi−1 + wi, wi−1)

and outputs (mult, [z]qi).

This operation as the whole is denoted by [z]q = mult([x]q, [y]q).

Generating correlated randomness. The parties use the same (computational)

method as described in Section 3.3.2, with the following differences. First, we assume

that Fk is a pseudorandom function mapping strings into Zq. Second, party P0

computes α = Fk0(id)− Fk1(id), party P1 computes β = Fk1(id)− Fk2(id), and party

P2 computes γ = Fk2(id)− Fk0(id).

3.3.4 Protocol Efficiency and Comparison

In the case of arbitrary finite fields, Shamir’s secret-sharing [112] is “ideal”, meaning

that the size of the share equals the size of the secret (which is minimum size), as long

Section 3.4. Security against Semi-Honest Adversaries 39

as the number of parties is less than the size of the field. In our protocol, the secret

sharing is not ideal since it consists of two ring or field elements instead of a single field

element. However, this is of little consequence when considering the efficiency of the

protocol since our protocol requires only sending a single element per multiplication

gate. In addition, the computation consists merely of two multiplications and two

additions.

In comparison, the BGW protocol [14, 8] requires transmitting two field elements

per multiplication gate by each party when using [109] method (with a single round

of communication). In addition, when considering Boolean circuits, at least two bits

are needed per field element, since there are 3 parties. Furthermore, the computation

requires polynomial evaluations which are far more expensive.

In the Sharemind protocol [17, 18], the parties transmit five ring elements per

AND gate over two communication rounds, and compute 3 multiplications and 8

additions. We remark that our method for generating correlated randomness can be

used to reduce the number of elements sent in the Sharemind protocol from 5 to 2

and to reduce the number of communication rounds to 1.

3.4 Security against Semi-Honest Adversaries

In this section, we prove that our protocol is secure in the presence of one semi-honest

adversarial party (in Section 3.5 we prove that the protocol is private in the presence

of one malicious adversary). Semi-honest security is sufficient when parties somewhat

trust each other, but are concerned with inadvertent leakage or cannot share their

raw information due to privacy regulations. It is also sufficient in cases where it

is reasonable to assume that the parties running the protocol are unable to replace

the installed code. Nevertheless, security against covert or malicious adversaries is

preferable, providing far higher guarantees; we leave extensions of our protocol to

these settings for future work.

Since the protocol for Boolean circuits is a special case of the protocol for the

ring modulo q, we prove the security for the case of the ring modulo q. The proof is

identical in the case of fields with more than 3 elements.

Proof outline. We denote a protocol π in the g-hybrid model by πg, and the real

protocol obtained by replacing calls to g by invocations of subprotocol ρ by πρ. We

abuse notation and write πg ≡ f to say that π securely computes f in the g-hybrid

40 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

model, and write πρ ≡ f to say that the real protocol πρ securely computes f . Denote

by σ the protocol that computes the correlated randomness functionality Fcr, by ρ

the protocol that computes the multiplication functionality Fmult in the Fcr-hybrid

model, and by π the protocol that computes the functionality f in the Fmult-hybrid

model. Our goal is to prove that πρσ securely computes f in the presence of one static

semi-honest corrupted party.

Let f be a 3-ary functionality. We begin by proving that πFmult computes f

with perfect security in the presence of one static semi-honest party. Next, we prove

that ρFcr computes Fmult with perfect security in the presence of one static semi-

honest party in the Fcr-hybrid model. Finally, we prove that σ computes Fcr with

computational security in the presence of one static semi-honest party. The reason

for achieving only computational security for the correlated randomness protocol is

that we use a pseudorandom function to compute the random values. The proof

in this case, thereby, works by making a reduction to a distinguisher between a

pseudorandom function and a random function.

Once we have proved that f ≡ πFmult , that Fmult ≡ ρFcr and that Fcr
c≡ σ, we

can apply the composition theorem of [29] (using the fact that universal composabil-

ity is implied via [78]) to conclude that πρFcr ≡ f ; that is, πρσ computes f with

computationl security in the presence of one static semi-honest adversary.

3.4.1 Computing f in the Fmult-Hybrid Model

We define the multiplication functionality Fmult that receives input shares of two

values va, vb as input and outputs shares of the product vavb, according to the secret-

sharing scheme described in Section 3.3.3. Intuitively, Fmult should be defined by

receiving the shares of all parties, reconstructing the values v0, v1 from the shares,

and then generating a random resharing of the v0v1. Indeed, if secure coin tossing

were used instead of the method that we use for correlated randomness, then Fmult

would be defined in this natural way. However, this would require additional commu-

nication and would affect performance. We therefore need to define a more complex

multiplication functionality. In order to understand why this is needed, recall the real

protocol and consider the specific case that P1 is corrupted. In order to simplify this

explanation, consider the Boolean case.

Section 3.4. Security against Semi-Honest Adversaries 41

Functionality 3.1： Fmult – multiplication

Let F : {0, 1}∗ × {0, 1}∗ → Z2n be a keyed function. Upon invocation,

Fcr chooses a pair of keys k, k′ ∈ {0, 1}κ and sends them to the adversary

controlling party Pi. Then:

1. Fmult receives (([va]j,0, [va]j,1), ([vb]j,0, [vb]j,1)) from each Pj and receives

a pair ([z]i,0, [z]i,1) ∈ Z2n × Z2n from the adversary controlling Pi.

2. Fmult computes va = [va]0,0 + [va]1,1 and vb = [vb]1,0 + [vb]2,1 and vc =

vavb.

3. Fmult sets [z]i−1,0 = vc − [z]i,1 and [z]i+1,0 = −[z]i,0 − [z]i−1,0, and sets

[z]i−1,1 = vc − [z]i+1,0 and [z]i+1,1 = vc − [z]i,0.

4. Fmult sends each Pj the pair ([z]j,0, [z]j,1) (for j ∈ {0, 1, 2}).

Party P0 computes wi = [va]0,0 · [vb]0,0 ⊕ [va]0,1 · [vb]0,1 ⊕ α0 and receives w2 from

P2. Observe that α0 is not random to the corrupted P0 and is fixed by a very

specific computation (specifically, Fk0(id) ⊕ Fk1(id); see Section 3.3.2). Thus, P0’s

computation of w0 is deterministic. Now, P0’s output from the multiplication protocol

is the pair ([z]0,0, [z]0,1) where [z]0,0 = w0 ⊕ w2 and [vavb]0,1 = w0. Since w2 is

received from P2 and is masked with the correlated randomness that P2 receives

(which is generated using a pseudorandom function with a key not known to P0)

this value is random. However, [z]0,1 is fixed (since it equals w0). Stated differently,

given that w0 is fixed, there are exactly two possible values for ([z]0,0, [z]0,1) based on

[z]0,0 = 0 or [z]0,0 = 1. In contrast, a random secret sharing has four possible values

for ([z]0,0, [z]0,1), with all four combinations of [z]0,0, [z]0,1 ∈ {0, 1}. Thus, it is not

true that the multiplication protocol generates a new random sharing of the product.

In order to solve this problem, we take a different approach. We allow the cor-

rupted party to completely determine its share ([z]0,0, [z]0,1). The functionality Fmult

then determines the other parties’ shares based on ([z]0,0, [z]0,1) and the product

vavb. Interestingly, in this secret sharing, a single share together with the secret

42 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

fully determines all other shares. This is because each [z]i,1 = vavb − [z]i−1,0. Thus,

([z]0,0, [z]0,1) and vavb determines [z]i−1,0 = vavb− [z]i,1, which in turn determines zi+1

since [z]0,0 + [z]1,0 + [z]2,0 = 0. Finally, all z values together with vavb determine all c

values.

We denote the protocol for securely computing f that is defined in Section 3.3.3

by Protocol 3.3.3. We now prove the security of Protocol 3.3.3 according to Definition

2.4.2.

Theorem 3.4.1. Let f : ((Z2n)
∗)3 → ((Z2n)

∗)3 be a 3-ary functionality. Then,

Protocol 3.3.3 computes f with perfect security in the Fmult-hybrid model, in the

presence of one semi-honest corrupted party.

Proof. Since the circuit C computes functionality f the first requirement of definition

2.4.2 is immediately fulfilled. We now proceed to the second requirement of the

definition.

Let Pi be the corrupted party. Our Simulator S is invoked upon Pi’s input, v⃗
i and

Pi’s output, fi(v⃗). The simulator S needs to output a transcript that is identically

distributed to the view of Pi and therefore consists of (v⃗i, ri, ⃗mi
input,m

i
1, ...,m

i
ℓ,

⃗mi
output)

where ri is Pi’s random tape, ⃗mi
input is the vector of shares that are sent to Pi at the

input sharing stage, ℓ is the number of multiplication gates in the circuit (since

we have interaction only in these gates) and mi
k is the message Pi received when

computing multiplication gate Gk (recall that in our protocol, each party receives

only one message per each multiplication gate from the Fmult ideal functionality),

and ⃗mi
output is the vector of shares that are sent to Pi at the output reconstruction

stage. Thus, we denote

Viewπ
i (v⃗) = (v⃗i, ri, ⃗mi

input,m
i
1, ...,m

i
ℓ,

⃗mi
output) (2)

Next, we describe our simulator S.
S(v⃗i, fi(v⃗)):

1. Simulating the input sharing stage:

(a) For party Pi, the simulator S chooses a uniformly distributed random

tape ri. The random tape fully determines, for each input value vik ∈ v⃗i,

the random values of xi
k,1, x

i
k,2, x

i
k,3 ∈ Z2n such that xi

k,1 + xi
k,2 + xi

k,3 =

Section 3.4. Security against Semi-Honest Adversaries 43

0 mod 2n. Then, for each vik ∈ v⃗i, S defines P ′
is share of vik to be the pair

(xi
k,i, x

i
k,i−1 − vik), where xi

k,i−1 = xi
k,3 when i = 1.

(b) Let U be the set of input wires. For every input wire k ∈ U associated

with party Pj where j ̸= i, S chooses uniformly yjk,1, y
j
k,2 from Z2n

(c) The simulator S sets Pi’s view at this stage to be
{
{(yjk,1, y

j
k,2)}k∈U,j∈{0,1,2}\{i}

}
.

2. Simulating the circuit emulation stage: For every gate Gk in the circuit in

topological order:

(a) If Gk is an addition gate: Let (yik,1, y
i
k,2) and (zik,1, z

i
k,2) be the two pair

of shares of the gate’s input wires held by party Pi. Then, S defines Pi’s

shares of the output wire to be (yik,1 + zik,1, y
i
k,2 + zik,2).

(b) If Gk is a multiplication-by-a-constant gate with a constant c: Let (yik,1, y
i
k,2)

be the pair of shares of the gate’s input wires held by party Pi. Then, S
defines Pi’s shares of the output wire to be (cyik,1, cy

i
k,2).

(c) If Gk is a multiplication gate: The simulator S chooses zik,1, z
i
k,2 uni-

formly at random from Z2n , and defines the output wire shares of Pi to be

(zik,1, z
i
k,2). Then, S adds the shares to the view of the corrupted party Pi.

3. Simulating the output reconstruction stage: Let o⃗i be the circuit’s output wires

that are associated with Pi. For each output wire oik ∈ o⃗i, let (yik,1, y
i
k,2) be the

share of Pi on this wire. Since the simulator S holds Pi’s output fi(v⃗), it knows

the actual value vik that is on the output wire oik. Thus, S sets xi
k,i = yik,1 and

xi
k,i−1 = yik,2 + vik. (Thus, the share of Pi on oik is the pair (xi

k,i, x
i
k,i−1 − vik)).

Then, S computes xi
k,i+1 = 0− xi

k,i − xi
k,i−1 mod Z2n and sets the share of Pi−1

to be (xi
k,i−1, x

i
k,i−2 − vik), and the share of Pi+1 to be (xi

k,i+1, x
i
k,i − vik). Thus,

for each output wire oik ∈ o⃗i, S adds the shares of the other parties (i.e, Pi−1

and Pi+1) that it computed to Pi’s view and halts.

Now, we show that the view of the corrupted party generated by the simulator

is identical to the view of the corrupted party when using the real execution of the

protocol. We prove this in two steps. First, denote by Ṽiew
π

i (v⃗) the partial view of

the corrupted party up to the output reconstruction stage (and not including that

44 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

stage). Likewise, denote by S̃i(v⃗i, fi(v⃗i)) the partial view generated by the simulator

up to but not including the output reconstruction stage.

Claim 3.4.2. For every v⃗ ∈ ((Z2n)
∗)3 and every i ∈ {0, 1, 2},{

Ṽiew
π

i (v⃗)
}
≡
{
S̃(v⃗i, fi(v⃗))

}
(3)

Proof. Note that the view of Pi is actually a set of shares (where each share is a

pair of values) and that the only difference between the two partial views is that the

view generated in a real execution consists of random shares of the correct values

that are on the circuit wires, whereas the view generated by the simulator consists of

random shares of the value ’0’ (Observe that in both cases the share of Pi at the end

of each multiplication gate is truly random, meaning that its values are independent

of the shares generated so far. Specifically, in the real execution the parties receive

a random independent share from the ideal functionality, while in the simulation, S
chooses two random independent values and set them to be the output wire’s share

of the corrupted party). Hence we have that the two set of shares are identically

distributed and therefore the two partial views are also identically distributed as

required.

It remains to show that the view generated by the simulator after the output

reconstruction stage is identical to the view of the corrupted party in a real exe-

cution. For simplicity, we assume that the output wires appear immediately after

multiplication gates (otherwise, they are fixed function of these values).

In order to prove the above, we prove that the process carried out by the simulator

in the output reconstruction stage yields the same distribution as in the real protocol

execution. We start by describing two processes, prove that they yield the same

distribution and later show that these two processes are exactly the processes carried

out by the simulator and in the real execution.

Random variable X(s) Random Variable Y (s)

(1) Choose x0, x1, x2 ∈R Z2n s.t.
∑3

i=1 xi = 0 mod 2n (1) Choose xi, yi ∈R Z2n for some i ∈ {0, 1, 2}
(2) - (2) Set xi−1 = s+ yi mod 2n *

(3) - (3) Set xi+1 = 0− xi − xi−1 mod 2n *

(4) Output {(x0, s− x2), (x1, s− x0), (x2, s− x1)} (4) Output {(x0, s− x2), (x1, s− x0), (x2, s− x1)}

Section 3.4. Security against Semi-Honest Adversaries 45

Claim 3.4.3. For every s ∈ Z2n, it holds that {X(s)} ≡ {Y (s)}

Proof. In order to show that the distributions are identical we need to show that for

all j ∈ {0, 1, 2}, xj generated in X(S)’s process and xj generated in Y (s)’s process

are identically distributed. To see this, we first look at a slightly modified process

which generates a random variable X ′(s).

Random variable X ′(s)

(1) Choose xi ∈R Z2n for some i ∈ {0, 1, 2}
(2) Choose xi−1 ∈R Z2n *

(3) Set xi+1 = 0− xi − xi−1 mod 2n *

(4) Output {(x0, s− x2), (x1, s− x0), (x2, s− x1)}
*where xi−1 = x3 when i = 1, and xi+1 = x1 when i = 3

The only difference between the process of generating X ′(s) and the process of

generating Y (s) is in step (2) where xi−1’s value is determined. In the generating

processX ′(s), xi−1 is chosen uniformly from Z2n at random, whereas in the generating

process Y (s), xi−1 is set to be the sum of the secret value s and a uniform random

variable yi over Z2n that appears nowhere else in the process. Therefore, xi−1 is also

a uniform random variable over Z2n and thus we conclude that {X ′(s)} ≡ {Y (s)}.
Next, observe that in the process of generating X ′(s), x0, x1, x2 are chosen uni-

formly from Z2n at random such that x0 + x1 + x2 = 0 mod 2n, exactly as in the

process of generating X(s). Therefore, we can conclude that {X(s)} ≡ {X ′(s)}.
Combining the fact that {X(s)} ≡ {X ′(s)} with the fact that {X ′(s)} ≡ {Y (s)},

we obtain that {X(s)} ≡ {Y (s)} as required.

We now use Claim 3.4.3 to prove:

Claim 3.4.4. If
{
Ṽiew

π

i (v⃗)
}
≡
{
S̃(v⃗i, fi(v⃗))

}
, then {Viewπ

i (v⃗)} ≡ {S(v⃗i, fi(v⃗))}

Proof. At the beginning of the output reconstruction stage, the corrupted party Pi

holds a pair of values on each of its output wires. In the simulator procedure, these

values are just pairs of random values from Z2n , while in the execution of the protocol

these values are correct shares of the actual value that is on the output wire.

46 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

Since in the real execution all the parties hold a correct share of the value that is

on an output wire, the view of the corrupted party in the output reconstruction stage

is exactly the output of the process X(s) where s is the value on the output wire.

In contrast, in the simulation, the corrupted party holds a pair of random values

and then the simulator computes the share of the other parties based on these values.

This is done exactly as in the process of Y (s).

Thus, if
{
Ṽiew

π

i (v⃗)
}
≡
{
S̃(v⃗i, fi(v⃗))

}
, from Claim 3.4.3 we obtain that {Viewπ

i (v⃗)}
≡ {S(v⃗i, fi(v⃗))} as required.

Combining claims 3.4.2 and claim 3.4.4 we have that {Viewπ
i (v⃗)} ≡ {S(v⃗i, fi(v⃗))}

as required.

3.4.2 Computing Fmult in the Fcr-Hybrid Model

In this section, we prove that the multiplication protocol described in Section 3.3.3

computes the Fmult functionality with perfect security in the presence of one semi-

honest corrupted party. Recall that our protocol utilizes correlated randomness in

the form of random α0, α1, α2 such that α0 + α1 + α2 = 0.

Functionality 3.2： Fcr – corr. randomness

Let F : {0, 1}∗ × {0, 1}∗ → Z2n be a keyed function. Upon invocation,

Fcr chooses a pair of keys k, k′ ∈ {0, 1}κ and sends them to the adversary

controlling party Pi. Then:

• Upon receiving input id from all parties, functionality Fcr computes

αi = Fk(id)−Fk′(id) and chooses random values αi−1, αi+1 ∈ Z2n under

the constraint that α0 + α1 + α2 = 0 mod 2n. Fcr sends αj to Pj for

every j.

Background – correlated randomness. First, we formally define the ideal func-

tionality Fcr. A naive definition would be to have the ideal functionality choose

α0, α1, α2 and send αi to Pi for i ∈ {0, 1, 2}. However, securely realizing such a

Section 3.4. Security against Semi-Honest Adversaries 47

functionality would require interaction (as in the information-theoretic method first

described in Section 3.3.2). In order to model our computational method described

in Section 3.3.2 (which is the same as used for the ring case) we need to take into

account that the corrupted party’s value is generated in a very specific way using

a pseudorandom function. In order for the Fmult protocol to be secure, all that is

needed is that the corrupted party knows nothing about the honest party’s values

(beyond the given constraint that all values sum to zero). In particular, there is no

requirement regarding how the corrupted party’s value is generated.

　 Protocol 3.7： Computing Fmult

• Inputs: Each party Pj (with j ∈ {0, 1, 2}) holds two pairs of values

(xj, aj) , (yj, bj) which are valid (2, 3)-sharings of the values that are on

the input wires.

• Auxiliary input: The parties hold the same unique identifier id (in the

protocol using Fmult this identifier can be the index of the multiplication

gate being computed).

• The protocol:

1. Correlated randomness: Each party Pj (with j ∈ {0, 1, 2}) sends
id to Fcr and receives back αj from Fcr.

2. Local computation: Each party Pj locally computes: rj = xjyj −
ajbj + αj.

3. Communication: Party Pj sends rj to party Pj+1 (recall that Pj+1 =

P0 when j = 2).

• Output: Each Pj outputs (zj, cj) where zj = rj−1 + rj and cj = rj; recall

rj−1 = r2 when j = 0.

Recall that in our protocol each party holds two keys which are used to locally

48 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

compute the correlated randomness. In order for the view of the corrupted party to

be like in the real protocol, we define the functionality Fcr so that it generates the

corrupted party’s value in this exact same way (i.e., Fk(id)−Fk′(id) for keys k, k
′; see

Section 3.3.3). As we have mentioned, the honest parties’ values are chosen randomly,

under the constraint that all values sum to zero.

The functionality is described formally in Functionality 3.2. The functionality

chooses two keys k, k′ for a pseudorandom function F and sends them to the corrupted

party. We denote by κ the computational security parameter, and thus the length of

the keys k, k′.

The multiplication protocol. A formal description of the protocol that securely

computes the multiplication functionality Fmult in the Fcr-hybrid model appears in

Protocol 3.7.

We now prove that the protocol is secure in the presence of one static semi-honest

corrupted party.

Theorem 3.4.5. Protocol 3.7 computes Fmult with perfect security in the Fcr-hybrid

model in the presence of one semi-honest corrupted party.

Proof. In the protocol, the corrupted party receives a single message. This message is

an element from Z2n which is uniformly distributed over Z2n , due to the fact that each

party masks its message using a random value received from the Fcr functionality.

Intuitively, the protocol is secure because all the corrupted party sees is a random

element. (Note that the corrupted party also receives output from Fcr but this is

fully determined to be αi = Fk(id)− Fk′(id).) We now prove this claim formally.

The Fmult functionality as we have defined it is deterministic, and we therefore

prove security via the simpler Definition 2.4.2. In order to show correctness, we need

to show that the actual values (z0, c0), (z1, c1), (z2, c2) output by all three parties from

Protocol 3.7 are exactly the same values as those computed by Fmult. In order to see

that this holds, recall that in Section 3.3.3 we showed that

z0 + z1 + z2 = 0 and ∀j ∈ {0, 1, 2} cj = vavb − zj−1. (4)

We claim that given a fixed (zi, ci) and vavb, Eq. (4) implies that all values zi−1, ci−1,

zi+1, ci+1 are fully determined. Specifically, let (zi, ci) be fixed and let vavb be the

output value. Since for all j ∈ {0, 1, 2} we have cj = vavb − zj−1, this implies that

Section 3.4. Security against Semi-Honest Adversaries 49

zi−1 = vavb − ci is determined, which in turn determines zi+1 = −zi − zi−1. Finally,

this determines ci+1 = vavb − zi and ci−1 = vavb − zi+1. This is exactly the way that

Fmult computes the output values, and thus these are identical in the protocol and

in the functionality output.

We now prove privacy by defining the simulator. The simulator S receives the

input and output of the corrupted party Pi from Fmult as well as the auxiliary input

id and (k, k′), and needs to compute the messages Pi sees during the execution. The

input of the corrupted party Pi consists of two pair of shares (xi, ai), (yi, bi) and it

has no output. Intuitively, S chooses a random element ri−1 ∈ Z2n and uses it to

define the pair (zi, ci) that it sends to the trusted party computing Fmult. Formally,

the simulator receives (((xi, ai), (yi, bi)) and works as follows:

1. S chooses a random ri−1 ∈ Z2n .

2. S sets ri = xiyi − aibi + αi where αi = Fk(id)− Fk′(id) as would be computed by

Fcr in the protocol.

3. S sets zi = ri−1 + ri and ci = ri.

4. S sends (zi, ci) to Fmult.

5. S adds αi and ri−1 to the view of the corrupted party.

The values αi and ri are computed by S exactly as by Pi in a real execution. The

only difference is how ri−1 is computed; Pi receives ri−1 = xi−1yi−1 − ai−1bi−1 + αi−1

from Pi−1 in a real execution, whereas S chooses ri−1 ∈ Z2n uniformly at random in

the simulation. The distribution over these two values is identical by the fact that

Fcr chooses αi−1, αi+1. Specificaly, Fcr chooses these at random under the constraint

that α0 + α1 + α2 = 0. However, this is equivalent to choosing αi−1 ∈ Z2n uniformly

at random and then setting αi+1 = −αi−αi−1. Now, since αi−1 is uniformly random,

this implies that ri−1 is uniformly random (since it is independent of all other values

used in the generation of ri−1). Thus, the distribution over the real ri−1 received by

Pi in the protocol execution and over the simulated ri−1 generated by S is identical.

This completes the proof.

3.4.3 Computing Fcr in the Plain Model

In this section, we prove that our protocol securely computes the Fcr functionality

in the presence of one semi-honest corrupted party. We have already presented the

50 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

Fcr functionality in Functionality 3.2. The protocol for computing it appears in

Protocol 3.8.

　 Protocol 3.8： Computing Fcr

• Auxiliary input: Each party holds a security parameter κ, a description

of a pseudorandom function F : {0, 1}κ × {0, 1}κ → Z2n .

• Setup (executed once):

1. Each party Pj chooses randomly kj ∈ {0, 1}κ.

2. Each party Pj sends kj to party Pj+1.

• Generating randomness: Upon input id, each party Pj computes αj =

Fkj(id)− Fkj−1
(id) and outputs it.

Theorem 3.4.6. If Fk() is a pseudorandom function, then Protocol 3.8 computes

Fcr with computational security in the plain model, in the presence of 1 semi-honest

corrupted party.

Proof Sketch: Since the functionality is probabilistic, we need to use Def-

inition 2.4.1. Unlike the previous security proofs we have seen, the security of this

protocol is computational and it relies on the assumption that Fk is a pseudorandom

function. Thus, we will show that the ability to distinguish between the outputs in

the real and ideal executions can be used to distinguish between the pseudorandom

function and a truly random function, in contradiction to the assumption.

Let Pi be the corrupted party. We define the simulator S who simulates Pi’s view.

S is invoked on the security parameter 1κ and works as follows:

1. S receives k, k′ from Fcr when it is first invoked (see Functionality 3.2).

2. S sets the random tape of Pi (used by Pi to sample ki) to be the key k received

from Fcr.

Section 3.4. Security against Semi-Honest Adversaries 51

3. S simulates the setup phase by writing the key k′ as the key ki−1 received by Pi

from Pi−1.

4. From this point on, every time that Pi receives id for input, S sends it to the

trusted party computing Fcr. (Pi receives back αi but this equals Fk(id)−Fk′(id) =

Fki(id)− Fki−1
(id) and is known to Pi. Also, this value is computed locally by Pi

in the protocol and not received. Thus, S does not include it in Pi’s view.)

It is easy to see that the view generated by the simulator which consists of the Pi’s

random tape and the incoming message ki−1 is distributed identically to its view in a

real execution. However, this is not sufficient, as we need to prove indistinguishability

of the joint distribution of both the corrupted party’s view and the honest parties’

outputs. Observe that in the real protocol execution, the honest parties’ outputs

are generated using the pseudorandom function, whereas in the ideal world they are

chosen randomly by Fcr.

Intuitively, the proof follows from the fact that both Pi−1 and Pi+1 generate their

values using the pseudorandom function F with key ki+1 that is independent of ki

and ki−1. Thus, replacing Fki+1
with a truly random function f results in Pi−1 and

Pi+1 generating values αi−1 and αi+1 that are random under the constraint that α0+

α1 +α2 = 0. (Specifically, Pi−1 generates αi−1 = Fki−1
(id)− f(id) and Pi+1 generates

αi+1 = f(id) − Fki(id). Thus, αi−1 + αi+1 = Fki−1
(id) − f(id) + f(id) − Fki(id) =

Fki−1
(id) − Fki(id) = −αi, as required.) The full proof follows via a straightforward

reduction.

3.4.4 Wrapping Up

In the previous sections, we have proven that Protocol 3.3.3 computes any 3-ary

functionality with perfect security in the Fmult-hybrid model, and that Protocol 7

computes the Fmult functionality with perfect security in the Fcr-hybrid model. Fi-

nally, we have proved that Protocol 8 computes Fcr with computational security (in

the plain model) under the assumption that pseudorandom functions exist. (All of

the above holds for a single corrupted party in the semi-honest model.) Using the fact

that all our protocols are UC secure from [78] and thus applying the UC composition

theorem of [29], we conclude with the following theorem:

Theorem 3.4.7. Assume that F is a pseudorandom function, and let f be a 3-ary

52 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

functionality. Then, Protocol 3.3.3 computes f with computational security, in the

presence of one semi-honest corrupted party.

3.5 Security against Malicious Adversaries in the Client-Server

Model

In this section, we consider the “client-server” model where the parties running the

multi-party computation protocol are servers who receive the input shares of multiple

clients and compute the output for them. This is the model used by Cybernetica in

their Sharemind product [17]. In this model, the servers do not see any of the inputs

nor any of the outputs. Rather, they receive shares of the inputs and send the clients

shares of their output. Since the parties running the multi-party protocol do not have

any input or output, it is possible to formulate an indistinguishability-based definition

of security, saying that a corrupted server learns nothing. In this section, we present

such a definition, and we prove that our protocol fulfills this definition of privacy even

in the presence of a malicious corrupted party. We believe that this formalization is

of independent interest, and could be used to make similar claims regarding other

information-theoretic protocols like [14] and [17, 18]; namely, that although they are

only secure in the presence of semi-honest adversaries, they are in fact private in the

presence of malicious adversaries.

Before proceeding, we stress that a definition of privacy is strictly weaker than

standard definitions of security for malicious adversaries. Most notably, correctness

is not guaranteed and a malicious server may tamper with the output. In settings

where the adversary may receive some feedback about the output, this may also reveal

information about the input. Thus, our claim of privacy is only with respect to a

malicious server who receives no information about the output.

We now prove that Protocol 3.3.3 fulfills Definition 2.4.3, when making the ap-

propriate changes to the input (converting vectors of length N into 3-way additive

shares for the parties running Protocol 3.3.3).

Theorem 3.5.1. Let f : ((Z2n)
∗)→ ((Z2n)

∗) be an N-party functionality and define

the 3-party functionality gf to be the function that receives 3 length-N input vectors

that constitute additive-shares of the input vector v⃗ to f and outputs 3 length-N

vectors that constitute additive-shares of f(v⃗). If F is a pseudorandom function, then

Section 3.5. Security against Malicious Adversaries in the Client-Server Model 53

Protocol 3.3.3 applied to function gf 1-securely computes f in the client-server model

in the presence of malicious adversaries.

Proof Sketch: Correctness is also required for the semi-honest setting and

this is therefore already implied by Theorem 3.4.1. In order to prove privacy, we need

to show that the view of a malicious A controlling one party when the input is v⃗ is

indistinguishable from its view when the input is v⃗′. We first prove that the views

are identical when information-theoretic correlated randomness is used (as described

in the beginning of Section 3.3.2).

First, intuitively, the views are identical with information-theoretic correlated

randomness since all the adversary sees in every rounds is a random share. In order

to see that this holds even when A is malicious, observe that each share sent to the

adversary is masked by a new value obtained from the correlated randomness. Thus,

irrespective of what A sends in every round, the value that it receives is a random

element. Thus, its view is actually independent of the values that it sends.

Second, consider the view when Protocol 3.8 is used for computing Fcr. In the

setup phase, A sends some value ki and receives ki−1. However, the security of the

protocol is proven based on the pseudorandomness of the function keyed by ki+1 that

A does not see. Importantly to this case of malicious adversaries, ki+1 is chosen

independently of what A sends. Furthermore, the parties generate randomness from

this point on using local computation only. Thus, the values generated by the honest

parties are pseudorandom, irrespective of what A sent. More formally, consider a

reduction where Fki+1
is replaced by a truly random function f . Then, Pi−1 computes

αi−1 = Fki−1
(id) − f(id) and Pi+1 computes αi+1 = f(id) − Fki(id). Since ki and

ki−1 are fixed and independent of f , it follows that αi−1, αi+1 are random under the

constraint that αi−1 + αi+1 = −(Fki(id)− Fki−1
(id)) = −αi, as required. As we have

stated, this holds irrespective of what value ki that A sent, and A cannot influence

the αi−1, αi+1 values computed since they involve local computation by the honest

parties alone. Thus, the view in this case is indistinguishable from the view when the

parties use information-theoretic correlated randomness.

54 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

3.6 Experimental Evaluation

3.6.1 Implementation Aspects

We implemented the protocol for Boolean circuits in C++ using standard optimiza-

tions known for multi-party computation. One specific optimization that we found

to be of great importance was the use of Intel intrinsics for bit slicing operations; we

describe this in more detail here. Since our protocol is extremely simple, running a

single computation is very wasteful both with respect to CPU and network utilization.

A significant portion of this waste is due to the fact that our protocol processes single

bits only, whereas modern processors work on larger objects. We ran our protocol on

12800 operations in parallel by batching 128 operations together and running 100 of

these in parallel. This batching works by bit-slicing.

Bit-Slicing The ith bit of input in 128 different inputs are sliced into a single string

of length 128 (for each i). Likewise, the batched output bits need to be de-sliced

into 128 separate outputs. This is a type of “matrix transpose” – see Figure 3.1 –

and turns out to be very expensive. Indeed, a straightforward implementation of this

bit slicing and de-slicing turned out to greatly dominate the overall execution time.

Hence, we implemented fast bit-slicing and bit-deslicing methods using Intel SIMD

intrinsics in order to reduce this cost.

Figure 3.1: Bit-slice operation

The unit of our bit-slicing is 16 messages of length 8 bytes each (overall 128 bytes).

Section 3.6. Experimental Evaluation 55

Thus, we start with:

m0 = (m0,0,m0,1,m0,2,m0,3,m0,4,m0,5,m0,6,m0,7)

m1 = (m1,0,m1,1,m1,2,m1,3,m1,4,m1,5,m1,6,m1,7)

. . .

m15 = (m15,0,m15,1,m15,2,m15,3,m15,4,m15,5,m15,6,m15,7).

Then, we apply the Intel intrinsics “unpack” instruction 32 times to obtain 8 messages,

each of length 16 bytes:

m′
0 = (m0,0,m1,0, . . . ,m15,0)

m′
1 = (m0,1,m1,0, . . . ,m15,1)

. . .

m′
7 = (m0,7,m1,7, . . . ,m15,7).

The unpack instruction treats the 128 bit register as 16 single-byte values (8 low and

8 high), and has instructions to interleave either the low or the high bytes. This

process is actually byte-slicing (since the “transpose”-type operation is carried out

at the byte level and not the bit level). See Figure 3.2 for a graphic description of

this operation.

Figure 3.2: Unpack operation of AVX instruction set

The next step is to further slice the messages to the bit level. We do this applying

the Intel movmskb 64 times to obtain the bit-sliced inputs. This instruction creates a

16-bit mask from the most significant bits of 16 signed or unsigned 8-bit integers in

56 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

a register and zeroes the upper bits. Thus, we are able to take the MSB of 16 bytes

in a register in a single cycle, which is very fast. The movmskb instruction is depicted

in Fig. 3.3.

Figure 3.3: Moving masked bit operation of AVX instruction set

We apply the movmskb operation to each m′
i from the first step (note that each

m′
i consists of 16 bytes, exactly as needed for movmskb). These optimizations were

crucial for obtaining the high performance reported in this paper.

3.6.2 Result (1): Fast AES

We ran our implementation on a cluster of three mid-level servers connected by a

10Gbps LAN with a ping time of 0.13 ms. Each server has two Intel Xeon E5-2650 v3

2.3GHz CPUs with a total of 20 cores. We ran the implementation utilizing a different

number of cores, from 1 through to 20. Each core was given 12800 computations

which were carried out in parallel. (Since Intel intrinsics works on 128-bit registers,

this means that inputs were sliced together in groups of 128 and then 100 of these

were run in parallel by each core.) These computations can be with different keys

since each MPC can have different inputs; this will be used in Section 3.6.3.

Observe that up to 10 cores, the throughput is stable at approximately 100,000

AES/sec per core. However, beyond 10 cores this begins to deteriorate. This is due

to queuing between the kernel and the Network Interface Card (NIC). Specifically,

when a single process utilizing a single CPU is used, that process has full control

over the NIC. However, when multiple processes are run, utilizing high bandwidth,

requests from each process are handled in a queue between the kernel and the NIC.

This queuing increases network latency, and as each process spends more time waiting

Section 3.6. Experimental Evaluation 57

for communication, CPU usage drops by a noticeable percentage. It is possible to

overcome this by bypassing the kernel layer and communicating directly with the

NIC. One approach for achieving this appeared in [107].

We ran each experiment 5 times; this was sufficient due to the very low variance

as can be seen in Table 3.2. The results represent a 95% confidence interval.

Table 3.2: Experiment results running AES-CTR. The CPU column shows the aver-

age CPU utilization per core, and the network column is in Gbps per server. Latency

is given in milliseconds.

Cores AES/sec Latency CPU Network

1 100,103 ± 1632 128.5 ± 2.1 73.3% 0.572

5 530,408 ± 7219 121.2 ± 1.7 62.2% 2.99

10 975,237 ± 3049 131.9 ± 0.4 54.0% 5.47

16 1,242,310 ± 4154 165.7 ± 0.4 49.5% 6.95

20 1,324,117 ± 3721 194.2 ± 0.9 49.6% 7.38

Recall that each core processed 12800 AES computations in parallel, and observe

that with a latency of 129ms approximately 7 calls can be processed per second by

each core. Thus, the approximate 100,000 AES computations per core per second are

achieved in this way.

See Figures 3.4 and 3.5 for graphs showing the behavior of the implementation as

higher throughputs are achieved.

Figure 3.4: Throughput per core (AES computations)

58 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

Figure 3.5: Latency versus throughput (AES)

Microbenchmarking. We measured the time spent on each part of the protocol,

with the following results.

Protocol part Percentage

Server bitslice and deslice 8.70%

AND and XOR gate computation 49.82%

Randomness generation 9.54%

Comm. delays between MPC servers 27.87%

Communication delays for input/output 4.07%

We remark that the long communication delays are due to the fact that the com-

munication topology of our implementation is a ring. Thus, each party waits for two

other messages to be processed before it receives its next message. In order to reduce

this waste, the randomness generation is run during this delay. Thus, if the random-

ness generation was “free”, the communication delay would increase to 37.41% and it

would not be any faster. This demonstrates that the efficiency improvements could

be achieved by communicating in every step.

3.6.3 Result (2): Kerberos KDC with Shared Passwords

In order to demonstrate the potential of our protocol, we incorporate it into a real

application. Kerberos is used for user authentication in many systems, most notably

it is used by all Windows systems since Windows 2000. Kerberos uses the hashed user

password as a key to encrypt a Ticket-Granting-Ticket (TGT) which contains a high-

entropy cryptographic key which is used for all communications after the user logs in.

Section 3.6. Experimental Evaluation 59

In Kerberos, a server breach is particularly devastating since the hashed password is

all that is needed for impersonating a user. This is because the TGT is encrypted

with the hashed user password and sent to the user. Thus, an attacker knowing

the hashed password alone can decrypt the TGT. Microsoft’s Active Directory has

suffered breaches in the past, and such a breach enables an attacker to impersonate

every user in the organization.

In order to mitigate this risk, we consider a system where the hashed user pass-

words are XOR-shared between two servers (with different administrators), and se-

cure multiparty computation is used to carry out the login authentication without

ever reconstructing the hashed password. This makes it harder for an attacker to

steal hashed passwords (needing to breach both servers) and also mitigates insider

threats since no single administrator has access to the hashed user passwords. Since

the ticket-granting-server’s long-term key is also very sensitive, this is also protected

in the same way. The architecture of the Kerberos solution is depicted in Figure 3.6.

Figure 3.6: The Kerberos authentication using MPC

We took the Open Source MIT Kerberos and modified the encryption mode used

to encrypt the TGT to counter mode. This is important since CBC mode does not

enable parallel encryption and this would slow the encryption down significantly. In

more detail, the authentication process in Kerberos has the following steps:

1. Pre-authentication: We use the pa-enc-timestamp method, which means that

the user encrypts the date using his hashed password as the key. This is a single

AES block (and so ECB is used).

60 Chapter 3. Foundation (1): Semi-Honest Secure 3-Party Computation

based on Replicated Secret Sharing

2. TGT encryption: A session key to be used by the user and ticket-granting server

(TGS) to communicate later is generated. Then, the TGT (containing the client

information and the session key) is generated and encrypted under the long-term

key of the TGS. The TGT is 15 blocks of AES.

3. Session-key and TGT encryption: The session key and TGS are AES-encrypted

with the user’s hashed password.

Overall, the number of encryption blocks for a single user authentication is 33: one

block for pre-authentication, 15 blocks for TGT encryption under the long-term key

of the TGS, and 17 blocks for session-key and TGT encryption under the user key

(this last encryption is 17 blocks due to the addition of the session key and header

information).

In all of the above encryptions, when using the Kerberos encryption type aes128-

cts-hmac-sha1-96, all of the encryption above is without HMAC authentication.

(HMAC is only used for communication following these initial steps.) As we have

mentioned, we implemented a Kerberos extension that uses counter mode instead

of CBC (cts is CBC mode with ciphertext stealing). This is important for two

reasons. First, CBC encryption cannot be parallelized and so each block must be

encrypted after the previous block has been encrypted. In addition, the TGT cannot

be encrypted under the user key until it has been encrypted under the long-term key

of the TGS. However, when using counter mode, all of the AES computations can

be carried out in parallel. Specifically, upon receiving a user authentication request

together with a pre-authentication ciphertext, the following is carried out:

1. The servers running the secure computation protocol load the shares of the long-

term key of the TGS and the shares of the user’s key i.e., hash of the user’s

password).

2. Two random counters ctr1 and ctr2 are chosen.

3. 33 AES computations are run in parallel: a single AES decryption of the pre-

authentication ciphertext, 15 AES encryptions of ctr1 + 1, . . . , ctr1 + 15, and 17

AES encryptions of ctr2 + 1, . . . , ctr2 + 16.

4. The preauthentication value is verified; if it is valid, then the server proceeds to

the next step.

Section 3.6. Experimental Evaluation 61

5. The output of the 15 AES encryptions using ctr1 is XORed with the TGT.

6. The encrypted TGT from the previous step is concatenated with the session key

and some header information. This is treated as a plaintext and XORed with the

result of the 17 AES encryptions using ctr2.

7. The result of the previous step along with ctr1 and ctr2 is sent to the user.

This flow enables all of the AES computations to be carried out in parallel, yielding a

latency of approximately 120 milliseconds. We remark that in order for the server to

be able to process requests in bulk, a new set of AES encryptions is begun every 100

milliseconds. Thus, authentication requests are queued for at most 100 milliseconds

(and on average 50ms) and then processed. This ensures that the overall latency (of

a client) of processing an authentication request is approximately 200 milliseconds.

This is a very reasonable time for an application like Kerberos where a user is involved

in the authentication process.

Experimental results. In order to test our implementation, we ran the complete

Kerberos login using the aforementioned cluster of three servers computing AES. The

number of logins per second with a single core was 2,970, with 10 cores was 28,723

and with 16 cores was 36,521. Thus, our Kerberos implementation (that incorporates

the extension described above in MIT-Kerberos) is able to support a significant login

storm of over 40,000 user logins per second. This is sufficient even for very large

organizations (if more is needed, then this can be achieved by simply using two

clusters instead of one). Beyond the number of logins per second, it is important to

ensure that the latency is low; otherwise, users will have to wait too long at login.

This is the reason that we designed the TGT-generation process in a way that enables

full parallelism of the AES operations. Our results give an average latency of the AES

encryption via MPC at 110ms, and an average latency at the client (over a LAN) of

232ms. The increased time in the client is due to additional work carried out both by

the client and the KDC, and due to the fact that requests are processed every 100ms.

Chapter 4 Foundation (2): Maliciously

Secure 3-Party Computation

based on Replicated Secret

Sharing

4.1 Introduction

In this chapter, we present a high-throughput protocol for three-party secure compu-

tation with an honest majority and security for malicious adversaries. We optimize

and implement the protocol of [56], that builds on the protocol of [6] that achieves a

rate of over 7 billion AND gates per second, but with security only for semi-honest

adversaries. The multiplication (AND gate) protocol of [6] is very simple; each party

sends only a single bit to one other party and needs to compute only a few very

simple AND and XOR operations. Security in the presence of malicious adversaries

is achieved in [56] by using the cut-and-choose technique in order to generate many

valid multiplication triples (shares of secret bits (a, b, c) where a, b are random and

c = ab). These triples are then used to guarantee secure computation, as shown

in [10]. This paradigm has been utilized in many protocols; see [79, 43, 70] for just a

few examples.

The cut-and-choose method works by first generating many triples, but with the

property that a malicious party can make c ̸= ab. Then, some of the triples are fully

“opened” and inspected, to verify that indeed c = ab. The rest of the triples are

then grouped together in “buckets”; in each bucket, one triple is verified by using all

the others in the bucket. This procedure has the property that the verified triple is

valid (and a, b, c unknown), unless the unfortunate event occurs that all triples in the

bucket are invalid. This method is effective since if the adversary causes many triples

to be invalid then it is caught when opening triples, and if it makes only a few triples

invalid then the chance of a bucket being “fully bad” is very small. The parameters

needed (how many triples to open and how many in a bucket) are better – yielding

62

Section 4.1. Introduction 63

higher efficiency – as the number of triples generated overall increases. Since [6] is

so efficient, it is possible to generate a very large number of triples very quickly and

thereby obtain a very small bucket size. Using this idea, with a statistical security

level of 2−40, the protocol of [56] can generate 220 triples while opening very few and

using a bucket size of only 3. In the resulting protocol, each party sends only 10 bits

per AND gate, providing the potential of achieving very high throughput.

We carried out a highly-optimized implementation of [56] and obtained a very

impressive rate of approximately 500 million AND gates per second. However, our

aim is to obtain even higher rates, and the microbenchmarking of our implementation

pointed to some significant bottlenecks that must be overcome in order to achieve this.

First, in order for cut-and-choose to work, the multiplication triples must be randomly

divided into buckets. This requires permuting very large arrays, which turns out to

be very expensive computationally due to the large number of cache misses involved

(no cache-aware methods for random permutation are known and thus many cache

misses occur). In order to understand the effect of this, note that on Intel Haswell

chips the L1 cache latency is 4 cycles while the L3 cache latency is 42 cycles [1]. Thus,

on a 3.4 GHz processor, the shuffling alone of one billion items in L3 cache would

cost 11.7 seconds, making it impossible to achieve a rate of 1 billion gates per second

(even using 20 cores). In contrast, in L1 cache the cost would be reduced to just

1.17 seconds, which when spread over 20 cores is not significant. Of course, this is

a simplistic and inexact analysis; nevertheless, our experiments confirm this type of

behavior.

In addition to addressing this problem, we design protocol variants of the protocol

of [56] that require less communications. This is motivated by the assumption that

bandwidth is a major factor in the efficiency of the protocol.

Protocol-design contributions. We optimized the protocol of [56], both improv-

ing its theoretical efficiency (e.g., communication) as well as its practical efficiency

(e.g., via cache-aware design). We have the following contributions:

1. Cache-efficient shuffling (Section 4.4.1): We devise a cache-efficient method of

permuting arrays that is sufficient for cut-and-choose. We stress that our method

does not yield a truly random permutation of the items. Nevertheless, we provide

a full combinatorial analysis proving that it suffices for the goal of cut-and-choose.

We prove that the probability that an adversary can successfully cheat with our

64 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

new shuffle technique is the same as when carrying out a truly random permutation.

2. Reduced bucket size (Section 4.4.2): As we have described above, in the protocol

of [56], each party sends 10 bits to one other party for every AND gate (when

computing 220 AND gates and with a statistical security level of 2−40). This is

achieved by taking a bucket size of 3. We reduce the bucket size by 1 and thus the

number of multiplication triples that need to be generated and used for verification

by one third. This saves both communication and computation, and results in a

concrete cost of each party sending 7 bits to one other party for every AND gate

(instead of 10).

3. On-demand with smaller buckets (Section 4.4.3): As will be described below, the

improved protocol with smaller buckets works by running an additional shuffle on

the array of multiplication triples after the actual circuit multiplications (AND

gates) are computed. This is very problematic from a practical standpoint since

many computations require far less than 220 AND gates, and reshuffling the entire

large array after every small computation is very wasteful. We therefore provide

an additional protocol variant that achieves the same efficiency but without this

limitation.

All of our protocol improvements and variants involve analyzing different combina-

torial games that model what the adversary must do in order to successfully cheat.

Since the parameters used in the protocol are crucial to efficiency, we provide (close

to) tight analyses of all games.

Implementation contributions. We provide a high-quality implementation of the

protocol of [56] and of our protocol variants. By profiling the code, we discovered

that the SHA256 hash function computations specified in [56] take a considerable

percentage of the computation time. We therefore show how to replace the use of a

collision-resistant hash function with a secure MAC and preserve security; surpris-

ingly, this alone resulted in approximately a 15% improvement in throughput. This

is described in Section 4.4.4.

We implemented the different protocol variants and ran them on a cluster of three

mid-level servers (2.3GHz CPUs with twenty cores) connected by a 10Gbps network.

As we describe in Section 4.6, we used Intel vectorization and a series of optimizations

Section 4.1. Introduction 65

to achieve our results. Due to the practical limitations of the first variant with smaller

buckets, we only implemented the on-demand version. The highlights are presented

in Table 4.1. Observe that our fastest variant achieves a rate of over 1.1 billion

AND-gates per second, meaning that large scale secure computation is possible

even for malicious adversaries.

Table 4.1: Implementation results; throughput

Protocol Variant AND gates/sec %CPU Gbps

Baseline [56] 503,766,615 71.7% 4.55

Cache-efficient (SHA256) 765,448,459 64.84% 7.28

Smaller buckets, on-demand (SHA256) 988,216,830 65.8% 6.84

Smaller buckets, on-demand (MAC) 1,152,751,967 71.28% 7.89

Observe that the cache-efficient shuffle alone results in a 50% increase in through-

put, and our best protocol version is 2.3 times faster than the protocol described

in [56].

Offline/online. Our protocols can run in offline/online mode, where multiplication

triples are generated in the offline phase and used to validate multiplications in the

online phase. The protocol variants with smaller bucket size (items (2) and (3) above)

both require additional work in the online phase to randomly match triples to gates.

Thus, although these variants have higher throughput, they have a slightly slower

online time (providing an interesting tradeoff). We measured the online time only

of the fastest online version; this version achieves a processing rate of 2.1 billion

AND gates per second (using triples that were previously prepared in the offline

phase).

Combinatorial analyses. As we have mentioned above, the combinatorial analyses

used to prove the security of our different protocols are crucial for efficiency. Due to

this observation, we prove some independent claims in Section 4.5 that are relevant

to all cut-and-choose protocols. First, we ask the question as to whether having

different-sized buckets can improve the parameters (intuitively, this is the case since

it seems harder for an adversary to fill a bucket with all-bad items if it doesn’t know

the size of the bucket). We show that this cannot help “much” and it is best to take

66 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

buckets of all the same size or of two sizes B and B+1 for some B. Furthermore, we

show that it is possible to somewhat tune the cheating probability of the adversary.

Specifically, if a bucket-size B taken does not give a low enough cheating probability

then we show that instead of increasing the bucket size to B+1 (which is expensive),

it is possible lower the cheating probability moderately at less expense.

4.2 Related Work

As we have described above, a long series of work has been carried out on making

secure computation efficient, both for semi-honest and malicious adversaries. Recent

works like [111] provide very good times for the setting of two parties and malicious

adversaries (achieving a rate of 26,000 AND gates per second). This is far from the

rates we achieve here. However, we stress that they work in a much more difficult

setting, where there is no honest majority.

To the best of our knowledge, the only highly-efficient implemented protocol for

the case of three parties with an honest majority and (full simulation-based security)

for malicious adversaries is that of [93], which follows the garbled-circuit approach.

Their protocol achieves a processing rate of approximately 480,000 AND gates per

second on a 1Gbps network with single-core machines. One could therefore extrap-

olate that on a setup like ours, their protocol could achieve rates of approximately

5,000,000 AND gates per second. Note that by [93, Table 3] a single AES circuit of

7200 AND gates requires sending 750KB, or 104 bytes (832 bits) per gate. Thus,

on a 10Gbps network their protocol cannot process more than 12 million AND gates

per second (even assuming 100% utilization of the network, which is typically not

possible, and that computation is not a factor). Our protocol is therefore at least two

orders of magnitude faster. We stress, however, that the latency of [93] is much lower

than ours, which makes sense given that it follows the GC approach.

The VIFF framework also considers an honest majority and has an implementa-

tion [40]. The offline time alone for preparing 1000 multiplications is approximately

5 seconds.1 Clearly, on modern hardware, this would be considerably faster, but only

by 1-2 orders of magnitude.

1This is for 4 parties with at most 1 corrupted. However, when considering security with abort
as we do here, the protocol of [40] can be adapted to 3 parties with 1 corrupted with approximately
the same cost.

Section 4.3. The Baseline Protocol 67

4.3 The Baseline Protocol

4.3.1 An Informal Description

In [56], a three-party protocol for securely computing any functionality (represented

as a Boolean circuit) with security in the presence of malicious adversaries and an

honest majority was presented. The protocol is extremely efficient; for a statistical

cheating probability of 2−40 the protocol requires each party to send only 10 bits

per AND gate. In this section, we describe the protocol and how it works. Our

description is somewhat abstract and omits details about what exact secret sharing

scheme is used, how values are checked and so on. This is due to the fact that all the

techniques in this paper are general and work for any instantiation guaranteeing the

properties that we describe below.

Background – multiplication triples. The protocol follows the paradigm of

generating shares of multiplication triples (also known as “Beaver triples”) ([a], [b], [c])

where a, b, c ∈ {0, 1} such that c = ab, and [x] denotes a sharing of x. As we have

mentioned, this paradigm was introduced by [10] and has been used extensively to

achieve efficient secure computation [79, 43, 70].

One popular purpose for using the multiplication triples is to construct MPCs

under dishonest-majority. Assume we have a multiplication triple ([a], [b], [c]). When

[x], [y] are given and we want to perform multiplication to obtain [z] = [x · y], each
party computes [σ] = [x]−[a] and [ρ] = [y]−[b] (namely, masking [x] and [y] by random

shares) and opens σ and ρ. Then, each party can compute [z] := σ·ρ+σ·[b]+ρ·[a]+[c].

The nice feature of this procedure is that we can easily introduce a MPCmultiplication

protocol from any LSS scheme (even if it cannot performMPCmultiplication by itself)

if we can prepare multiplication triples in some way. This technique has been used

in a number of schemes to date.

However, in this paper, we focus on other interesting properties to realize cheater

detection: it is possible to efficiently validate if a triple is correct (i.e., if c = ab)

by opening it, and it is possible to efficiently verify if a triple ([a], [b], [c]) is correct

without opening it by using another triple ([x], [y], [z]). This latter check is such that

if one triple is correct and the other is not, then the adversary is always caught.

Furthermore, nothing is learned about the values a, b, c (but the triple ([x], [y], [z])

has been “wasted” and cannot be used again).

68 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

Protocol description: The protocol of [56] works as shown in Protocol 4.1.

　 Protocol 4.1： Computing a function f with Malicious Adversary

• Inputs and Auxiliary Input: Same as in Protocol 3.1.

• The protocol – offline phase: Generate multiplication triples by calling Proto-

col 2; let d⃗ be the output.

• The protocol – online phase:

1. Step 1 – generate random multiplication triples: In this step, the parties gener-

ate a large number of triples ([ai], [bi], [ci]) with the guarantee that [ai], [bi] are

random and all sharings are valid (meaning that the secret sharing values held

by the honest parties are consistent and of a well-defined value). However, a

malicious party can cause ci ̸= aibi. In [56] this is achieved in two steps; first

generate random sharings of [ai], [bi] and then run the semi-honest multiplication

protocol of [6] to compute [ci]. This multiplication protocol has the property

that the result is always a valid sharing, but an adversary can cause ci ̸= aibi

and thus it isn’t necessarily correct.

2. Step 2 – validate the multiplication triples: In this step, the parties validate

that the triples generated are valid (meaning that ci = aibi). This is achieved

by opening a few of the triples completely to check that they are valid, and to

group the rest in “buckets” in which some of the triples are used to validate

the others. The validation has the property that all the triples in a bucket are

used to validate the first triple, so that if that triple is bad then the adversary

is caught cheating unless all the triples in the bucket are bad. The triples are

randomly shuffled in order to divide them into buckets, and the bucket-size

taken so that the probability that there exists a bucket with all-bad triples is

negligible. We denote by N the number of triples that need to be generated

(i.e., output from this stage), by C the number of triples opened initially, and

by B the bucket size. Thus, in order to output N triples in this step, the parties

generate BN + C triples in the previous step.

Section 4.3. The Baseline Protocol 69

3. Step 3 – circuit computation: In this step, the parties securely share their input

bits, and then run the semi-honest protocol of [6] up to (but not including) the

stage where outputs are revealed. We note that this protocol reveals nothing, and

so as long as correctness is preserved, then full security is obtained.

4. Step 4 – validation of circuit computation: As we described above, the multipli-

cation protocol used in the circuit computation always yields a valid sharing but

not necessarily of the correct result. In this step, each multiplication in the circuit

is validated using a multiplication triple generated in Step 2. This uses the ex-

act same procedure of validating “with opening”; as explained above, this reveals

nothing about the values used in the circuit multiplication but ensures that the

result is correct.

5. Step 5 – output: If all of the verifications passed, the parties securely reconstruct

the secret sharings on the output wires in order to obtain the output.

The checks of the multiplication triples requires the parties to send values and verify

that they have the same view. In order to reduce the bandwidth (which is one of

the main aims), in the protocol of [56] the parties compare their views only at the

end before the output is revealed, by sending a collision-resistant hash of their view

which is very short. (A similar idea of checking only at the end was used in [79, 43]).

Note that Steps 1–2 can be run in a separate offline phase, reducing latency in the

online phase of Steps 3–5.

Efficiency. The above protocol can be instantiated very efficiently. For example,

sharings of random values can be generated non-interactively, the basic multiplica-

tions requires each party sending only a single bit, and verification of correctness of

triples can be deferred to the end. Furthermore, since multiplication triples can be

generated so efficiently, it is possible to generate a huge amount at once (e.g., 220)

which significantly reduces the overall number of triples required. This is due to the

combinatorial analysis of the cut-and-choose game. Concretely, it was shown in [56]

that for a cheating probability of 2−40, one can generate N = 220 triples using bucket-

size B = 3 and opening only C = 3 triples. Thus, overall 3N + 3 triples must be

generated. The communication cost of generating each triple initially is a single bit,

the cost of each validation (in Steps 2 and 4) is 2 bits, and the cost of multiplying in

70 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

Step 3 is again 1 bit. Thus, the overall communication per AND gate is just 10 bits

per party (3 bits to generate 3 triples, 4 bits to validate the first using the second and

third, 1 bit to multiply the actual gate, and 2 bits to validate the multiplication).

Shuffling and generating buckets. The shuffling of Step 2 in [56] works by

simply generating a single array of M = BN +C triples and randomly permuting the

entire array. Then, the first C triples are opened, and then each bucket is generated

by taking B consecutive triples in the array. In our baseline implementation, we

modified this process. Specifically, we generate 1 array of length N , and B− 1 arrays

of length N + C. The arrays of length N + C are independently shuffled and the

last C triples in each of these arrays is opened and checked. Finally, the ith bucket

is generated by the taking the ith triple in each of the arrays (for i = 1, . . . , N).

This is easier to implement, and will also be needed in our later optimizations. We

remark that this is actually a different combinatorial process than the one described

and analyzed in [56], and thus must be proven. In Section 4.4.1, we show that this

makes almost no difference, and an error of 2−40 is achieved when setting N = 220,

B = 3 and C = 1 (practically the same as [56]).

Figure 4.1: Microbenchmarking of the baseline implementation (the protocol of [56]),

using the CxxProf C++ profiler

4.3.2 Implementation Results and Needed Optimizations

As we have discussed, the above protocol is highly efficient, requiring only 10 bits of

communication per AND gate, and requiring only very simple operations. As such,

one would expect that a good implementation could achieve a rate that is just a

factor of 10 slower than the semi-honest protocol of [6] that computes 7.15 billion

AND gates per second. However, our implementation yielded results which fall short

Section 4.3. The Baseline Protocol 71

of this.

Specifically, on a cluster of three mid-level servers (Intel Xeon E5-2560 v3 2.3GHz

with 20 cores) connected by a 10Gbps LAN with a ping time of 0.13 ms, our im-

plementation of [56] achieves a rate of 503,766,615 AND gates per second. This is

already very impressive for a protocol achieving malicious security. However, it is 14

times slower than the semi-honest protocol of [6], which is significantly more than the

factor of 10 expected by a theoretical analysis.

In order to understand the cause of the inefficiency, see the microbenchmarking

results in Figure 4.1. This is a slice showing one full execution of the protocol, with two

threads: the first thread called run_BTG (Beaver T riples Generator) runs Steps 1–2

of the protocol to generate validated triples; these are then used in the second thread

called MPC while loop to compute and validate the circuit computation (Steps 3–4

of the protocol). Our implementation works on blocks of 256-values at once (using the

bit slicing described in [6]), and thus this demonstrates the generation and validation

of 256 million triples and secure computation of the AES circuit approximately 47,000

times (utilizing 256 million AND gates).2

Observe that over half the time in run_BTG is spent on just randomly shuffling the

arrays in Step 2 (dwarfing all other parts of the protocol). In hindsight, this makes

sense since no cache-efficient random shuffle is known, and we use the best known

method of Fisher-Yates [51]. Since we shuffle arrays of one million entries of size 256

bits each, this results in either main memory or L3 cache access at almost every swap

(since L3 cache is shared between cores, it cannot be utilized when high throughput

is targeted via the use of multiple cores). One attempt to solve this is to work with

smaller arrays, and so a smaller N . However, in this case, a much larger bucket

size will be needed in order to obtain a cheating bound of at most 2−40, significantly

harming performance.

Observe also that the fourth execution of MPC while loop of the second thread

is extremely long. This is due to the fact that MPC while loop consumes triples

generated by run_BTG. In this slice, the first three executions of MPC while loop use

triples generated in previous executions of run_BTG, while the fourth execution of

2The actual times in the benchmark figure should be ignored since the benchmarking environment
is on a local machine and not on the cluster.

72 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

MPC while loop is delayed until this run_BTG concludes. Thus, the circuit compu-

tation thread actually wastes approximately half its time waiting, making the entire

system much less efficient.

4.4 Optimized Cheater Identification

In this section, we present multiple protocol improvements and optimizations to the

protocol of [56]. Our variants are all focused on the combinatorial checks of the

protocol, and thus do not require new simulation security proofs, but rather new

bounds on the cheating probability of the adversary.

Our presentation throughout will assume subprotocols as described in Section 4.3.1:

(a) generate random multiplication triples, (b) verify a triple “with opening”, (c)

verify one triple using another “without opening”, and (d) verify semi-honest multi-

plication using a multiplication triple.

4.4.1 Cache-Efficient Shuffling for Cut-and-Choose

As we have discussed, one of the major bottlenecks of the protocol of [56] is the cost

of random shuffling. In this section, we present a new shuffling process that is cache

efficient. We stress that our method does not compute a true random permutation

over the array. However, it does yield a permutation that is “random enough” for

the purpose of cut-and-choose, meaning that the probability that an adversary can

obtain a bucket with all bad triples is below the required error.

Informal description. The idea behind our shuffling method is to break the

array into subarrays, internally shuffle each subarray separately, and then shuffle

the subarrays themselves. By making each subarray small enough to fit into cache

(L2 or possibly even L1), and by making the number of subarrays not too large,

this yields a much more efficient shuffle. In more detail, recall that as described in

Section 4.3.1, instead of shuffling one large array in the baseline protocol, we start

with 1 subarray D⃗1 of length N , and B− 1 subarrays D⃗2, . . . , D⃗B each of size N +C,

and we shuffle D⃗2, . . . , D⃗B. Our cache-efficient shuffling works by:

1. Splitting each array D⃗k into L subarrays D⃗k,1, . . . , D⃗k,L.

2. Shuffling each subarray separately. (i.e., randomly permuting the entries inside

each D⃗k,i).

Section 4.4. Optimized Cheater Identification 73

3. Shuffling the subarrays themselves.

This process is depicted in Figure 4.2.

Figure 4.2: Cache-efficient shuffling method

We remark that in order to further improve efficiency, we do not shuffle the actual

data but rather just the indices.3 This is much more efficient since it saves many

memory copies; we elaborate on this further in Section 4.6.

As we will show, in order for this to be secure, it is necessary to open C triples in

each subarray. Thus, N/L+C triples are needed in each subarray, the size of each D⃗k

(for k = 2, . . . , B) is L·(N/L+C) = N+CL, and the overall number of triples needed

is N + (B − 1)(N + CL). In addition, overall we execute a shuffling (B − 1)(L + 1)

times: (B−1)L times on the subarrays each of size N/L+C and an additional B−1

times on an array of size L. Interestingly, this means that the number of elements

shuffled is slightly larger than previously; however, due to the memory efficiency, this

is much faster. The formal description appears in Protocol 4.2.

3The protocol is highly efficient when using vectorization techniques, as described in Section 4.6.
Thus, each item in the array is actual 256 triples and the data itself is 96 bytes.

74 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

　 Protocol 4.2： Generating Valid Triples – Cache-Efficiently

• Input: The number N of triples to be generated.

• Auxiliary input: Parameters B,C,X,L, such that N = (X − C)L; N is the

number of triples to be generated, B is the number of buckets, C the number of

triples opened in each subarray, and X = N/L+ C is the size of each subarray.

• The Protocol:

1. Generate random sharings: The parties generate 2M sharings of random val-

ues, for M = 2(N + CL)(B − 1) + 2N ; denote the shares that they receive by

[([ai], [bi])]
M/2
i=1 .

2. Generate array D⃗ of multiplication triples: As in Step 1 of the informal de-

scription in Section 4.3.1.

3. Cut and bucket: In this stage, the parties perform a first verification that the

triples were generated correctly, by opening some of the triples.

(a) Each party splits D⃗ into vectors D⃗1, . . . , D⃗B such that D⃗1 contains N

triples and each D⃗j for j = 2, . . . , B contains N + LC triples.

(b) For k = 2 to B: each party splits D⃗k into L subarrays of equal size X,

denoted by D⃗k,1, . . . , D⃗k,L.

(c) For k = 2, . . . , B and j = 1, . . . , L: the parties jointly and securely gener-

ate a random permutation of the vector D⃗k,j.

(d) For k = 2, . . . , B: the parties jointly and securely generate a random

permutation of the vector [1, . . . , L] and permute the subarrays in D⃗k

accordingly.

(e) For k = 2, . . . , B and j = 1, . . . , L: The parties open and check each of

the first C triples in D⃗k,j, and remove them from D⃗k,j. If a party rejects

any check, it sends ⊥ to the other parties and outputs ⊥.

(f) The remaining triples are divided into N sets of triples B⃗1, . . . , B⃗N , each

of size B, such that the bucket B⃗i contains the i’th triple in D⃗1, . . . , D⃗B.

4. Check buckets: In each bucket, B − 1 triples are used to validate the first (as

in Step 2 of the informal description in Section 4.3.1).

• Output: The parties output d⃗.

Intuition – security. It is clear that our shuffling process does not generate a

random permutation over the arrays D⃗2, . . . , D⃗B. However, for cut-and-choose to

Section 4.4. Optimized Cheater Identification 75

work, it is seemingly necessary to truly randomly permute the arrays so that the

adversary has the lowest probability possible of obtaining a bucket with all-bad triples.

Despite this, we formally prove that our method does suffice; we first give some

intuition.

Consider the simplistic case that the adversary generates one bad triple in each

array D⃗k. Then, for every k, the probability that after the shuffling a bad triple in

D⃗k will be located in the same index as the bad triple in D⃗1 is 1
N/L
· 1
L
= 1

N
(after

opening C triples, there are N/L in the subarray and L subarrays; the bad triples will

match if they match inside their subarrays and the their subarrays are also matched).

Observe that this probability is exactly the same as in the naive shuffling process

where the entire array of N is shuffled in entirety.

A subtle issue that arises here is the need to open C triples in each of the sub-

arrays D⃗k,j. As we have mentioned, this means that the number of triples that need

to be opened increases as L increases. We stress that this is necessary, and it does

not suffice to open C triples only in the entire array. In order to see why, consider

the following adversarial strategy: choose one subarray in each D⃗k and make all the

triples in the subarray bad. Then, the adversary wins if the no bad triple is opened

(which happens with probability 1 − C
N+C

) and if the B bad subarray are permuted

to the same position (which happens for each with probability 1/L). The the overall

probability that the adversary wins is close to 1
LB which is much too large (note that

L is typically quite small). By opening balls in each D⃗k,j, we prevent the adversary

from corrupting an entire subarray (or many triples in a subarray).

Before proceeding, note that if we set L = 1, we obtain the basic shuffling of

Section 4.3.1, and thus the combinatorial analysis provided next, applies to that case

as well.

Proof of security – combinatorial analysis. We now prove that the adversary

can cause the honest parties to output a bad triple in Protocol 2 with probability at

most 1
NB−1 . This bound is close to tight, and states that it suffices to take B = 3

for N = 220 exactly as proven in [56] for the baseline protocol. However, in contrast

to the baseline protocol, here the parties must open (B − 1)CL triples (instead of

just (B − 1)C). Nevertheless, observe that the bound is actually independent of the

choice of C and L. Thus, we can take C = 1 and we can take L to be whatever is

suitable so that N/L+C fits into the cache and L is not too large (if L is large then

76 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

many triples are wasted in opening and the permutation of {1, . . . , L} would become

expensive). Concretely, for N = 220 one could take L = 512 and then each subarray

is of size 2049 (2048 plus one triple to be opened). Thus, 512(B − 1) = 1024 triples

overall are opened when generating 220 triples, which is insignificant.

We start by defining a combinatorial game which is equivalent to the cut-and-

bucket protocol using the optimized shuffling process. Recall that C denotes the

number of triples that are opened in each subarray, B denotes the size of the bucket,

L denotes the number of subarrays, and X = N/L+C denotes the number of triples

in each subarray.

Game1(A, X, L,B,C):

1. The adversary A prepares a set D1 of (X − C)L balls and B − 1 sets D2, . . . , DB

of X · L balls, such that each ball can be either bad or good.

2. Each set Dk is divided into L subsets Dk,1, . . . , Dk,L of size X. Then, for each

subset Dk,j where k ∈ {2, . . . , B} and j ∈ [L], C balls are randomly chosen to be

opened. If one of the opened balls is bad then output 0. Otherwise, the game

proceeds to the next step.

3. Each subset Dk,j where k ∈ {2, . . . , B} and j ∈ [L] is randomly permuted. Then,

for each set Dk where k ∈ {2, . . . , B}, the subsets Dk,1, . . . , Dk,L are randomly per-

muted inside Dk. Denote by N = L(X−C) the size of each set after throwing the

balls in the previous step. Then, the balls are divided into N buckets B1, . . . , BN ,

such that Bi contains the ith ball from each set Dk where k ∈ [B].

4. The output of the game is 1 if and only if there exists i such that bucket Bi is

fully bad, and all other buckets are either fully bad or fully good.

We begin by defining the bad-ball profile Tk of a setDk to be the vector (tk,1, . . . , tk,L)

where tk,j denotes the number of bad balls in the j’th subarray of Tk. We say that

two sets Dk, Dℓ have equivalent bad-ball profiles is Tk is a permutation of Tℓ (i.e.,

the vectors are comprised of exactly the same values, but possibly in a different or-

der). We begin by proving that the adversary can only win if all sets have equivalent

bad-ball profiles.

Section 4.4. Optimized Cheater Identification 77

Lemma 4.4.1. Let T1, . . . , Tk be the bad-ball profiles of D1, . . . , DL. If Game1(A, X,

L,B,C) = 1 then all the bad-ball profiles of T1, . . . , Tk are equivalent.

Proof. This is straightforward from the fact the adversary wins (and the output of the

game is 1) only if for every i ∈ [n] all the balls in the ith place of D1, . . . , DB are either

bad or good. Formally, assume there exist k, ℓ such that Tk and Tℓ are not equivalent.

Then, for every permutation of the subsets in Dk and Dℓ, there must exist some j

such that tk,j ̸= tℓ,j after the permutation. Assume w.l.o.g that tk,j > tℓ,j. Then, for

every possible permutation of the balls in Dk,j and Dℓ,j, there must be a bad ball in

Dk,j that is placed in the same bucket as a good ball from Dℓ,j, and the adversary

must lose. Thus, if the adversary wins, then all bad-ball profiles must be equivalent.

Next we prove that the best strategy for the adversary is to choose bad balls

so that the same number of bad balls appear in every subset containing bad balls.

Formally, we say that a bad-ball profile T = (t1, . . . , tL) is single-valued if there exists

a value t such for every i = 1, . . . , ℓ it holds that ti ∈ {0, t} (i.e., every subset has

either zero or t bad balls). By Lemma 4.4.1 we know that all bad-ball profiles must be

equivalent in order for the adversary to win. From here on, we can therefore assume

that A works in this way and there is a single bad-ball profile chosen by A. Note that
if the adversary chooses no bad balls then it cannot win. Thus, the bad-ball profile

chosen by A must have at least one non-zero value. The following lemma states that

the adversary’s winning probability is improved by choosing a single-valued bad-ball

profile.

Lemma 4.4.2. Let T = (t1, . . . , tL) be the bad-ball profile chosen by A and let t be

a non-zero value in T . Let T ′ = (t′1, . . . , t
′
L) be the bad-ball profile derived from T by

setting t′i = t if ti ̸= t and setting ti = 0 otherwise (for every i = 1, . . . , L). Then,

Pr[Game1(A, X, L,B,C) = 1] ≤ Pr[Game1(AT ′ , X, L,B,C) = 1], where AT ′ chooses

the balls exactly like A except that it uses profile T ′.

Proof. Let T be the bad-ball profile chosen by A and define T ′ as in the lemma. Let

E1 denote the event that no bad balls were detected when opening C balls in every

subset, that all subsets containing t bad balls are matched together, and that all bad

balls in these subsets containing t bad balls are matched in the same buckets. By

78 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

the definition of the game, it follows that Pr[Game1(AT ′ , X, L,B,C) = 1] = Pr[E1].

Next, define by E2 the probability that in the game withA, the subsets with a number

of bad balls not equal to t are matched and bucketed together. Then,

Pr[Game1(A, X, L,B,C) = 1] = Pr[E1 ∧ E2].

We have that

Pr[Game1(A, X, L,B,C) = 1]

= Pr[E1 ∧ E2] = Pr[E2 | E1] · Pr[E1]

≤ Pr[E1] = Pr[Game1(AT ′ , X, L,B,C) = 1]

and the lemma holds.

We are now ready to prove that the adversary can win in the game with probability

at most 1/NB−1 (independently of C,N , as long as C > 0).

Theorem 4.4.3. For every adversary A, for every L > 0 and 0 < C < X, it holds

that

Pr[Game1(A, X, L,B,C) = 1] ≤ 1

NB−1

where N = (X − C)L.

Proof. By Lemma 4.4.2 it follows that the best strategy for the adversary is to choose

some S subsets from each set, and to put exactly t bad balls in each of them, for some

t, while all other subsets contain only good balls. Thus, overall there are SB subsets

containing bad balls.

Next, we analyze the success probability of the adversary in the game when using

this strategy. We define three independent events:

Ec: the event that no bad balls were detected when opening C balls in each of the S

sub-sets containing t bad balls in D2, . . . , DB. Since there are
(
X
C

)
ways to choose C

balls out of X balls, and
(
X−t
C

)
ways to choose C balls without choosing any of the t

bad balls, we obtain that

Pr[Ec] =

((
X−t
C

)(
X
C

))S(B−1)

=

(
(X − t)!(X − C)!

X!(X − t− C)!

)S(B−1)

(5)

EL: the event that after permuting the subsets in D2, . . . , DB, the S subsets contain-

ing t bad balls are positioned at the same locations of the S subsets in D1. There

Section 4.4. Optimized Cheater Identification 79

are L! ways to permute the subsets in each Dk, and S!(L−S)! ways to permute such

that the subsets with t bad balls will be in the same location as in D1. Thus, we have

Pr[EL] =

(
S!(L− S)!

L!

)B−1

=

(
L

S

)−(B−1)

Et: the event that after permuting the balls inside the subsets, all bad balls are

positioned in the same location in D1, . . . , DB. For subset Dj,k which contains t bad

balls, there are (X−C)! ways to permute it. In contrast, there are only t!(X−C− t)!

ways to permute it such that the bad balls will be in the same location of the bad

balls in D1,k. Since there are S subsets with t bad balls in each set, we have that

Pr[Et] =

(
t!(X − C − t)!

(X − C)!

)S(B−1)

. (6)

Combining the above three equations and noting that the product of Eq. (5) and

Eq. (6) equals t!(X−t)!
X!

=
(
X
t

)−1
, we conclude that

Pr[Game1(A, X, L,B,C) = 1]

= Pr[Ec ∧ EL ∧ Et] = Pr[Ec] · Pr[EL] · Pr[Et]

=

(
L

S

)−(B−1)(
X

t

)−S(B−1)

. (7)

Next, observe that for the adversary to win it must hold that t ≤ X−C < X and

S > 0. Thus, we can use the fact that for every 0 < t < X it holds that
(
X
t

)
≥
(
X
1

)
.

In contrast, the adversary may choose to corrupt all subarrays. i.e., set S = L. Thus,

we consider two cases.

• Case 1 : S = L. In this case, we obtain that

Pr[Game1(A, X, L,B,C) = 1]

=

(
L

L

)−(B−1)(
X

t

)−L(B−1)

≤
(
X

1

)−L(B−1)

=
1

XL(B−1)
.

• Case 2 : 0 < S < L. In this case, we obtain that

Pr[Game1(A, X, L,B,C) = 1]

≤
(
L

1

)−(B−1)(
X

1

)−S(B−1)

=
1

(L ·XS)B−1
≤ 1

(L ·X)B−1

80 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

Since for every L > 0 and X > 1 (as assumed in the theorem) it holds that

L ·X ≤ XL, we conclude that

Pr[Game1(A, X, L,B,C) = 1]

≤ max

(
1

XL(B−1)
,

1

(L ·X)B−1

)
=

1

(L ·X)B−1

≤ 1(
L(X − C)

)B−1
=

1

NB−1

By setting 1
NB−1 ≤ 2−σ in Theorem 4.4.3, we conclude:

Corollary 4.4.4. If L,X,C and B are chosen such that σ ≤ (B − 1) logN where

L > 0, X > C > 0 and N = (X − C)L, then for every adversary A, it holds that

Pr[Game1(A, X, L,B,C) = 1] ≤ 2−σ

Concrete parameters. Observe that for N = 220, it suffices to set B = 3 and

C = 1 and for any L we have that the adversary wins with probability at most 2−40.

This thus achieves the tight analysis provided in [56] when a cache-inefficient shuffle

is used. In our implementation, we take N = 220 and L = 29; thus we have 512

subarrays of size 2048 each. Recall that we actually only shuffle the indices; for a

subarray of length 2048 we need indices of size 2 bytes and so the entire subarray

to be shuffled is 4096 bytes = 4KB. This fits into the L1 cache on most processors

making the shuffle very fast.

4.4.2 Reducing Bucket-Size and Communication

Clearly, the major cost of the protocol is in generating, shuffling and checking the

triples. If it were possible to reduce the size of the buckets needed, this would in

turn reduce the number of triples to be generated and result in a considerable saving.

In particular, the protocol of [56] uses a bucket size of 3 and requires that each

party send 10 bits per AND gate; this places a strict lower bound on performance

dependent on the available bandwidth. In this section, we show how to reduce the

bucket size by 1 (concretely from 3 to 2) and thereby reduce the number of triples

generated by 1/3, reducing computation and communication. Formally, we present

an improvement that reduces the cheating probability of the adversary from 1
NB−1 to

Section 4.4. Optimized Cheater Identification 81

1
NB , thus enabling us to use B′ = B − 1. Thus, if previously we needed to generate

approximately 3 million triples in order to compute 1 million AND gates, in this

section we show how the same level of security can be achieved using only 2 million

triples. Overall, this reduces communication from 10 bits per AND gate to 7 bits per

AND gate (since 1 bit is needed to generate a triple and 2 bits are needed to verify

each triple using another).

　 Protocol 4.3： Computing f with Malicious Adversaries – Smaller Buckets

• Inputs and Auxiliary Input: Same as in Protocol 1; In addition, the parties

hold a parameter L.

• The protocol – offline phase: Generate multiplication triples by calling Proto-

col 2; let d⃗ be the output.

• The protocol – online phase:

1. Input sharing and circuit emulation: Exactly as in Protocol 1.

2. Reshuffle stage: The parties jointly and securely generate a random permuta-

tion over {1, . . . , N} and then each locally shuffle d⃗ accordingly.

3. Verification and output stages: Exactly as in Protocol 1.

The idea behind the protocol improvement is as follows. The verification of a

multiplication gate in the circuit uses one multiplication triple, with the property that

if the gate is incorrect and the triple is valid (meaning that c = ab), then the adversary

will be caught with probability 1. Thus, as long as all triples are valid with very high

probability, the adversary cannot cheat. The improvement that we propose here

works by observing that if a correct multiplication gate is verified using an incorrect

triple or an incorrect multiplication gate is verified using a correct triple, then the

adversary will be caught. Thus, if the array of multiplication triples is randomly

shuffled after the circuit is computed, then the adversary can only successfully cheat

if the random shuffle happens to match good triples with good gates and bad triples

with bad gates. As we will see, this significantly reduces the probability that the

82 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

adversary can cheat and so the bucket size can be reduced by 1. Note that although

the number of triples is reduced (since the bucket size is reduced), the number of

shuffles remains the same.

Observe that in the reshuffle stage in Protocol 4.3, the random permutation is

computed over the entire array, and does not use the cache-efficient shuffling of Sec-

tion 4.4.1. This is due to the fact that unlike the triples generated in the preprocess-

ing/offline phase, no triples of the circuit emulation phase can be opened. Thus, the

adversary could actually make as many triples as it wishes in the circuit emulation

phase be incorrect. In order to see why this is a problem, consider the case that the

adversary choose to corrupt one subarray in each of D⃗1, . . . , D⃗B and make X − 1 out

of the X triples incorrect. Since C = 1, this implies that the adversary is not caught

when opening triples in subarrays D⃗2, . . . , D⃗B with probability X−B+1. Furthermore,

the probability that these subarrays with all-bad triples are matched equals L−B+1.

Thus, the adversary succeeds in have an all-bad bucket in the preprocessing phase

with probability 1
(XL)B−1 < 1

NB−1 as proven in Theorem 4.4.3. Now, if the cache-

efficient shuffle is further used in the circuit computation phase, then the adversary

can make a subarray all-bad there as well (recall that nothing is opened) and this

will be matched with probability 1/L only. Thus, the overall cheating probability is

bounded by 1
L
· 1
NB−1 >> 1

NB . As a result, the shuffling procedure used in the online

circuit-computation phase is a full permutation, and not the cache-efficient method of

Section 4.4.1. We remark that even when using a full permutation shuffle, we need to

make an additional assumption regarding the parameters. However, this assumption

is fortunately very mild and easy to meet, as will be apparent below.

As previously, we begin by defining a combinatorial game to model this protocol

variant.

Game2(A, X, L,B,C):

1. Run Game1(A, X, L,B,C) once. If the output is 0, then output 0. Otherwise,

proceed to the next step with the buckets B1, ...BN .

2. The adversary A prepares an additional set d⃗ of N balls where each ball can be

either bad or good.

3. The set d⃗ is shuffled. Then, the ith ball in d⃗ is added to the bucket Bi.

Section 4.4. Optimized Cheater Identification 83

4. The output of the game is 1 if and only if each bucket is fully good or fully bad.

Note that in this game we do not explicitly require that the adversary can only win

if there exists a bucket that is fully bad, since this condition is already fulfilled by the

execution of Game1 in the first step. We proceed to bound the winning probability

of the adversary in this game.

Theorem 4.4.5. If B ≥ 2, then for every adversary A and for every L > 0 and

0 < C < X such that XL ≥ (X · L)2, it holds that
Pr[Game2(A, X, L,B,C) = 1] ≤ 1

NB

where N = (X − C)L.

Proof. Assume that the adversary chooses to corrupt exactly S subsets in Game1 (the

first step of Game2) by inserts exactly t bad balls in each (recall that this strategy is

always better, as proven in Lemma 4.4.2). Then, as shown in Eq. (7) in the proof of

Theorem 4.4.3, it holds that

Pr[Game1(A, X, L,B,C) = 1]=

(
L

S

)−(B−1)(
X

t

)−S(B−1)

.

Next, it is easy to see that for the adversary to win in Game2, it must choose

exactly S · t bad balls in d⃗ (otherwise a good and bad ball with certainly be in the

same bucket). There are
(
N
S·t

)
ways of matching the S · t bad balls in d⃗, and there is

exactly one way in which the adversary wins (this is where all S · t match the bad

balls from Game1). Thus, the probability that the adversary wins is

Pr[Game2(A, X, L,B,C) = 1]

=

(
N

S · t

)−1

· Pr[Game1(A, X, L,B,C) = 1]. (8)

We separately consider two cases:

• Case 1 – S · t < N : Applying Eq. (8) and the fact that
(
N
S·t

)−1
is maximized for

S · t = 1 (since S · t cannot equal 0 or N)

Pr[Game2(A, X, L,B,C) = 1] ≤
(
N

1

)−1

· 1

NB−1
=

1

NB

84 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

• Case 2 – S · t = N : Observe that we cannot use Eq. (8) here since
(
N
N

)
= 1. We

therefore prove the bound using Eq. (7). Here S = L and so
(
L
S

)
= 1 and t = X−C

(note that t < X since C > 0). Plugging this into Eq. (7) we have

Pr[Game2(A, X, L,B,C) = 1]

=

(
X

X − C

)−L(B−1)

≤
(
X

1

)−L(B−1)

=
1

XL(B−1)
.

Now, using the assumption that XL ≥ (X · L)2, which implies XL(B−1) ≥ (X ·
L)2(B−1) ≥ (X · L)B when B ≥ 2 (which is indeed the minimal size of a bucket as

assumed in the theorem), we obtain that

Pr[Game2(A, X, L,B,C) = 1]

=
1

XL(B−1)
≤ 1

(L ·X)B
≤ 1

(L · (X − C))B
=

1

NB
.

We have the following corollary:

Corollary 4.4.6. Let L,X,C and B be such that σ ≤ B logN where B ≥ 2, L < 0,

0 < C < X > 0, XL ≥ (X · L)2 and N = (X − C)L. Then for every adversary A, it
holds that Pr[Game2(A, X, L,B,C) = 1] ≤ 2−σ

Concrete parameters and a tradeoff. As we have described above, this shows

that setting C = 1, B = 2 and X,L such that N = (X −C)L = 220 yields a security

bound of 2−40 as desired. Thus, we can reduce the size of each bucket by 1, and can

use only 2 arrays in the triple generation phase (shuffling just one of them), at the

expense of an additional shuffle in the online phase.

Clearly, in some cases one would not settle on any increase of the online work.

Nevertheless, our analysis gives a clear trade-off of the offline communication com-

plexity vs. the online computational complexity.

The latency vs throughput tradeoff. By reducing the number of triples sent and

by reducing the communication, the protocol improvement here should considerably

improve throughput. However, it is important to note that the fact that the online

shuffle is not cache efficient means that the throughput increase is not optimal. In

addition, it also means that the online time is considerably increased. Thus, when the

Section 4.4. Optimized Cheater Identification 85

secure computation is used in an application where low latency is needed, then this

improvement may not be suitable. However, when the focus is on high throughput

secure computation, this is of importance.

Practical limitations. Although theoretically attractive, in most practical set-

tings, the implementation of this protocol improvement is actually very problematic.

Specifically, if a circuit computation involving N AND gates is used for a large N ,

then the improvement is suitable. However, in many (if not most) cases, circuits of

smaller sizes are used and a large N is desired in order to achieve good parameters.

For example, 220 triples suffice for approximately 180 AES computation. In such a

case, this protocol variant cannot be used. In particular, either the application has

to wait for all AES computations to complete before beginning verification of the

first (recall that the shuffle must take place after the circuit computation) or a full

shuffle of what is left of the large array must be carried out after each computation.

The former solution is completely unreasonable for most applications and the latter

solution will result in a very significant performance penalty. We address this issue

in the next section.

4.4.3 Smaller Buckets With On-Demand Secure Computation

In this section, we address the problem described at the end of Section 4.4.2. Specifi-

cally, we describe a protocol variant that has smaller buckets as in Section 4.4.2, but

enables the utilization of multiplication triples on demand without reshuffling large

arrays multiple times. Thus, this protocol variant is suitable for settings where many

triples are generated and then used on-demand as requests for secure computations

are received by an application.

The protocol variant that we present here, described in Protocol 4, works in the

following way. First, we generate 2 arrays d⃗1, d⃗2 of N multiplication triples each,

using Protocol 2 (and using a smaller B as in Section 4.4.2). Then, in order to verify

a multiplication gate, a random triple is chosen from d⃗1 and replaced with the next

unused triple in d⃗2. After N multiplication gates have been processed, the triples in

d⃗2 will be all used and Protocol 2 will be called again to replenish it. Note that d⃗1

always contains N triples, as any used triple is immediately replaced using d⃗2.

86 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

　 Protocol 4.4： Computing f with Malicious Adversaries – On-Demand Shuffling

and Smaller Buckets

• Inputs and Auxiliary Input: Same as in Protocol 1.

• The protocol – triple initialization:

1. The parties run Protocol 2 twice with input N and obtain two vectors d⃗1,d⃗2

of sharings of random multiplication triples.

• The protocol – circuit computation: Upon receiving a request to compute a

circuit:

1. Sharing the inputs: Same as in Protocol 1.

2. Circuit emulation: Same as in Protocol 1.

3. Verification stage: Before the secrets on the output wires are reconstructed,

the parties verify that all the multiplications were carried out correctly, as

follows. For k = 1, . . . , N :

(a) Denote by ([x], [y]) the shares of the input wires to the kth AND gate,

and denote by [z] the shares of the output wire of the kth AND gate.

(b) The parties run a secure coin-tossing protocol in order to generate a ran-

dom j ∈ [N]. (In [56], it is shown that secure coin-tossing can be non-

interactively and efficiently computed in this setting.)

(c) The parties check the triple ([x], [y], [z]) using ([aj], [bj], [cj]) (the jth triple

in d⃗1).

(d) If a party rejects any of the checks, it sends ⊥ to the other parties and

outputs ⊥.

(e) Each party replaces its shares of ([aj], [bj], [cj]) in d⃗1 with the next unused

triple in d⃗2.

4. Output reconstruction and output: Same as in Protocol 1.

• Replenish: If d⃗2 is empty (or close to empty) then the parties run Protocol 2 with

input N to obtain a new d⃗2.

Section 4.4. Optimized Cheater Identification 87

As before, we need to show that this way of working achieves the same level of

security as when a full shuffle is run on the array. Formally, we will show that for N

triples and buckets of size B, the probability that the adversary succeeds in cheating

is bounded by 1
NB , just as in Section 4.4.2. Note that Protocol 4 as described is

actually continuous and does not halt. Nevertheless, for simplicity, we present the

bound for the case of computing N gates, and leave the continuous analysis to the

full version.

In order to prove the bound, we begin by defining the combinatorial game Game3(A,
X, L,B,C) which is equivalent to the process described in Protocol 4.

Game3(A, X, L,B,C):

1. Run steps 1-3 of Game1(A, X, L,B,C) twice to receive two lists of bucketsB1, . . . , BN

and B′
1, . . . , B

′
N .

2. If all buckets are either fully good or fully bad proceed to the next step. Oth-

erwise, output 0.

3. The adversary A prepares N new balls denoted by b1, . . . , bN , where each ball

can be either bad or good, with the requirement that at least one of the balls

must be bad.

4. For i = 1 to N :

(a) The ball bi is thrown into a random bucket Bk (k ∈ [N]).

(b) If the bucket Bk is fully bad output 1.

(c) If the bucket Bk is not fully good or fully bad output 0.

(d) Replace Bk with the bucket B′
i.

Observe that in this game, the adversary is forced to choose a bad ball only when

it prepares the N additional balls. This means that in order for it to win, there must

be at least one bad bucket among B1, . . . , BN . For this to happen, the adversary must

win in at least one of Game1 executions. Thus, in the proof of the following theorem,

we will use the bound stating that the probability that the adversary wins in Game1

is at most 1/NB−1. In addition, note that from the condition in the last step, the

adversary wins if and only if the first bad ball is thrown into a fully bad bucket (even

88 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

if a bad ball is later thrown into a fully good bucket meaning that the adversary will

be detected). This is in contrast to previous games where the adversary only wins if

all bad balls are thrown into fully bad buckets. This is due to the fact that output

may be provided after only using some of the triples. If one of the triples was bad,

then this will be a breach of security, and the fact that the adversary is caught later

does not help (in the sense that security was already broken). Thus, cheating must

be detected at the first bad ball and no later.

For the sake of simplicity and since this is what we use in our implementation, we

concretely consider the case of B = 2 and our aim is to prove that the probability that

the adversary cheats is at most 1/N2 (which equals 2−40 when N = 220). The proof

of the general case will appear in the full version. In this game, unlike Sections 4.4.1

and 4.4.2, we actually need to open at least C = 3 triples in each subarray. We will

explain why this is necessary at the end of the proof.

We prove the theorem under the assumptions that X > L+C (meaning that the

number of subarrays is less than the size of each subarray), that L ≥ 5 (meaning that

there are at least 5 subarrays), that C ≥ 3, and that X − C ≥ 6 (meaning that the

subarrays are at least of size C + 6 which can equall 9). All of these conditions are

fulfilled for reasonable choices of parameters in practice.

Theorem 4.4.7. Let B = 2 and assume X > L + C. Then for every adversary A
and for every L ≥ 5, X − C ≥ 6 and 3 ≤ C < X it holds that

Pr[Game3(A, X, L,B,C) = 1] ≤ 1

N2

where N = (X − C)L.

Proof. In order to win the game, A must choose bad balls in at least one of Game1

executions. If A chooses bad balls in both executions, then the theorem follows

directly from Theorem 4.4.3, sinceA wins in two executions of Game1 with probability

only 1
NB−1 · 1

NB−1 = 1
N2B−2 ≤ 1

NB , where the last inequality holds when B ≥ 2 as

assumed, in the theorem.

Thus, for the remainder of the proof we assume that A chose bad balls in exactly

one of Game1 executions only (note that the cases are mutually exclusive and so the

probability of winning is the maximum probability of both cases).

Denote by S the number of subsets that contain bad buckets after the Game1

executions (recall that we consider the case only that these are all in the same Game1

Section 4.4. Optimized Cheater Identification 89

execution), and let t be the number of bad buckets (in the proof of Theorem 4.4.3,

note that t denotes the number of bad balls in the subarray; if the adversary is not

caught then this is equivalent to the number of bad buckets). By Eq. (7) we have

that

Pr[Game1(A, X, L,B,C) = 1] =

(
L

S

)−(B−1)(
X

t

)−S(B−1)

=

(
L

S

)−1(
X

t

)−S

where the second equality follows since here we consider only the case of B = 2. We

separately consider the cases that S = 1, S = 2, S = 3 and S ≥ 4.

Case 1 – S = 1: In this case, we have

Pr[Game1(A, X, L,B,C) = 1] =

(
L

1

)−1(X
t

)−1

=
1

L
·
(
X

t

)−1

.

If t = 1, then
(
X
t

)−1
= 1

X
< L

N
and so the probability that A wins in Game1 is

at most 1
N
. In this case, in the latter steps in Game3, A can only win by choosing

exactly one bad ball out of b1, . . . , bN . Now, this ball is thrown into a random bucket,

and there is at most one bad bucket (note that if the bad bucket is in the second

array then depending on where the bad ball is, it may not even be possible for it

to be chosen). Thus, the probability that it will be thrown into that bucket (which

is essential for A to win) is at most 1
N
. Overall, we have that A can win Game3

with probability at most 1
N2 (since A must both win in Game1 and have the bad ball

thrown in the single bad bucket).

Next, if t = 2, we have that(
X

t

)−1

=

(
X

2

)−1

=
2

X(X − 1)
<

2

(X − C)2
=

2L2

N2
.

Thus,

Pr[Game1(A, X, L,B,C) = 1] <
2L

N2
.

Now, in the later phase of Game3, we have that there are at most 2 bad buckets

out of N buckets overall.4 Thus, for each bad ball, the probability that it will be

4This holds since t = 2 and thus 2 bad buckets were generated in Game1. Note that there are at
most 2 bad buckets at this stage and not necessarily 2 since the bad buckets in Game1 may have
been generated in the second set.

90 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

thrown into a bad bucket is at most 2
N
. Combining these together, we have that the

adversary can win in Game3 with probability at most

2L

N2
· 2
N

=
4L

N3
<

1

N2

where the inequality follows since we assume X − C ≥ 6 > 4 and thus 4L < (X −
C)L = N .

Finally, if t ≥ 3, we have that(
X

t

)−1

≤
(
X

3

)−1

=
6

X(X − 1)(X − 2)

<
6

(X − C)3
=

6L3

N3
.

We stress that
(
X
t

)−1 ≤
(
X
3

)−1
is only true since we take C≥3, because otherwise(

X
t

)−1
would be smaller for t = X − 2 or t = X − 1. However, when three balls are

checked, if the adversary sets t ≥ X − 2 it will certainly be caught (since at least one

bad ball will always be checked). Thus,

Pr[Game1(A, X, L,B,C) = 1] <
6L2

N3
.

Now, in the later phase of Game3, we have that there are at most N
L
bad buckets out

of N buckets overall (since S = 1). Thus, for each bad ball, the probability that it

will be thrown into a bad bucket is at most 1
L
. Combining these together, we have

that the adversary can win in Game3 with probability at most

6L2

N3
· 1
L

=
6L

N3
≤ 1

N2

where the inequality follows since we assumeX−C ≥ 6 and thus 6L ≤ (X−C)L = N .

Case 2 – S = 2: Observing that
(
L
2

)
= L(L−1)

2
and recalling that

(
X
t

)−1 ≤
(
X
1

)−1
=

1
X

< L
N
, in this case we have

Pr[Game1(A, X, L,B,C) = 1]

<
2

L(L− 1)
·
(
L

N

)S

≤ 2

L(L− 1)
· L

2

N2
=

2L

L− 1
· 1

N2
.

Now, since S = 2 we have that at most 2 subarrays were corrupted and so the number

of bad buckets from Game1 is at most 2 · N
L
. Thus, the probability that a bad ball is

Section 4.4. Optimized Cheater Identification 91

thrown into a bad bucket is at most 2
L
, and the probability that the adversary wins

in Game3 is at most 4
L−1
· 1
N2 . For L ≥ 5, we have that 4

L−1
≤ 1 and so the probability

that the adversary wins in Game3 is at most 1
N2 , as required.

Case 3 – S = 3: Observing that
(
L
3

)
= L(L−1)(L−2)

6
and using the fact that

(
X
t

)−1
<

L
N

as above, in this case we have

Pr[Game1(A, X, L,B,C) = 1]

<
6

L(L− 1)(L− 2)
·
(
L

N

)3

=
6L2

(L− 1)(L− 2)N
· 1

N2

=
6L

(L− 1)(L− 2)(X − C)
· 1

N2
<

1

N2

where the last inequality holds since X ≥ L + C and so L
X−C

≤ 1, and since
6

(L−1)(L−2)
≤ 1 when L ≥ 5 as assumed in the theorem.

Case 4 – S ≥ 4: Using the bound on Game1 and again utilizing the fact that(
X
t

)−1
< L

N
, we have:

Pr[Game1(A, X, L,B,C) = 1]

=

(
L

S

)−1(X
t

)−S

≤
(
L

N

)S

≤ L4

N4
=

L4

N2 · (X − C)2L2

where the last equality is by definition that N = (X−C)L. By the assumption that

X > L+ C we have that 1
X−C

< 1
L
. Thus,

Pr[Game1(A, X, L,B,C) = 1] ≤ L4

N2L4
=

1

N2

which suffices since A must win in Game1 in order to win Game3.

An attack for C = 2. We proved Theorem 4.4.7 for the case that C ≥ 3. We

conclude this section by showing that when C = 2 the theorem does not hold and

the adversary can win with probability 2
N2 (for B = 2). The adversary works by

corrupting no balls in the second array generated by Game1 and by corrupting an

entire subarray in the first array generated by Game1. Specifically, in that execution

of Game1, it generates X − 2 bad balls in some subarray in both arrays that it

prepares. Since C = 2, the probability that the adversary wins in Game1 is equals

approximately 2L
N2 . Then, in the later steps of Game3 the adversary make the first

92 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

ball b1 bad and all the other balls good. Thus, the adversary wins if and only if b1

is thrown into a bad bucket, which happens with probability 1
L
(as there are N

L
bad

buckets). Overall, the winning probability of the adversary is 2
N2 .

4.4.4 Hash Function Optimization

In [56], the method for validating a multiplication triple using another triple requires

the parties to compare their views and verify that they are equal. In this basic

comparison, each party sends 3 bits to another party. Since B such comparisons are

carried out for every AND gate, this would significantly increase the communication.

Concretely, with our parameters of N = 220 and B = 2 and our optimizations, this

would increase the communication from 7 bits per AND gate to 13 bits per AND

gate. In order to save this expense, [56] propose for each party to simply locally hash

its view (using a collision-resistant hash function) and then to send the result of the

hash only at the end of the protocol. Amortized over the entire computation, this

would reduce this communication to almost zero. When profiling Protocol 4 with all

of our optimizations, we were astounded to find that these hashes took up almost

a third of the time in the triples-generation phase, and about 20% of the time in

the circuit computation phase. Since the rate of computation is so fast, the SHA256

computations actually became a bottleneck; see Figure 4.3.

Figure 4.3: Microbenchmarking of Protocol 4.4, using the CxxProf C++ profiler

We solved this problem by observing that the view comparison procedure in [56]

requires for each pair of parties to compare their view. The security is derived from the

fact that if the adversary cheats then the views of the two honest parties are different.

As such, instead of using a collision-resistant hash function, we can have each party

compute a MAC of their view. In more detail, each pair of parties jointly choose a

secret key for a MAC. Then, as the computation proceeds, each party computes a

Section 4.5. Trade-off between Security and Efficiency: The Combinatorics of

Cut-and-Choose

93

MAC on its view twice, once with each key for each other party. Then, at the end,

each party sends the appropriate MAC to each other party. Observe that the honest

parties compute a MAC using a secret key not known to the corrupted party. Thus,

the adversary cannot cause the MACs of the two honest parties to have the same tag if

their views are different (or this could be used to break the MAC). Note that with this

method, each party computes the MAC on its view twice, in contrast to when using

SHA256 where a single computation is sufficient. Nevertheless, we implemented this

using GMAC (optimized using the PCLMULQDQ instruction) and the time spent on

this computation was reduced to below 10%. As we show in Section 4.6, this method

increases the throughput of the fastest protocol version by approximately 20%.

Table 4.2: Implementation results; B denotes the bucket size; security level 2−40

Protocol Variant AND gates/sec
%CPU

utilization

Gbps

utilization
Latency (ms)

Baseline [56];

Section 4.3 (B = 3, SHA)
503,766,615 71.7% 4.55 680

Cache-efficient;

Sec. 4.4.1 (B = 3, SHA)
765,448,459 64.84% 7.28 623

On-demand;

Sec. 4.4.3 (B = 2, SHA)
988,216,830 65.8% 6.84 812

On-demand;

Sec. 4.4.4 (B = 2, GMAC)
1,152,751,967 71.28% 7.89 726

Online-only: on-demand;

Sec. 4.4.4 (B = 2, GMAC)
1,726,737,312 45.1% 5.11 456.4

Online-only: cache-efficient;

Sec. 4.4.1 (B = 3, GMAC)
2,132,197,567 41.6% 6.93 367.5

4.5 Trade-off between Security and Efficiency: The Combi-

natorics of Cut-and-Choose

In the previous sections, we have seen that tight combinatorial analyses are crucial

for practical performance. As pointed out in [56], the combinatorial analysis from [25]

mandates a bucket-size of B = 4 for 220 triples and security level s = 2−40. In [56],

a tighter combinatorial analysis enabled them to obtain the same level of security

while reducing the bucket-size from B = 4 to B = 3. Utilizing a different method, we

were further able to reduce the bucket size to B = 2. (Combinatorics also played an

important role in achieving a cache-efficient shuffle and an on-demand version of the

94 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

protocol.) With this understanding of the importance of combinatorics to cut-and-

choose, in this section we ask some combinatorial questions that are of independent

interest for cut-and-choose protocols.

4.5.1 The Potential of Different-Sized Buckets

We begin by studying whether the use of different-sized buckets can help to increase

security. Since our Game1 (from Section 4.4.1) is specifically designed for the case

where all buckets are of the same size, we go back to the more general game of [56]

and [25] and redefine it so that buckets may have different sizes. Intuitively, since the

adversary does not in advance how many bad balls to choose so that there will be

only fully bad buckets, using buckets of different sizes makes it more difficult for him

to succeed in cheating. If this is indeed the case, then the winning probability of the

adversary can be further decreased, and it may be possible to generate less triples to

start with, further improving efficiency. In [56, Theorem 5.3] it was shown that the

optimal strategy for the adversary is to make the number of bad balls equal to the

size of a single bucket. In this section, we show that even when the buckets sizes are

different, the best strategy for the adversary is to make the number of bad balls equal

to the size of the smallest bucket. We then use this fact to show that given any set

of bucket sizes, changing the sizes so that the bucket sizes of any two buckets differ

by at most 1, does not improve the probability that the adversary wins. This makes

sense since the adversary’s best strategy is to make the number of bad balls equal

the size of the smallest bucket, and its hope is that the bad balls will fall into such a

bucket. By reducing the gap between buckets (by moving balls from larger buckets to

smaller ones) we actually reduce the number of buckets of the smallest size, thereby

reducing the probability that all bad balls will be in a bucket of minimal size.

We define a combinatorial game with buckets of different sizes as follows. Let

B⃗ = {B1, . . . , BN} denote the multiset of bucket sizes where Bi is the size of the ith

bucket. As C balls are opened before dividing the balls into buckets, it follows that

the overall number of balls generated is M =
∑N

i=1 Bi + C.

Game4(A, N, B⃗, C):

1. The adversary A prepares M balls. Each ball can be either bad or good.

2. C random balls are chosen and opened. If one of the C balls is bad then output

0. Otherwise, the game proceeds to the next step.

Section 4.5. Trade-off between Security and Efficiency: The Combinatorics of

Cut-and-Choose

95

3. The remaining
∑N

i=1 Bi balls are randomly thrown into N buckets of sizes B⃗ =

{B1, . . . , BN}.

4. The output of the game is 1 if and only if there exists a bucket Bi that is fully

bad, and all other buckets are either fully bad or fully good.

For our analysis we need some more notation. Let Bmin be the minimal bucket

size. We use [N] to denote the set {1, . . . , N}. Let S ⊆ [N] be a subset of bucket

indices, and let tS =
∑

{i|i∈S}Bi be the total number of balls in the buckets indexed

by S. Finally, let n(t) = |{S ⊆ [N] | tS = t}| be the number of different subsets of

buckets such that the number of balls in all buckets in the subset equal exactly t.

We start by computing the winning probability of the adversary:

Lemma 4.5.1. For every adversary At who chooses t bad balls it holds that

Pr[Game4(At, N, B⃗, C) = 1] =
n(t)(
M
t

) .

Intuitively, for A to win, the bad balls must fill some subset of buckets (since

otherwise there will be a bucket with good and bad balls). Since there are n(t) such

subsets, and there are
(
M
t

)
ways to choose t balls out of M balls, it follows that the

winning probability of the adversary is n(t)

(Mt)
as stated in the lemma.

Theorem 4.5.2. If C ≥ Bmin then for every S ⊆ [N], for every adversary AtS who

chooses tS bad balls and for every adversary ABmin
who chooses Bmin bad balls, it

holds that

Pr[Game4(AtS , N, B⃗, C) = 1]

≤ Pr[Game4(ABmin
, N, B⃗, C) = 1].

The intuition behind this, is that in order for a subset of buckets to be filled with

t bad balls, the smallest bucket in this subset must be filled with bad balls. Thus,

it is better for the adversary to choose bad balls for this bucket only, instead for the

entire subset.

Next, we show that if B⃗ that was chosen for the game contains two buckets i and

j such that Bi − Bj > 1, then moving one ball from the bigger bucket Bi to the

96 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

smaller bucket Bj, will result in a game that is more difficult for the adversary to

win. This proves that having buckets of significantly different sizes does not improve

security, as one can keep moving balls between buckets until all buckets are of size B

and B + 1 for some B.

Theorem 4.5.3. Let B⃗ be a multiset of N bucket sizes that was chosen for the game

and assume that there exist i, j ∈ [N] such that Bi − Bj > 1. Let B⃗′ be a multiset of

N bucket sizes obtained by setting

B′
k =


Bi − 1 if k = i

Bj + 1 if k = j

Bk otherwise

If C ≥ Bmin, then for every adversary A′ in the game where B⃗′ is used, there

exists an adversary A in the game where B⃗ is used such that

Pr[Game4(A′, N, B⃗′, C) = 1] ≤ Pr[Game4(A, N, B⃗, C) = 1]

As explained earlier, the intuition behind this is that reducing the gap between

large and small buckets in this way can only result in having fewer buckets of smallest

size, and therefore the probability that the bad balls will be thrown into a bucket of

smallest size can only be reduced.

We conclude that taking different-sized buckets does not improve security (except

possibly for the case when exactly two sizes B and B + 1 are used). We will use this

conclusion in the next section.

4.5.2 Moderately Lowering the Cheating Probability

The discrete cut-and-choose problem. Typically, when setting the parameters

of a protocol that has statistical error (like in cut and choose), there is a targeted

“allowed” cheating probability which determines a range of values that guarantee the

security bound. The parameters are then chosen to achieve the best efficiency possibly

within the given range. For example, in a cut-and-choose setting modeled with balls

and buckets, the size of the buckets B may be incremented until the security bound

is met. However, this strategy can actually be very wasteful. In order to understand

why, assume that the required security bound is 2−40 and assume that for the required

Section 4.5. Trade-off between Security and Efficiency: The Combinatorics of

Cut-and-Choose

97

number of buckets, the bound obtained when setting B = 3 is 2−39. Since this is above

the allowed bound, it is necessary to increase the bucket size to B = 4. This has the

effect of increasing the protocol complexity significantly while reducing the security

bound to way below what is required. To be concrete, we have proven that the error

bound for the protocol version in Section 4.4.1 in 1/NB−1 (see Theorem 4.4.3). If we

require a bound of 2−40 and wish to carry out N = 219 ≈ 500, 000 executions, then

with B = 3 we achieve a cheating probability of only 2−38. By increasing the bucket

size to B = 4 we obtain a bound of 2−57 which is overkill with respect to the desired

bound. It would therefore be desirable to have a method that enables us to trade-off

the protocol complexity and cheating probability in a more fine-grained manner.

A solution. In this section, we propose a partial solution to this problem; our

solution is only partial since it is not as fine-grained as we would like. Nevertheless,

we view this as a first step to achieving better solutions to the problem. The solution

that we propose in this section is to increment the size of only some of the buckets

by 1 (instead of all of them), resulting in a game where there are buckets of two sizes,

B and B+1. We use the analysis of the previous section to show that this gradually

reduces to the error probability, as desired.

Formally, let B⃗k = {Bk
1 , . . . , B

k
N} be a multiset of bucket sizes such that Bk

i = B

for i ≤ k and Bk
i = B+1 for i > k. In the next lemma, we show that the probability

that the adversary wins in the combinatorial game when choosing the bucket sizes in

this way is a multiplicative factor of p = k
N

lower than when all buckets are of size

B. Thus, in order to reduce the probability by 1/2, it suffices to take k = N/2 and

increase half the buckets to size B+1 instead of all of them. In the concrete example

above, with N = 219 it is possible to reduce the bound to 2−40 by increasing half of

the buckets to size B = 4 instead of all of them, achieving a saving of 218 balls. This

therefore achieves the desired goal. We now prove the lemma.

98 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

Lemma 4.5.4. Let k,N ∈ N such that k < N and let p = k
N
. For every bucket-size

B, let B⃗k be the multiset of bucket sizes defined as above. Then, for every adversary

Ak in Game4 where B⃗k is used, there exists an adversary A in Game4 where all

buckets are of size B such that

Pr[Game4(Ak, N, B⃗k, C) = 1] ≤ p · Pr[Game4(A, N,B,C) = 1].

Proof. In the version of Game4 with bucket sizes B⃗k, the minimal bucket size is B.

Thus using Theorem 4.5.2, it follows that an adversary who chooses B bad balls will

maximize its winning probability in both games. Thus, it is sufficient to prove that

Pr[Game4(Ak
B, N, B⃗k, C) = 1]

≤ p · Pr[Game4(AB, N,B,C) = 1] (9)

where AB and Ak
B are adversaries who choose B bad balls in their games. This is

sufficient since if Eq. (9) holds then for every Ak, we can take the adversary AB as

the adversary for which the lemma holds.

Since there are exactly k buckets of size B, we have that n(B) = k in this game.

Furthermore, the number of balls overall is exactly Bk + (B + 1)(N − k) +C. Thus,

by Lemma 4.5.1, it holds that

Pr[Game4(Ak
B, N, B⃗k, C) = 1] =

k(
Bk+(B+1)(N−k)+C

B

)
=

p ·N(
BN+(N−k)+C

B

) .
Similarly, From Lemma 4.5.1, it follows that

Pr[Game4(AB, N,B,C) = 1] =
N(

BN+C
B

)
since there are N buckets of size B in this game. Thus, Eq. (9) follows if

p ·N(
BN+(N−k)+C

B

) ≤ p ·N(
BN+C

B

)
and this holds since

(
BN+C

B

)
≤
(
BN+(N−k)+C

B

)
.

Section 4.6. Experimental Evaluation 99

Improving the bound. Observe that the adversary’s winning probability decreases

multiplicatively by k/N when N − k balls are added. Thus, in order to reduce the

probability by 1/2 we must add N − N/2 = N/2 balls, and in order to reduce

the probability by 1/4 we must add 3N/4 balls. In general, in order to reduce the

probability by 2−ζ we must add N −N/2ζ balls. An important question that is open

is whether or not it is possible to reduce the probability while adding fewer balls.

4.6 Experimental Evaluation

We implemented the baseline protocol of [56] and the different protocol improvements

and optimizations that we present in this paper. (We did not implement the vari-

ant in Section 4.4.2 since it has the same efficiency as the variant in Section 4.4.3,

and the latter is preferable for practical usage.) All of our implementations use pa-

rameters guaranteeing a cheating probability of at most 2−40, as mandated by the

appropriate theorem proven above. We begin by describing some key elements of our

implementation, and then we present the experimental results.

4.6.1 Implementation Aspects

Parallelization and vectorization. As with [6], our protocol is particularly suited

to vectorization. We therefore work in units of 256 bits, meaning that instead of

using a single bit as the unit of operation, we perform operations on units of 256 bits

simultaneously. For example, we are able to perform XOR operations on 256 bits at a

time by writing a “for loop” of eight 32 bit integers. This loop is then automatically

optimized by the Intel ICC compiler to use AVX2 256bit instructions (this is called

auto-vectorization). We verified the optimization using the compiler vec-report flag

and used #pragma ivdep in order to aid the compiler in understanding dependencies

in the code. We remark that all of our combinatorial analyses considered “good”

and “bad” balls and buckets. All of this analysis remains exactly the same when

considering vectors of 256-triples as a single ball. This is because if any of the triples

in a vector is bad, then this is detected and this is considered a “bad ball”.

Memory management. We use a common data structure to manage large amounts

of triplets in memory efficiently. This structure holds 220 × 256 triplets. For triplets

([a], [b], [c]) (or ([x], [y], [z]) respectively) we store an array of 220 × 256 bits for [a],

220 × 256 bits for [b], and 220 × 256 bits for [c]. This method is known as a Struct

100 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

of Arrays (SoA) as opposed to an Array of Structs (AoS) and is commonly used in

SIMD implementations. It provides for very efficient intrinsic (vectorized) operations,

as well as fast communication since we send subarrays of these bit arrays over the

communication channel in large chunks with zero memory copying. This reduces

CPU cycles in the TCP/IP stack and is open for further optimization using RDMA

techniques.

Index shuffling. When carrying out the shuffling, we shuffle indices of an indirection

array instead of shuffling the actual triples (which are three 256-bit values and so 96

bytes). Later access to the 256-bit units is carried out by first resolving the location of

the unit in O(1) access to the indirection array. This show substantial improvement

as this avoids expensive memory copies. Note that since the triples themselves are

not shuffled, when reading the shuffled array during verification the memory access

is not serial and we do not utilize memory prefetch and L3 cache. Nevertheless,

our experiments show that this is far better overall than copying the three 256-bit

memory chunks (96 bytes) when we shuffle data. In Figure 4.5, you can see that

the entire cost of shuffling and verifying the triples (_verifyAll_shuffleIndices)

is reduced to less than 30% of the time, in contrast to the original protocol in which

it was approximately 55% (see Figure 4.1).

Cache-Aware code design. A typical Intel Architecture server includes a per-core

L1 cache (32KB), a per-core L2 cache (typically 512KB to 2MB), and a CPU-wide

L3 Cache (typically 25-55MB on a 20-36 core server). L1 cache access is extremely

fast at ∼0.5ns, L2 access is ∼7ns and DDR memory reference is ∼100ns. All caches
support write back (so updates to cached data is also extremely fast).

We designed our implementation to utilize L1 cache extensively when carrying out

the Fisher-Yates shuffling on subarrays. We use two levels of indirection for the index

shuffling: the top level of 512 indices and the low level of 2048 indices (under each of

the top level indices, yielding 512 subarrays of length 2048 each). As vectors are 1024

byte and 4096 bytes respectively (uint16 values), they require 1/32 or 1/8 of the L1

cache space so L1 will be utilized with very high probability (and in worst case will

spill into the L2 cache). This makes shuffling extremely fast. Note that attempting

to force prefetch of the index vectors into cache (using _mm_prefetch instructions)

did not improve our performance, as this is hard to tune in real scenarios.

Offline/online. We implemented two versions of the protocols. The first version

Section 4.6. Experimental Evaluation 101

focuses on achieving high throughput and carries out the entire computation in par-

allel. Our best performance is achieved with 12 workers; each worker has two threads:

the first thread generates multiplication triples, and the second carries out the circuit

computation. The architecture of this version can be seen in Figure 4.4.

Figure 4.4: Architecture of implementation

The second version focus on achieving fast online performance in an offline/online

setting where multiplication triples are prepared ahead of time and then consumed

later by a system running only the circuit computation (and verification of that

computation). As we have mentioned, the cache-efficient version with bucket-size

B = 3 is expected to have lower throughput than the version with bucket-size B = 2

but lower latency. This is because with B = 3 there is no need to randomly choose the

triple being used to validate the gate being computed. We therefore compared these;

note that in both cases we used the GMAC optimization described in Section 4.4.4

so that we would be comparing “best” versions.

102 Chapter 4. Foundation (2): Maliciously Secure 3-Party Computation based

on Replicated Secret Sharing

Figure 4.5: Microbenchmarking of best protocol variant, using the CxxProf C++

profiler (run on a local host)

4.6.2 Results and Discussion

We ran our implementations on a cluster of three mid-level servers connected by a

10Gbps LAN. Each server has two Intel Xeon E5-2650 v3 2.3GHz CPUs with a total

of 20 cores. The results appear in Table 4.2. Observe that each of the protocol

improvements presented here provides a dramatic improvement:

• Section 4.4.1: Replacing the naive Fisher-Yates shuffle on an array of size 220

with our cache-efficient shuffle yields an increase of about 50% in throughput;

• Section 4.4.3: Reducing the communication (in addition to the cache-efficient

shuffle) by reducing the bucket-size from B = 3 to B = 2 and randomly choosing

triples to verify the circuit multiplications yields a further increase of about 30%.

(This is as expected since the reduction in communication is exactly 30%.)

• Section 4.4.4: Replacing the use of SHA256 with the GMAC computations yielded

an additional increase of over 15%.

Our best protocol version has a throughput of about 2.3 times that of baseline

version. This result unequivocally demonstrates that it is possible today to achieve

secure computation with malicious adversaries at rates of well over 1-

billion gates per second (using mid-level servers).

It is highly informative to also consider the results of the online-only experiments

(where triples are prepared previously in an offline phase). As expected, the protocol

version with bucket-size B = 3 is better in the online phase since no random choice

of triples is needed. The throughput of the best version exceeds 2 billion AND gates

Section 4.6. Experimental Evaluation 103

per second. Importantly, latency is also significantly reduced to 367.5ms; this can be

important in some applications.

Microbenchmarks. Microbenchmarking of the faster protocol can be seen in Fig-

ure 4.5. In order to understand this, see Figure 4.4 for a description of the different el-

ements in the implementation. The run_BTG thread generates multiplication (Beaver)

triples. Each triple is generated by first generating two random sharings and then run-

ning a semi-honest multiplication. After two arrays of triples are prepared (since we

use buckets of size B = 2), they are verified using the _verifyAll_shuffleindices

procedure; this procedure carries out shuffling and verification. The second thread

runs MPC computation to compute the circuit, followed by verifying all of the mul-

tiplications in the verifyOutput2 procedure.

Part II

Applications: How to Realize

MPCs for Complex Functionalities

— Bridging from Efficient

Primitives to Efficient Applications

104

Chapter 5 Application (1): Generalized

SPDZ Compiler for MPC

based on Secret Sharing

5.1 Introduction

In recent years there has been immense progress in the efficiency of MPC protocols,

and today we can securely compute large Boolean and arithmetic circuits represent-

ing real computations of interest. However, most MPC protocols rely on circuit-based

approach. Namely, these protocols require the description of a Boolean and/or arith-

metic circuit in order to run. This is a significant obstacle in the deployment of

MPC, since circuits for real problems of interest can be very large and very hard to

construct. No matter how much the efficiency of MPC improves, it will be difficult

to spread MPC socially unless this issue is solved. In order to deal with this issue,

there has been quite a lot of work on compiling high-level programs to circuits.

5.2 Related Work

There are a lot of work on the MPC compilers [53, 117, 26, 27]. Unfortunately, many

of these works are limited in the size of the circuit that they can generate, and most of

them do not deal with the general problem of combined arithmetic and non-arithmetic

(Boolean) computations. In addition, the paradigm of working with static circuits is

problematic for huge computations, due to the size of the circuit that must be dealt

with (this issue has been considered in [117] and elsewhere, but can still be an issue).

In contrast to the above, the series of works called “SPDZ” took a very different

approach. SPDZ is the name of a specific protocol for honest-minority multi-party

computation [43]. However, beyond improvements to the protocol itself, follow-up

work on SPDZ included the implementation of an extremely powerful MPC run-time

environment/compiler that is integrated into the SPDZ low-level protocol [42, 72, 24].

From here on we differentiate between the SPDZ protocol which is a way of executing

105

106 Chapter 5. Application (1): Generalized SPDZ Compiler for MPC based

on Secret Sharing

secure MPC over arithmetic circuits, and the SPDZ compiler that is a general run-

time environment that takes code written in a high-level Python-type language, and

executes it in MPC over the SPDZ protocol. We stress that SPDZ does not generate

a circuit and hand it down to the low-level protocol. Rather, it behaves more like

an interpreter, dynamically calling the lower-level protocol to carry out low-level

operations.

The SPDZ Protocol and Compiler A key property of the SPDZ compiler is that

it separates the basic operations provided by MPC protocols (binary or arithmetic

circuits) from a protocol (or program) using those operations as building blocks.

While the basic operations mostly consist of simple arithmetic over some ring (more

precisely, a field in case of SPDZ), combining them to achieve higher-level operations,

like integer or fixed-point division, is a more complex matter. However, integrating

such higher-level operations into the core MPC engine is not a good strategy because

the reduction to basic operations is likely very similar even for different underlying

protocols. The SPDZ compiler provides a tool to write more complex building blocks,

which then can be used in arbitrary MPC applications without being concerned about

the details of those blocks nor the underlying protocol. A concrete example of the

ease in which complex secure computations can be specified appears in Figure 5.1.

Figure 5.1: SPDZ Python code for oblivious selection from an array.

This program describes the task of selecting an element from an array, where both

Section 5.2. Related Work 107

the array values and the array index are private (and thus shared). Given that the

size of the array is also a variable, this is very difficult to specify in a circuit. This

highlights another huge advantage of this paradigm. The SPDZ system facilitates

modular programming techniques, enabling the software engineer to program func-

tions that can be reused in many programs. (Note that a simpler linear program

could be written for the same task, but this method is more efficient. Observe the

richness of the language, enabling recursion, if-then-else branching, and so on.)

Extending the SPDZ compiler. Prior to our work, the SPDZ compiler was closely

integrated with the SPDZ low-level protocol, preventing its more broad use. The

primary aim of this work is to extend the SPDZ compiler so that other protocols can

be integrated into the system with ease. This involved making changes to the SPDZ

compiler at different levels, as is described in Section 5.4. In order to demonstrate

the strength of this paradigm, we integrated three different protocols of completely

different types. Specifically, we integrated the honest-majority multi-party protocol

of [85] for arithmetic circuits over a field, the three-party honest-majority protocol

of [6, 5] for arithmetic circuits over the ring Z2n for any n, and the BMR protocol [13,

88] for constant-round multi-party computation for Boolean circuits. The integration

of the former protocol required the fewest number of changes, since it works over

any field just like the original SPDZ, whereas the other protocols required more

changes. For example, the SPDZ compiler already comes with high-level algorithms

for fixed-point and floating point operations, integer division and more. All of these

are reusable as-is for any other protocol based on fields. However, for protocols over

the ring Z2n , different high-level algorithms needed to be developed. We have done

this, and thus other protocols over rings can utilize the relevant high-level algorithms.

We stress that the focus of our extensions were not to integrate these specific

protocols, but to modify the SPDZ system in order to facilitate easy integration of

other protocols by others. We believe that this is a significant contribution, and will

constitute a step forward to enabling the widespread use of MPC.

Bit decomposition and ring composition. The advantage of working over arith-

metic circuits (in contrast to Boolean circuits) is striking for computations that require

a lot of arithmetic, as is typical for computing statistics. In these cases, addition is for

free, and multiplication of large values comes at a cost of a single operation. However,

most real-world programs consist of a combination of arithmetic and non-arithmetic

108 Chapter 5. Application (1): Generalized SPDZ Compiler for MPC based

on Secret Sharing

computations, and thus need a mix of arithmetic and Boolean low-level operations. In

order to facilitate this, it is necessary to have bit decomposition and ring composition

operations, to convert a shared field/ring element to a series of shares of its bit repre-

sentation and back. This facilitates all types of computation, by moving between the

field/ring representation and bit representation, depending on the computation. For

example, consider an SQL query which outputs the average age of homeowners with

debt above the national average, separately for each state. This requires computing

the national debt average (arithmetic), comparing the debt of each homeowner with

the national average (Boolean) and computing the average age of those whose debt is

greater (mostly arithmetic for computing the sum, and one division for obtaining the

average). Note that the last average requires division since the number of homeowner

above the average is not something revealed by the output, and division is computed

using the Goldschmidt method which requires a mix of arithmetic and bit operations,

including conversions.

As we discuss below in Section 5.3, the SPDZ compiler includes high-level algo-

rithms for many complex operations, and as such includes bit decomposition and ring

composition. In some cases, the operations rely on division in the field and so cannot

be extended to rings. In order to facilitate working with rings, we therefore develop

novel protocols for bit decomposition and ring composition between Z2n and Z2 that

are based on replicated secret sharing and therefore compatible with [6, 5]. Since Z2n

preserves the structure of the individual bits much more than Zp for a prime p, it

is possible to achieve much faster decomposition and composition than in the field

case. Thus, in programs that require a lot of conversions, ring-based protocols can

way outperform field-based protocols. However, field-based protocols are typically

more efficient for the basic arithmetic (e.g., compare the ring version of [5] to [85]).

Thus, different low-level protocols have different performance for different programs.

Stated differently, there is no “best” protocol, even considering a specific number of

parties and security level, since it also depends on the actual operations carried out

(this is also true regarding deep vs shallow circuits, and constant versus non-constant

round protocols). This gives further justification to have a unified SPDZ system that

can work with many low-level protocols of different types, so that a program can be

written once and tested over different protocols in order to choose the best one.

Section 5.3. Review on the SPDZ Protocol and Compiler 109

Our protocols for bit decomposition and ring composition are described in Sec-

tion 6.1.

Implementation and experiments. In Section 5.5, we present the results of

experiments we ran on programs for evaluating unbalanced decision trees (this is

more complex than balanced decision trees due to the need for the evaluation to be

completely oblivious) and for evaluating complex SQL queries. Although the focus

of our work is not efficiency, we report on running times and comparisons in order

to provide support for the fact that this SPDZ extension is indeed very useful and

meaningful.

Our implementation is open-source and available for anyone interested in utilizing

it.

5.3 Review on the SPDZ Protocol and Compiler

5.3.1 Overview

SPDZ is the name given to a multi-party secure computation protocol by Damg̊ard

et al. [43, 42] that works for any n parties. It provides active (malicious) security

against any t ≤ n corrupted parties, and it works in the preprocessing model, that

is, the computation is split into a data-independent (“offline”) and a data-dependent

(“online”) phase. The main idea of SPDZ is to use relatively expensive somewhat

homomorphic encryption in the offline phase while the online phase purely relies on

cheaper modular arithmetic primitives. This also allows for an optimistic approach

to the distributed decryption used in the offline phase: Instead of proving correct

behavior using zero-knowledge proofs, the parties check the decrypted value for cor-

rectness and abort in case of an error. Nevertheless, there is no leakage of secret data

because no secret data has yet been used.

The main link between the two phases is a technique due to Beaver [10], which

reduces the multiplication of secret values to a linear operation on secret values using a

precomputed multiplication of random values and revealing of masked secret-shared

values. Using a LSS makes this technique straightforward to use. Additive secret

sharing is trivially linear, and it provides the desired security against any number of

t ≤ n corrupted parties. On the top of additive secret sharing, SPDZ also uses an

information-theoretic tag (the product of the secret value and a global secret value),

which is additively secret-shared as well, thus preserving the linear property.

110 Chapter 5. Application (1): Generalized SPDZ Compiler for MPC based

on Secret Sharing

Keller et al. [72] have created software to run the online phase of any computation,

optimizing the number of communication rounds. The software receives a description

of the computation in a high-level Python-like language, which is then compiled into

a concise byte-code that is executed by the SPDZ virtual machine (which includes the

actual SPDZ MPC protocol); see Figure 5.2. The design of the virtual machine follows

the design principles of processors by providing instructions such as arithmetic over

secret-shared or public values (and a mix between them), and branching on public

values. The inclusion of branching means that one can implement concepts common

in programming languages such as loops, if-else statements, and functions. While the

conditions for loop and if statements can only depend on public values,1 this provides

an obvious benefit in reducing the representation of a computation and the cost of

the optimization described below. In particular, it is possible to loop over a large

set of inputs without representing the whole circuit in memory. We call this software

layer the SPDZ compiler, in order to distinguish it from the SPDZ protocol.

We remark that although the SPDZ compiler was developed with the SPDZ protocol

specifically in mind, its good design enabled us to extend it to other protocols and

make it a general MPC tool.

Figure 5.2: High-level SPDZ compiler architecture

5.3.2 Circuit Optimizations

The core optimization of the software makes use of the fact that, using Beaver’s

technique, the only operation that involves communication is the revealing of secret

values. This means that the compiler can merge all operations in a single communica-

tion round into a single opening operation, effectively reducing the communication to

the minimum number rounds for a given circuit description. In addition, the software

1This is an inherent requirement for “plain” multi-party computation. There are solutions that
overcome this [68], but they come with a considerable overhead.

Section 5.3. Review on the SPDZ Protocol and Compiler 111

splits the communication into two instructions to mark the sending and the receiving

of information, and optimizes by placing independent computations in-between the

send-and-receive, providing the ability to use the time that is required to wait for in-

formation from the other parties. As such, all opening operations are framed between

start and stop instructions, and independent instructions that can be processed in

parallel to the communication are placed between them. For example, startopen de-

notes the beginning of a series of instructions to open (reveal) shares, and stopopen

denotes the end of the series.

In order to achieve the above effect of grouping all communication messages per

round, the SPDZ compiler represents the computation as a directed acyclic graph

where every instruction is represented as a node, and nodes are connected if one

instruction uses another’s output as input. The vertices are assigned weight one

if the source instructions start a communication operation and zero otherwise. The

communication round of any instruction is then the longest path from any source with

respect to the vertex weights. It is straight-forward to compute this by traversing the

instructions in order and assigning the maximum value of all input vertices to each

instruction.

Figure 5.3: Representing a program as a directed acyclic graph

It is important to note that merging all instructions that can be run in parallel

needs to be done carefully. In particular, it does not suffice to merge the open

instructions that are independent of each other, but also any operations that the open

112 Chapter 5. Application (1): Generalized SPDZ Compiler for MPC based

on Secret Sharing

depends on. This is solved by computing the topological order of the changed graph,

and by adding vertices between instructions with side effects, in order to maintain

the order between them. This results in a trade-off because adding more vertices in

order to preserve the order can lead to more communication rounds.

The optimization described in this subsection (of reducing the number of commu-

nication rounds) is only possible on a straight-line computation without any branch-

ing. We therefore perform this optimization separately on each part of the compu-

tation of maximal size. These components are called basic blocks in the compiler

literature.

5.3.3 Higher-Level Algorithms

In terms of arithmetic operations, the virtual machine provides algebraic computa-

tions on secret values provided by the MPC protocol (addition and multiplication)

and general field arithmetic on public values (such as addition, subtraction, mul-

tiplication, and division). This clearly does not suffice for a general, easy to use

programming interface. Therefore, in addition to the Beaver’s technique for secret-

value multiplication described above, the compiler comes with a library that provides

non-algebraic operations on secret values such as comparison (equals, less-than, etc.),

and arithmetic for both floating- and fixed-point numbers. This library is based on

a body of literature [31, 30, 4] that uses techniques such as statistical masking to

implement such operations without having to rely solely on field-arithmetic circuits.2

The following bit decomposition of a secret-sharing of 0 ≤ x < 2m for some m

illustrates the nature of these protocols. Assume that [x] is a secret-sharing of a x in a

field F such that 2m+k < |F|, with k being the statistical security parameter. Let r be a

random value such that 0 ≤ r < 2m+k, consisting of bits ri for i = 0, . . . ,m+k−1, and
let [r0], ..., [rm+k−1], [r] be their secret sharings, all over the field F. (It is possible to

generate these shares by sampling [r0], ..., [rm+k−1] in the offline phase, as discussed

in [42], and then computing [r] =
∑

[ri] · 2i locally.) Similarly, we can compute

[z] = [x + r] from [r] and [x] locally. Observe that z statistically hides x because

the statistical distance between the distributions of z and of r is negligible in k.

Therefore, we can reveal z and decompose it into bits z0, ..., zm+k−1. Finally, the

shares of the bits of x, ([x0], ..., [xm−1]), can be computed from (z0, ..., zm+k−1) and

2Arithmetic circuits are essentially polynomials, and a naive implementation of an operation like
the comparison of numbers in a large field is very expensive.

Section 5.4. Software Design and Implementation for Making SPDZ a General

Compiler

113

([r0], ..., [rm+k−1]) via a secure computation of a Boolean circuit.

The compiler also provides the same arithmetic interface when using the SPDZ

protocol with a finite field of characteristic two, allowing the execution of the same

computation on different underlying protocols. We used this as a stepping stone for

the extension using GCs below because of the similarity between them.

Implementing these algorithms at this level rather than within the virtual machine

below has the advantage that all optimizations in the compiler are automatically

applied to any MPC VM. We stress that these algorithms are part of the SPDZ

compiler layer.

5.4 Software Design and Implementation for Making SPDZ

a General Compiler

In order to generalize the SPDZ compiler to work for other protocols, modifications

needed to be made at multiple levels. Our aim when designing these changes was to

make them as general as possible, so that other protocols can also utilize them. We

incorporated three very different protocols in order to demonstrate the generality of

the result:

1. Honest-majority MPC over fields: We incorporated the recent protocol of [85] that

computes arithmetic circuits over any finite field, assuming an honest majority.

This protocol has a direct multiplication operation, and does not work via triples

like the SPDZ protocol. (The protocol does use triples in order to prevent cheating,

but not in a separate offline manner.) The specific protocol incorporated works

over Zp with Mersenne primes p = 261 − 1 or p = 2127 − 1.

2. Honest-majority MPC over rings: We incorporated the three-party protocol of [6,

5] that computes arithmetic circuits over any ring including the ring Zn of integers

for any n ≥ 1. The fact that this protocol operates over a ring and not a field

means that it is not possible to divide values; this requires changing the way many

operations are treated, as will be described below.

3. Honest minority MPC for Boolean circuits: We incorporated a protocol for com-

puting any Boolean circuit using the BMR paradigm [13]. Our starting point for

this purpose was the software of [74] that was developed for a different purpose;

114 Chapter 5. Application (1): Generalized SPDZ Compiler for MPC based

on Secret Sharing

we therefore made the modifications needed for our purpose.

We discuss these different protocols in more detail below. In this section, we describe

the changes that we made to the SPDZ compiler in order to enable other protocols

to be incorporated in it, with specific examples from the above.

5.4.1 Modifications to the SPDZ Compiler

Infrastructure modifications at the compiler level. The main difficulty in

adapting the SPDZ compiler to other protocols lies in the fact that many protocols

do not use the Beaver technique, and so do not reduce secret value multiplications

to the opening of masked values only. Such protocols include secret-value multipli-

cations as an atomic operation of the protocol, and thus working via startopen and

stopopen only would significantly reduce the protocol’s performance.3 We therefore

generalized the communication pattern of the compiler to allow general communi-

cation and arbitrary pairs of start/stop instructions for communication, rather than

specifically supporting only start/stop of share openings. Our specific protocols have

atomic multiplication operations that involve communication, and so we specifically

added e_startmult and e_stopmult (which are start and stop of multiplication oper-

ations, where the e-prefix denotes an extension), but our generalization allows adding

any other type of communication as well.

Since the multiplication within the protocols that we added involves communi-

cation, it is desirable to merge as many multiplications as possible with the reveal

(or open) operations in the SPDZ compiler. The fork of the SPDZ compiler used

by Keller and Yanay for their BMR implementation [73, 74] provides functionality

to merge several kinds of instructions separately (AND and XOR in their case). We

used this for multiplication and open instructions, resulting in circuit descriptions

that minimize the number of multiplication and open rounds separately. This is not

optimal because it does not provide full parallelization of the communication incurred

by multiplication and open operations that could be carried out in parallel. However,

we argue that this is sufficient because in protocols that support atomic multiplica-

tion, opening is typically only necessary at the end of a computation that involves

many rounds of multiplications.

3We stress that the only communication in the SPDZ protocol is in the opening of shared values,
and all other operations – including multiplication – are reduced to local computation and opening.

Section 5.4. Software Design and Implementation for Making SPDZ a General

Compiler

115

Algorithm modifications at the compiler level. The modular construction of

the compiler and the algorithm library allows us to re-use many higher-level protocols

mentioned in the previous section. These algorithms are represented in the compiler

as expansions of an operation. For example, multiplication of shared values in the

SPDZ protocol is a procedure that utilizes a multiplication triple, and carries out a

series of additions, subtractions and openings in order to obtain the shared product.

This algorithm is replaced by a single startmult and stopmult using our new in-

structions for low-level MPC protocols that have an atomic multiplication operation.

See Figure 5.4 for code comparison.

Figure 5.4: Multiplication in the original SPDZ compiler vs using new instruction

extension

For the case of our honest-majority field-based protocol, this is the only change

that we needed to make to the compiler. This is because all of the original SPDZ

compiler algorithms (e.g., for floating and fixed-point operations, integer division, bit

decomposition, etc.) work for any field-based MPC, and thus also here. However,

when field division is not available, as in the example of the ring-based protocol,

different high-level algorithms needed to be provided. A very important example

of this relates to bit decomposition and ring composition for ring-based protocols,

which is an operation needed for many higher-level arithmetic operations including

non-algebraic operations like comparison. We present a new highly-efficient method

for bit decomposition and ring composition over Z2n in Section 6.1, and this was

116 Chapter 5. Application (1): Generalized SPDZ Compiler for MPC based

on Secret Sharing

incorporated on the algorithm level. In addition, new algorithms were added for fixed-

point multiplication and division, integer division, comparison, equals, and more. We

stress that once the infrastructure modifications were made, all of these changes

are algorithmic only, meaning that they rewrite the expand operation that converts a

high-level algorithm into a series of low-level supported operations (like multiplication

in Figure 5.4).

Modifications to bytecode. The bytecode that is generated by the compiler

includes the low-level instructions and opcodes supported by the MPC protocol itself.

As such, some changes were needed to add new instructions and opcodes supported

by the other MPC protocols. Thus, a direct multiplication opcode needed to be

added (for both the field and ring protocols), as well as some additional commands

for the bit decomposition and ring composition needed for the ring protocol (e.g.,

the local decomposition steps described in Sections 6.1.3 and 6.1.4). Finally, a new

verify command was added since the honest-majority field and ring protocols do

not use SPDZ MACs and verify correctness in a different way. The bytecode also

includes a lot of instructions needed for jumping, branching, merging threads and so

on. Fortunately, all of this can be reused as is, without any changes.

Modifications to the virtual machine. On the level of the virtual machine, we

have modified the SPDZ compiler software to call the relevant function of an external

library for every instruction that involves secret-shared values. This comes down to

roughly twenty instructions. We have done this in a way that facilitates plugging in

other backend libraries, which allows us to easily run the same program using different

protocols. This is in line with our goal of enabling the same high-level interface to

be used to program for completely different MPC schemes. For the field case, the

changes here were relatively small. The multiplication was changed, but so was scalar

addition since in the SPDZ protocol each party carries out the same operation locally,

whereas different parties act differently for scalar addition in the replicated secret-

sharing protocol version of [85]. In addition, triple generation is not carried out offline

but done on demand, and the MAC was disabled at the VM level (i.e., an extension

was added to optionally disable the MAC so that the VM is compatible both with

protocols that use and do not use MACs). Finally, the original SPDZ protocol relies

on Montgomery multiplication [94]. While this is efficient for general moduli, in some

cases like when using Mersenne primes, more efficient modular multiplication can be

Section 5.4. Software Design and Implementation for Making SPDZ a General

Compiler

117

achieved directly. The field protocol implementation of [85] utilizes Mersenne primes,

and this was therefore also integrated into the VM interface.

For the ring protocol, there were more changes required since the division of clear

elements is not supported in a ring, and since more instructions are needed at the

basic protocol level (for decomposition and ring composition, as described above). In

addition, the input procedure was changed since the secret sharing is different. We

stress that these are not just at the protocol level since the VM uses special registers

for local operations (to improve performance) and so these need to be modified.

We remark that the compiler, bytecode, and VM needed to be very significantly

modified for the Boolean circuit (BMR) protocol, and thus a separate branch was

created. This is understandable since the protocol is of a completely different nature.

Nevertheless, the key property that it all runs under the same MPC program high-

level language is achieved, and thus to the “MPC user” writing MPC programs, this

is not noticeable.

Figure 5.5: The extensions applied to the SPDZ compiler of [42]

Explanation of Figure 5.5. In Figure 5.5 we present a diagram illustrating the

different extensions to the SPDZ compiler, for all three protocols incorporated. On

the left, the original SPDZ architecture is presented. Then, the field-based protocol

of [85] is presented, with relatively minor changes (mainly adding the multiplication

extension); of course, the MPC protocol at the lower level is replaced as well. Next,

118 Chapter 5. Application (1): Generalized SPDZ Compiler for MPC based

on Secret Sharing

the ring-based protocol is presented, and it includes more modifications, including

support for different types of shares and numbers, as well as more modifications

to the compiler and below. There are also some additions to the language itself,

since adding explicit instructions like inject (which maps a bit into a ring element)

improves the quality of the compiler. Finally, the architecture for the BMR protocol

is added; as stated above, this requires major changes throughout, except for the

programmer interface and language which remain the same.

5.4.2 Incorporating BMR Circuits

In this section, we provide additional details about the incorporation of the BMR

Boolean circuit protocol into SPDZ. Since the original SPDZ protocol is based on

secret sharing and arithmetic circuits, the changes required to incorporate a garbled-

circuit based protocol were the most significant.

In order to evaluate our programs in a GC setting, we have made use of the recently

published software implementing oblivious RAM [73, 74] in the SPDZ-BMR protocol

[88]. The latter denotes the combination of BMR, which is a method of generating

a GC using any MPC scheme, with the SPDZ protocol [43] as the concrete scheme.

While there are recent protocols achieving similar goals [121, 64], we would argue

that the BMR software is the most powerful one publicly available to date, and that

it still gives a reasonable indication of the performance of GCs with active security.

The software follows the same paradigm as SPDZ in that it implements a virtual

machine that executes bytecode consisting of instructions for arithmetic, branching,

input/output, etc. The main difference is that arithmetic here means XOR and

AND. Furthermore, while the smallest units at the virtual machine level are secret-

shared and public values in a field for SPDZ, here they are vectors of secret-shared

bit and public values. This leads to more concise circuit descriptions. Furthermore,

the compiler merges several types of instructions to further vectorize instructions,

which may reduce the number of communications rounds (e.g., for inputs), enable

the use of several processor cores, and facilitate pipelining of AES-NI instructions

when evaluating as many AND gates in parallel as possible.

The primary goal of the software of [73, 74] is the evaluation of ORAM. Hence we

needed to extend it in various aspects, most notably the following:

Private inputs: This feature was omitted from [73, 74] who wished only to evaluate

Section 5.5. Experimental Evaluation 119

the performance of computation. In our context however, private inputs play a major

role. This change mostly affected the virtual machine of the BMR implementation.

Arithmetic: While the software of [73, 74] contains provisions for integer arithmetic

in fields of characteristic two (and thus for binary circuits) and for fixed-point cal-

culations in arithmetic circuits, we had to combine and supplement this for our

purposes. In particular, it turned out that the translation of fixed-point division

from arithmetic to binary circuits is non-trivial because keeping exact track of bit

lengths is vital in the latter. Since the virtual machine only deals with binary circuits

by design, this change was exclusively on the compiler side.

The software is incomplete in the sense that it only implements the evaluation

phase securely, while the use of the SPDZ protocol in the garbling part is simulated

using a separate program. Nevertheless, the evaluation timings are accurate because

the GC is read from solid-state disks. Furthermore, the uniform nature of the circuit

generation as well as the offline phase of SPDZ (called function-dependent phase in

this context) allowed us to micro-benchmark the two phases. For the latter, this has

been done in various previous works [71, 42].

5.5 Experimental Evaluation

5.5.1 Implementation Aspects

In order to evaluate our toolchain and protocol, we have implemented various compu-

tations, ranging from a simple mean and variance computations, to a more involved

computations of inference via a non-balanced decision tree and the private processing

of an SQL query. The SQL query is quite a complex computation and is derived from

the following query for a typical survey:

SELECT count (∗) , avg (c r e d i t l im i t) FROM Census

WHERE State==Utah

GROUP BY Age , Sex HAVING count (∗) > 100 ;

This query computes the average credit limit of every age-group and sex (i.e., average

credit limit of 30 year old females, average credit limit of 30 year old males, and

so on), outputting only results for sets that have at least 100 data items in the set.

This last requirement is necessary to preserve privacy and to ensure that there are

120 Chapter 5. Application (1): Generalized SPDZ Compiler for MPC based

on Secret Sharing

no results based on very few individuals. For all fields that have a small range such

as state, age, and sex we input the data in a bit-wise unary encoding (a list of bits of

which only one is 1), which simplifies the selection operation in secure computation.

The decision tree private inference example uses the decision tree built from real

data published for a paper on credit decisions [116]. The concrete decision tree in our

computation has 1256 leaves at depths from 4 to 30. Since multi-party computation

reveals the amount of computation (i.e., how many gates are computed), we have to

always execute 30 decisions in order to hide the path traversed in the evaluation. This

is achieved using dummy data if a leaf is reached before the last step. Furthermore,

traversal of the tree makes use of oblivious selection from the current depth of the tree

represented as an array (this selection is of the node to be used in the current level

of the decision tree), in order to not reveal anything about the path of computation

in the tree.

Whenever non-integer computation is required, we use fixed-point computation

as implemented in the SPDZ compiler [24]. This is justified because the mean over a

set of numbers in a limited range will also be in this range and thus not require the

larger range of floating-point numbers. The bit decomposition and ring composition

used for the SQL query is the SPDZ compiler method for SPDZ and MHMZp, and is

our new method from Section 6.1. The times given are for the basic conversion (see

Table 6.8) which minimizes the amount of communication at the expense of a higher

number of rounds. (We also implemented the other versions, but they were slower in

our tests since we ran the experiments on a very low-latency network.)

We ran our experiments on AWS with three parties in a single region, using

m5.12xlarge instances providing 10 Gbps network communication. The only ex-

ception is for the BMR protocol, where we used i3.2xlarge instances due to the

increased amount of storage needed to store the GC.

5.5.2 Results and Discussion

Figures 5.6–5.8 show the online times for mean, variance, and our SQL query for

various numbers of inputs, and Table 5.1 shows the results of decision tree computa-

tion. MHM Zp refers to the malicous honest-majority protocol over Zp of [85], while

SHM Z2n/Z2 refers to the semi-honest honest-majority protocol of [6] over the ring

of integers Z2n for any n ≥ 1. Note that the different protocols operate in different

Section 5.5. Experimental Evaluation 121

security models: SPDZ and BMR provide security in the presence of any t ≤ n mali-

cious corruptions, MHM Zp provides security in the presence of a malicious minority,

and SHM Z2n/Z2 provides security in the presence of semi-honest adversaries with

an honest minority. This explains the expensive offline phase for SPDZ and BMR

because more expensive operations such as somewhat homomorphic encryption are

used there. To time the offline phase of SPDZ, the newer “Low Gear” protocol [71]

has been used on r4.8xlarge instances due to the larger memory requirement of

homomorphic encryption, while the MASCOT protocol [70] has been used for BMR.

(The SPDZ offline was also computed using a large number of threads, in contrast to

a single thread for MHM/SHM.)

We stress that we present these results to demonstrate the new capability of

writing a single complex program and running it on four completely different low-

level protocols, and not in order to compare efficiency. Indeed, we are continuing

our work to improve the efficiency of the SPDZ-compiled lower-level protocols (e.g.,

adding vectorization, more parallelism and specific optimizations). Nevertheless, it

is interesting to observe that the SHM Z2n method is approximately 50 times faster

than the MHM Zp method for the SQL processing (Figure 5.8). Although there

is a difference between semi-honest and malicious, the cost of MHM Z2n is only

7-times slower than SHM Z2n [5]. The rest of the difference is due to the faster bit

decomposition and ring composition for the ring-based protocol versus the field-based

protocol.

Table 5.1: Decision tree computation (seconds).

Resources SPDZ MHM Zp SHM Z2n BMR

Security Malicious Malicious Semi-honest Malicious

level: t ≤ n t < n/2 t < n/2 t ≤ n

Online:
1 core 0.3005 3.0416 0.4641 0.5353

time:

rounds: 783 584 2746 28

Offline:
48 cores 5.2204

Not Not
1041.8

time: required required

122 Chapter 5. Application (1): Generalized SPDZ Compiler for MPC based

on Secret Sharing

Figure 5.6: Benchmarking on Mean computation (X-axis=num. inputs)

Figure 5.7: Benchmarking on Variance computation (X-axis=num. inputs)

Section 5.5. Experimental Evaluation 123

Figure 5.8: Benchmarking on US Census SQL query (X-axis=num. inputs)

Batch vectorization. We have implemented batch vectorization for the Ring-based

protocol at the VM level. This works by defining the level of vectorization desired,

and then the same single-execution code written at the compiler level is run on vectors

of the specified length. For example, defining vectorization of level 64 for the decision

tree inference problem means that inference is run on 64 inputs at the same time.

This works by representing each element as a vector of 64, and running the MPC in

parallel for each.

We ran these batch executions on the same problems as above; these results ap-

pear in Table 5.2. Observe that the “non-batch” and “Batch × 1” both run a single

execution, but there is a fixed overhead in the VM for running the batched experi-

ments. Comparing these two columns, one can see that this overhead is quite high;

we are working on reducing it. Beyond this, observe that the cost of batching many

executions together is very minor. Thus, a single decision tree inference (without

batching) takes approximately 0.5 seconds whereas 64 in parallel takes just under 6

seconds, or an average of under 0.1 second. We believe that by reducing the fixed

124 Chapter 5. Application (1): Generalized SPDZ Compiler for MPC based

on Secret Sharing

overhead, we will obtain that parallelism is essentially for free. This is of great impor-

tance in many real-world use cases where the same computation is carried out many

times. For example, census statistics like the SQL query in our example would be

computed for every state, and so could be vectorized.

Table 5.2: Running times for batch vectorization in seconds. Batch × N means running

N executions in parallel (i.e., with vectors of length N).

Non-batch Batch × 1 Batch × 8 Batch × 32 Batch × 64

Mean (10 inputs) 0.031 0.139 0.138 0.136 0.149

Mean (100 inputs) 0.033 0.145 0.145 0.142 0.153

Mean (1000 inputs) 0.060 0.178 0.184 0.176 0.171

Variance (10 inputs) 0.039 0.362 0.371 0.391 0.381

Variance (100 inputs) 0.053 0.428 0.688 0.677 0.687

Variance (1000 inputs) 0.175 2.501 2.318 2.348 2.461

SQL (10 inputs) 0.779 10.233 10.335 10.997 11.285

SQL (100 inputs) 1.122 10.766 11.029 11.754 13.606

SQL (1000 inputs) 6.039 17.755 15.216 31.154 36.471

Decision tree 0.464 2.949 3.276 4.399 5.945

Open source. Our code is open source and available for free use. Our fork

of SPDZ-2, including our extensions and hooks to them and changes to the com-

piler to support adding instructions and so on, can be found at https://github.

com/nec-mpc. Furthermore, the extension required for plugging in the multi-party

honest-majority protocol of [85] can be found at https://github.com/cryptobiu/

SPDZ-2-Extension-MpcHonestMajority.

Future work This paper describes the first steps towards making the SPDZ compiler

a general-purpose tool that can enable the use of MPC by software developers without

MPC expertise. In order to complete this task, more work is needed in the following

areas:

• Efficiency: The current run-time requires additional optimizations to achieve running-

time that is comparable to that of a native protocol that works directly with a cir-

cuit and is optimized for latency or throughput. It is unreasonable to assume that

a general compiler will achieve the same level of efficiency as a tailored optimized

Section 5.5. Experimental Evaluation 125

version of a protocol. Nevertheless, the usability gains are significant enough so

that a reasonable penalty (of say, 15%) is justified. An important goal is thus to

achieve efficiency of this level, and we are currently working on this.

• Protocol generality: As we have argued, there is no single MPC protocol that is best

for every task. On the contrary, we now understand that many different protocols

of different types are needed for different settings. The best protocol depends on

the efficiency goal (low latency or high throughput), the network setting (LAN or

WAN), the function being computed (arithmetic or Boolean or mixed, and if mixed

how many transitions are needed), and so on. In order to achieve this goal, more

protocols need to be incorporated into the SPDZ compiler framework.

In addition to the above, we believe that an additional method should be added

that outputs a circuit (arithmetic, Boolean or mixed) generated from the Python

code. This deviates from the SPDZ run-time paradigm and requires running the

protocol with a specific circuit, but it enables the use of the compiler in the more

traditional circuit-compiler methodology that also has advantages. In particular, it

can be used for protocols that have not been incorporated into the SPDZ run-time,

and for optimized code that works specifically with a static circuit.

• Compiler generality: The SPDZ compiler is already very general and provides sup-

port for a rich high-level language. However, as more real use cases are discovered,

it will need to be further enriched. This work is already being done independently

on the original SPDZ compiler and we hope that these works will be merged, for

the benefit of the general community.

Chapter 6 Application (2): 3-Party

Computation for High-Level

Functions

6.1 MPC for Bit Decomposition and Ring Composition

6.1.1 Introduction

As we have discussed above, the SPDZ compiler provides high-level algorithms for op-

erations from numerical comparisons to fixed and floating point computations. These

algorithms require the capability to decompose a basic element into its bit repre-

sentation and back. Since the SPDZ protocol works over fields, it already contains

these methods for field elements. However, it does not support bit decomposition and

ring composition for ring elements. Since this is crucial for running SPDZ programs

over ring-based MPC, in this section we describe a new method for bit decomposi-

tion and ring composition for the ring-based protocol of [6, 5]. We stress that our

method works for any 3-party protocol based on replicated secret sharing as is the

case for [6, 5], but it does not work for any ring-based protocol in general. We follow

this strategy in order to achieve highly efficient bit decomposition and ring compo-

sition; since these operations are crucial and ubiquitous in advanced computations,

making the operation as efficient as possible is extremely important.

Before beginning, we explain why bit decomposition and ring composition can

be made much more efficient in the ring Z2n . Consider the case of additive shares

where the parties hold values si such that
∑n

i=1 si = s, where s is the secret. If the

addition is in a field like Zp, then the values of all bits depend on all other bits. In

particular, the value of the least significant bit depends also on the most significant

bits; consider computing 16 + 8 mod 17. The three least significant bits of 16 and 8

are zero, but the result is 7, which is 111 in binary. This is not the case in GF [2n]

and bit decomposition is actually trivial in this field. However, since we typically use

arithmetic circuits to embed numerical computations, we need integer addition and

multiplication to be preserved in the field or ring. For this reason, the ring Z2n has

126

Section 6.1. MPC for Bit Decomposition and Ring Composition 127

many advantages. First, it allows for very efficient local operations. Second, the sum

of additive shares has the property that each bit of the result depends only on the

corresponding bit in each share, and the carry from the previous share. We will use

this in an inherent way in order to obtain more efficient bit decomposition and ring

composition protocols.

Contribution We propose new efficient MPC protocols for bit decomposition and

ring composition operations, to convert a shared ring element to a series of shares of

its bit representation and back, which is based on our MPC described in Chapter 3

and 4.

Efficient bit decomposition and ring composition are essential primitives for effi-

cient MPC, since many real-world programs require both arithmetic computations,

as well as comparison and other operations that require bit representation. However,

such conversions are difficult to carry out, especially in the presence of malicious ad-

versaries. This is due to the fact that malicious parties can change the values that

they hold, and a secure protocol has to prevent such behavior. We overcome this

by constructing protocols that are comprised of only standard ring-MPC operations

(over shares of ring elements), standard bit-MPC operations (over shares of bits), and

local transformations from valid ring-shares to valid bit-shares (and vice versa) that

are carried out independently by each party. Since this is the case, the security is

easily reduced to the security of the ring and bit protocols which have been proven.

Our bit-decomposition and ring-composition conversion protocols are constructed

specifically for replicated secret sharing and between the ring Z2n (for any n) and

Z2. Although this is a very specific scenario, it enables very high throughput secure

computation of any functionality (in the setting of three parties, with at most one cor-

rupted). In particular, the recent protocols of [6] and [5] can be used. These protocols

achieve high throughput by requiring very low communication: in the protocol of [6]

for semi-honest adversaries, each party sends a single bit (resp., ring element) per

AND gate (resp., multiplication gate) when computing an arbitrary Boolean circuit

(resp., arithmetic circuit over Z2n). Furthermore, the protocol of [5] achieves security

in the presence of malicious adversaries in this setting at the cost of just 7 times that

of [6] (i.e., 7 bits/ring elements per AND/multiplication gate).

Our method utilizes local computations and native multiplications and additions

in Boolean and ring protocols. As such, if the underlying Boolean and ring protocols

128 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

are secure for malicious adversaries, then the result is bit decomposition and ring

composition that is secure for malicious adversaries. Likewise], if the underlying

protocols are secure for semi-honest adversaries then so is the result.

6.1.2 Related Work

In the context of MPC, bit decomposition is originate from the work of Damg̊ard

et al. [39]. They showed the bit decomposition protocol for arbitrary linear secret

sharing with constant round and O(nlogn) communication (note that n is the size of

field/ring). [39] also shows several protocol can be constructed from bit decomposition

with constant round, and people recognized the power of free access to both of Booeal

and arithmetic circuits. After that, [97] and [98] improve the order of communication

complexity to (almost) linear.

One of the biggest drawback of previous bit decomposition is that, the size of the

share for each bit in their bit decomposition is influenced by the size of original field.

Namely, the share of each bit requires same size as the arithmetic value before bit de-

composition, and thus the communication complexity is highly expensive. In contrast

to this, Nishide and Ohta [99] propose several efficient MPC for useful functionalities

while avoiding use of bit decomposition.

Ideally speaking, communication-efficient bit decomposition will be effective to

perform a number of complex functionality efficiently. However, to reduce the com-

munication of bit decomposition, we also need modulus conversion from shares for

arithmetic values to shares for bits. However, bit decomposition which equipped with

modulus conversion does not exist so far.

In addition, ring composition is considered as more complex than bit decomposi-

tion and efficient ring composition is not known. Therefore, the conversion between

Boolean circuit and arithmetic circuit is limited and it obstruct to improve the effi-

ciency of mixed circuit.

On the other hand, our proposed bit decomposition in this thesis involves modulus

conversion. Therefore, we can utilize the power of bit decomposition with minimal

communication overhead. Moreover, we also efficient ring composition which com-

munication cost is almost same as bit decomposition. It realizes flexible conversion of

Boolean/arithmetic circuit “feel free” and should support more efficient computation

of complex circuit.

Section 6.1. MPC for Bit Decomposition and Ring Composition 129

6.1.3 Communication-Efficient Bit Decomposition

Ring operations are extremely efficient for computing sums and products. However,

in many cases, it is necessary to also carry out other operations, like comparison,

floating point, and so on. In such cases, it is necessary to first convert the shares in

the ring to shares of bits. For example, we can efficiently compute comparison (e.g.,

less-than) using a Boolean circuit, but we first need to hold the value in Boolean

representation. This operation is called bit decomposition. Recall that a sharing

of x ∈ Z2n is denoted by [x]2
n
(and thus a sharing of a bit a is denoted by [a]2).

Writing x = xn · · ·x1 (as its bitwise representation with x1 being the least significant

bit), the bit decomposition operation is a protocol for converting a sharing [x]2
n
of

a single ring element x ∈ Z2n into n shares [xn]2, . . . , [x1]2 of its bit representation.

We stress that it is not possible for each party to just locally decompose its shares

into bits, because the addition of single bits results in a carry. To be concrete,

assume that x = 11012 = 1310 ∈ Z24 (where subscript of 2 denotes binary, and a

subscript of 10 denotes decimal representation). Then, an additive sharing of x could

be x0 = 10112 = 1110, x1 = 10012 = 910 and x2 = 10012 = 910. If we look separately

at each bit of x0, x1, x2, then we would obtain a sharing of 10112 = 1110 ̸= x (this is

computed by taking the XOR x0, x1, x2).

Step 1 – local decomposition: In this step, the parties locally compute shares

of the individual bits of their shares. Let the sharing [x]2
n
be with values (x0, x2),

(x1, x0) and (x2, x1). The parties begin by generating shares of their shares x0, x1, x2.

This is a local operation defined by the following table:

Table 6.1: Reference for local re-sharing for bit-decomposition

P0 P1 P2

Original shares of x: (x0, x2) (x1, x0) (x2, x1)

New sharing of x0: (x0, 0) (0, x0) (0, 0)

New sharing of x1: (0, 0) (x1, 0) (0, x1)

New sharing of x2: (0, x2) (0, 0) (x2, 0)

Observe that each party can locally compute its sharing of the shares, without any

interaction. In addition, each sharing is correct. The above local decomposition is

actually carried out separately for each bit of the shares. Denote by xj
i the jth bit of xi

130 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

where 1 represents the least-significant bit; i.e., xi = (xn
i , x

n−1
i , . . . , x1

i) ∈ (Z2)
n. Then,

the jth bit of share x0 is locally converted into the sharing (xj
0, 0), (0, x

j
0), (0, 0), the

jth bit of share x1 is locally converted into the sharing (0, 0), (xj
1, 0), (0, x

j
1), and the

jth bit of share x2 is locally converted into the sharing (0, xj
2), (0, 0), (x

j
2, 0). Observe

that these are already shares of bits, and are thus actually [xj
0]

2, [xj
1]

2, [xj
1]

2. At this

point, the parties all hold shares of the bit representation of the shares. This is not

a bitwise sharing of x, but just of x0, x1, x2. In order to convert these to a bitwise

sharing of x, we need to add the shares. However, this addition must take into account

the carry, and thus local share addition will not suffice.

Step 2 – add with carry: Our aim is to compute the bit representation of x =

x0 + x1 + x2 using the bitwise shares . Since this addition is modulo 2n, we need

to compute the carry. In the least significant bit, the required bit is just [x1]2 =

[x1
0]

2 + [x1
1]

2 + [x1
2]

2 mod 2 (i.e., using local addition of shares). However, we also

need to compute the carry, which involves checking if there are at least two ones.

This can be computed via the function majority(a, b, c) = a · b ⊕ b · c ⊕ c · a which

requires 3 multiplications. Since this needs to be computed many times during the bit

decomposition, it is important to reduce the number of multiplications. Fortunately,

it is possible to compute majority with just a single multiplication by

majority(a, b, c) = (a⊕ c⊕ 1) · (b⊕ c)⊕ b.

In order to see that this is correct, observe that

(a⊕ c⊕ 1) · (b⊕ c)⊕ b = a · (b⊕ c)⊕ c · (b⊕ c)⊕ (b⊕ c)⊕ b

= a · b⊕ a · c⊕ b · c⊕ c · c⊕ b⊕ c⊕ b = a · b⊕ a · c⊕ b · c.

Having computed the carry, it is now possible to compute the next bit, which is

the sum of [x2
0]

2, [x2
1]

2, [x2
2]

2 and the carry from the previous bit. However, observe

that since there are now four bits to be added, the carry can actually be two bits.

This in turn means that five bits actually need to be added in order to compute the

actual bit and to compute its two carries. Denote by cj and dj the carries computed

from the jth bit. Then, we claim that the bit and its carries can be computed

as follows. Compute [αj]1 = [xj
1]

2 ⊕ [xj
2]

2 ⊕ [xj
3]

2, [βj]
2 = majority

(
xj
1, x

j
2, x

j
3

)
and

Section 6.1. MPC for Bit Decomposition and Ring Composition 131

[γj]
2 = majority (αj, cj−1, dj−2). Then, compute

[xj]2 = [αj]
2 ⊕ [cj−1]

2 ⊕ [dj−2]
2,

[cj]
2 = [βj]

2 ⊕ [γj]
2, and [dj]

2 = [βj]
2 · [γj]2.

(Note that we initialize c0 = d0 = d−1 = 0 for computing x1, x2.) In order to see why

this computation is correct, observe the following:

1. It is clear that xj is correct as it is the sum (modulo 2) of the three bits in the jth

place, plus the two relevant carry bits from previous places (specifically, cj−1 and

dj−2).

2. The two carry bits are defined to be (dj, cj) = (βj · γj, βj ⊕ γj). These may equal

00, 01 or 10 in binary (there cannot be a carry of 11 since the maximum sum of 5

bits is 5 which is 101 in binary, resulting in the carry 11).

This is best understood by looking at the table below. We write the result in the

last three columns in the order of dj, cj, x
j since this is actually the three-bit binary

representation of the sum of 5 bits. Since the computation is symmetric between the

values of xj
1, x

j
2, x

j
3 and between cj−1, dj−2 (meaning that it only matters how many

ones there are, but nothing else), it suffices to look only at the number of ones for

the x values and the number of ones for c, d.

Table 6.2: Truth table for computing xj via majority

xj
0 xj

1 xj
2 cj−1 dj−2 αj βj γj dj cj xj

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1

1 1 0 0 0 0 1 0 0 1 0

1 1 1 0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 0 0 0 1

1 0 0 1 0 1 0 1 0 1 0

1 1 0 1 0 0 1 0 0 1 1

1 1 1 1 0 1 1 1 1 0 0

0 0 0 1 1 0 0 1 0 1 0

1 0 0 1 1 1 0 1 0 1 1

1 1 0 1 1 0 1 1 1 0 0

1 1 1 1 1 1 1 1 1 0 1

132 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

Observe that the last three columns equal the binary count of the number of ones

in the first 5 columns (from 0 to 5), as required. Since the cost of computing majority

is just a single multiplication, this means that the overall cost of the bit decomposition

is three multiplications per bit (two majority computations and one multiplication for

computing dj).

We now show how to improve this to two multiplications per bit instead of three.

The idea here is to not explicitly compute the two carry bits cj, dj, and instead to

leave them implicit in the αj, βj, γj values. Specifically, we will show that βj + αj

(with the sum over the integers) actually equals the sum of the carry.5

The actual computation is as follows. As above, compute [αj]
2 = [xj

1]
2⊕[xj

2]
2⊕[xj

3]
2

and [βj]
2 = majority

(
xj
0, x

j
1, x

j
2

)
. However, differently to above, compute [γj]

2 =

majority (αj, βj−1, γj−1). Finally, compute [xj]2 = [αj]
2 ⊕ [βj−1]

2 ⊕ [γj−1]
2.

We summarize the overall bit decomposition protocol in Protocol 6.1.

　 Protocol 6.1： Communication-Efficient Bit Decomposition from Z2n to (Z2)
n

• Inputs: Each party hold the share [x]2
n

i for a secret x, and the opcode bit decomp

for bit decomposition. Let c0 = d0 = d−1 = 0.

• The protocol:

1. The parties perform local re-sharing for [x]2
n

and obtain the

shares ([xn
0]

2, [xn−1
0]2, . . . , [x1

0]
2), ([xn

1]
2, [xn−1

1]2, . . . , [x1
1]

2), and

([xn
2]

2, [xn−1
2]2, . . . , [x1

2]
2).

2. For j = 1, . . . , n, the parties compute [αj]
2 = [xj

0]
2 ⊕ [xj

1]
2 ⊕ [xj

2]
2, [βj]

2 =

majority(xj
0, x

j
1, x

j
2) and [γj]

2 = majority(αj, cj−1, dj−2). Then, compute [xj]2 =

[αj]
2 ⊕ [cj−1]

2 ⊕ [dj−2]
2, [cj]

2 = [βj]
2 ⊕ [γj]

2, and [dj]
2 = [βj]

2 · [γj]2.

3. The party Pi output (bit decomp, ([xn]2i , [x
n−1]2i , . . . , [x

1]2i)) where i ∈ {0, 1, 2}.

This operation as the whole is denoted by ([xn]2, [xn−1]2, . . . , [x1]2) =

bit decomp([x]2
n
).

Proof of correctness. We prove that this is correct by induction. The inductive

Section 6.1. MPC for Bit Decomposition and Ring Composition 133

claim is that for every j, the bit xj is the correct jth bit of the sum, and the value

βj+γj ∈ {0, 1, 2} with the sum computed over the integers, is the carry from the sum

xj
0 + xj

1 + xj
2 + βj−1 + γj−1. For j = 1, this is trivially the case, since β0 = γ0 = 0 and

so the bit x1 = α1 = x1
0 ⊕ x1

1 ⊕ x1
2, and the carry is just majority(x1

0, x
1
1, x

1
2). Assume

now that this holds for j − 1, and we prove for j. We prove the correctness of this

inductive step via a truth table (as above, the computation is symmetric and so it

only matter how many ones there are amongst xj
0, x

j
1, x

j
2, and the value of βj−1+γj−1).

Table 6.3: Truth table for checking correctness on xj

xj
0 xj

1 xj
2 βj−1 γj−1 αj βj γj xj Carry βj + γj

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 1 0

1 1 0 0 0 0 1 0 0 1

1 1 1 0 0 1 1 0 1 1

0 0 0 1 0 0 0 0 1 0

1 0 0 1 0 1 0 1 0 1

1 1 0 1 0 0 1 0 1 1

1 1 1 1 0 1 1 1 0 2

0 0 0 1 1 0 0 1 0 1

1 0 0 1 1 1 0 1 1 1

1 1 0 1 1 0 1 1 0 2

1 1 1 1 1 1 1 1 1 2

In order to see that this is correct, observe that xj
0 + xj

1 + xj
2 + βj−1 + γj−1 should

equal xj + 2 · (βj + γj), with all addition over the integers (note that the carry is

multiplied by 2 since it is moved to the next bit). By observation, one can verify

that this indeed holds for each row. We therefore conclude that the above method

correctly computes the sum [x1]2, . . . , [xn]2 requiring only two multiplications per bit.

6.1.4 Communication-Efficient Ring Composition

In this section, we show how to compute [x]n from [x1]2, . . . , [xn]2, where x = xn · · ·x1

(or stated differently, where x =
∑n

j=1 2
j−1 · xj). At first sight, it may seem that it is

possible for each party to simply locally compute [x]2
n
=
∑n

j=1 2
j−1 · [xj]2, requiring

134 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

only local scalar multiplications and additions. However, this does not work since the

shares [xj]2 are of bits and not of ring elements, and due to carries one cannot relate

to each bit separately and naively embed the bits into ring elements.

We use a similar method to that of bit decomposition, but in reverse order. As in

decomposition, there are two steps: local decomposition of the bit shares into three

different shares, and then adding with carry. The difference here is that we need to

cancel out the carry, rather than compute it as in decomposition. In order to see

why, assume that we wish to compose two bit sharings into a single sharing in Z22 .

Let x = 2 be the value to be composed, and so the parties hold shares of 0 (for the

least significant bit) and of 1. Assume now that the sharing of 0 is defined by x1
0 = 1,

x1
1 = 1, and x1

2 = 0 (and so x1
0⊕x1

1⊕x1
2 = 0). Then, the sum in the ring of these three

shares is actually 2. Thus, this value of 2 in the first bit needs to be cancelled out

in the second bit. This is achieved by subtracting 1 (or XORing 1) from the second

bit. To make this more clear, denote by bit(xj) the jth shared bit (as a bit), and by

carry(xj) the integer carry of the integer-sum of the bit-shares of xj. For example, if

xj
0 = 1, xj

1 = 1 and xj
2 = 0 then bit(xj) = 0 and carry(xj) = 1 (the carry equals 1

and not 2, since we consider it as a carry and so it is moved to the left by one bit;

stated differently, xj
0+xj

1+xj
2 = bit(xj)+ 2 · carry(xj) where addition here is over the

integers). Our protocol for ring composition works by having the parties in the jth

step compute shares in the ring of the value xj = bit(xj) + 2 · carry(xj)− carry(xj−1).

Finally, they all locally compute [x]2
n
=
∑n

j=1 2
j−1 · [xj]2

n
. This is correct since

n∑
j=1

2j−1 · [xj]2
n

=
n∑

j=1

2j−1 ·
(
bit(xj) + 2 · carry(xj)− carry(xj−1)

)
=

n∑
j=1

2j−1 · bit(xj) +
n∑

j=1

2j−1 · 2 · carry(xj)−
n∑

j=1

2j−1 · carry(xj−1)

=
n∑

j=1

2j−1 · bit(xj) +
n∑

j=1

2j · carry(xj)−
n−1∑
j=0

2j · carry(xj)

= [x]2
n

+ 2n · carry(xn)− carry(x0) = [x]2
n

where the third equality is by simply changing the range of the index j in the third

term (from 1, . . . , n to 0, . . . , n − 1), and the last equality is due to the fact that in

the ring Z2n the carry to the (n+ 1)th place is just ignored (and that carry(x0) = 0).

We now describe the algorithm. Let [x1]2, . . . , [xn]2 be the input bitwise shares;

Section 6.1. MPC for Bit Decomposition and Ring Composition 135

the output should be [x]2
n
=
∑n

j=1 2
j−1 · xj.

Step 1 – local decomposition: In this step, the parties locally compute shares of

the individual bits of their shares, for each j. Specifically, as above, let the sharing

[xj]2 be with values (xj
0, x

j
2), (x

j
1, x

j
0) and (xj

2, x
j
1). The parties generate shares of their

shares as follows, via local computation only:

Table 6.4: Reference for local re-sharing for ring composition

P0 P1 P2

Original shares of xj : (xj
0, x

j
2) (xj

1, x
j
0) (xj

2, x
j
1)

New sharing of xj
0: (xj

0, 0) (0, xj
0) (0, 0)

New sharing of xj
1: (0, 0) (xj

1, 0) (0, xj
1)

New sharing of xj
2: (0, xj

2) (0, 0) (xj
2, 0)

At this point, the parties hold [xj
0]

2, [xj
1]

2, [xj
2]

2 for j = 1, . . . , n.

Step 2 – add while removing carry: For j = 1, . . . , n, the parties compute the

shares [αj]
2 = [xj

0]
2 ⊕ [xj

1]
2 ⊕ [xj

2]
2,

[βj]
2 = majority

(
xj
0, x

j
1, x

j
2

)
and [γj]

2 = majority (αj, βj−1, γj−1), where β0 = γ0 = 0.

(Recall that each majority computation requires one bit-wise multiplication.) Then,

the jth bit of the result is mapped to a share [xj]2
n
of a ring element by computing

[vj]2 = [αj]
2 ⊕ [βj−1]

2 ⊕ [γj−1]
2 (10)

and projecting the result into the ring. That is, if a party holds a pair of bits (0, 1)

for its share of [vj]2, then it defines [xj]2 to simply be (0, 1) in the ring Z2n (i.e.,

the integers 0 and 1). Finally, the parties use local computation to obtain [x]2
n
=∑n

j=1 2
j−1 · [xj]2

n
.

We stress that one should not confuse [vj]2 and [xj]2
n
; they are both shares of

the same value in some sense, but actually define very different values. To clarify

this, observe that if vj0 = vj1 = 1 and vj2 = 0, then (vj0, v
j
1, v

j
2) constitute a bit sharing

of [vj]2 = 0. However, after projecting this into the ring, we have that it defines a

ring-sharing of [xj]2
n
= 2 (because vj0+vj1+vj2 = 0 mod 2 but vj0+vj1+vj2 = 2 mod 2n).

We summarize the overall ring composition in Protocol 2.

136 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

　 Protocol 6.2： Communication-Efficient Ring Composition from (Z2)
n to

Z2n

• Inputs: Each party Pj hold the share [xn]2i , [x
n−1]2i , . . . , [x

1]2i for a secret

x =
∑n

j=1 2
j−1 · xj and the opcode ring comp for ring composition. Let

β0 = γ0 = 0.

• The protocol:

1. The parties perform local re-sharing for [xn]2, . . . , [x1]2 and ob-

tain the shares ([xn
0]

2, [xn−1
0]2, . . . , [x1

0]
2), ([xn

1]
2, [xn−1

1]2, . . . , [x1
1]

2), and

([xn
2]

2, [xn−1
2]2, . . . , [x1

2]
2).

2. For j = 1, . . . , n, the parties compute [αj]
2 = [xj

0]
2 ⊕ [xj

1]
2 ⊕ [xj

2]
2,

[βj]
2 = majority(xj

0, x
j
1, x

j
2) and [γj]

2 = majority(αj, βj−1, γj−1), and

then compute [vj]2 = [αj]
2 ⊕ [βj−1]

2 ⊕ [γj−1]
2. Then, the parties

perform local re-sharing for [vj]2 as shown in Table 6.4 and obtain

[xj+1
0]2, [xj+1

1]2, [xj+1
2]2.

3. The parties Pi sets [x]2
n

i := ([vn]2i ||[vn−1]2i || · · · ||[v1]2i) where i ∈
{0, 1, 2}. Finally, Pi outputs (ring comp, [x]2

n

i).

This operation as the whole is denoted by [x]2
n

=

ring comp([xn]2, . . . , [x1]2).

Correctness: Correctness of the ring composition procedure is proven in a similar

way to the decomposition.

6.1.5 Variants: Reducing the Round Complexity

It is possible to use known methods for adding in log n rounds, in order to reduce the

round complexity of the bit decomposition. However, these come at a cost of much

higher AND complexity. Instead, we utilize specific properties of our bit decomposi-

tion method in order to reduce the number of rounds, while only mildly raising the

Section 6.1. MPC for Bit Decomposition and Ring Composition 137

number of ANDs. Our method is basically a variation of a carry-select adder [124],

modified to be suited for bit decomposition. Observe that since the computation

is essentially the same for bit decomposition and ring composition (regarding the

computation of αj, βj, γj), the same method here works for ring composition as well.

Recall that bit decomposition works by computing [αj]
2 = [xj

0]
2 ⊕ [xj

1]
2 ⊕ [xj

2]
2,

[βj]
2 = majority

(
xj
0, x

j
1, x

j
2

)
, and [γj]

2 = majority (αj, βj−1, γj−1). The final shares

are obtained by XORing these values and so does not add any additional rounds of

communication. Observe that the αj and βj shares can all be computed in parallel

in a single round. However, the γj values must be computed sequentially, since γj

depends on γj−1. In order to explain the basic idea behind our tradeoff between

computation and rounds, we show concretely how to reduce the number of rounds to

approximately one half and one quarter, and then explain the general tradeoff:

Reducing to n/2 + 2 rounds. As described above, all of the αj, βj values can be

computed in the first round, at the cost of exactly n AND gates. Next, the parties

compute the following:

1. γ1, . . . , γn/2 at the cost of n/2 rounds and n/2 AND gates,

2. γn/2+1, . . . , γn under the assumption that γn/2 = 0, at the cost of n/2 rounds and

n/2 AND gates, and

3. γn/2+1, . . . , γn under the assumption that γn/2 = 1, at the cost of n/2 rounds and

n/2 AND gates.

Observe that all three computations above can be carried out in parallel, and thus

this requires n/2 rounds overall. Next, the parties use a MUX to compute which

γn/2+1, . . . , γn values to take; this is possible since γn/2 is already known at this point.

This MUX uses a single AND gate per bit, coming to a total of n/2 AND gates, and

a single round. The overall cost is 3n AND gates and n/2+ 2 rounds. Concretely for

32 bit values, this results in 96 AND gates and 17 rounds (instead of 64 AND gates

and 32 rounds).

Reducing to n/4 + 4 rounds. This time we divide the γj values to be computed

into 4 parts, as follows. In the first round, all αj, βj values are computed. Then:

1. γ1, . . . , γn/4 are computed at the cost of n/4 rounds and n/4 AND gates,

138 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

2. In parallel to the above, γ i·n
4
+1, . . . , γ (i+1)·n

4

for i = 1, 2, 3 are computed all in

parallel, each under the assumption that γ i·n
4
= 0 and that γ i·n

4
= 1, at the cost of

n/4 rounds and n/4 AND gates each (overall 6 such computations).

When all of the above are completed, the parties compute sequentially the MUX over

γ i·n
4
+1, . . . , γ (i+1)·n

4

given γ i·n
4

for i = 1, 2, 3 (each at a cost of n/4 AND gates and 1

round). The overall cost is 3.5n AND gates and n/4 + 4 rounds. Concretely for 32

bit values, this results in 112 AND gates and 12 rounds (instead of 64 AND gates

and 32 rounds).

The general case. The above method can be used to divide the γj values into ℓ

blocks. In this case, the number of rounds is n
ℓ
to compute the γ values, and ℓ− 1 to

compute the sequential MUXes. Using a similar computation to above, we have that

the overall number of rounds is n
ℓ
+ ℓ, and the number of AND gates is n + (3ℓ−2)n

ℓ
.

With this method, the number of rounds is minimized when n
ℓ
= ℓ, which holds when

ℓ =
√
n and results in 2

√
n rounds. In this case, the number of AND gates to be

computed equals 4n−2
√
n. Importantly, this method provides a tradeoff between the

number of rounds and the number of AND gates, since less blocks means less MUX

computations. See Table 6.5 for a comparison on the number of rounds and AND

gates, minimizing the number of rounds and minimizing the number of AND gates,

when using our method. (Note that the minimum number of AND gates is always

obtained by taking ℓ = 1; i.e., by using the original method above.) These values are

computed using the general equations above.

Table 6.5: Different parameters and their cost

Minimal ANDs Minimal Rounds

Size n ANDs Rounds ℓ ANDs Rounds

16 32 16 4 56 8

32 64 32 4 112 12

64 128 64 8 240 16

128 256 128 10 487 23

Somewhat surprisingly, it is possible to do even better by using a variable-length

carry-adder approach. The idea behind this is that it is possible to start computing

Section 6.1. MPC for Bit Decomposition and Ring Composition 139

the MUXes for the first blocks while still computing the γ values for the later blocks.

To see why this is possible, consider the concrete example of n = 16 and ℓ = 4. When

dividing into equal-size blocks of length 4, the overall number of rounds is 8 (1 round

for computing αj, βj and 7 for the rest). For this concrete case, we could divide the

input into five blocks of sizes 2,2,3,4,5, respectively. Observe that the MUX needed

using the result of the first block to choose between the two results of the second

block can be computed in parallel to the last γ value on the third block. Likewise,

the next MUX can be computed in parallel to the last γ value of the fourth block,

and so on. In this way, there are no wasted rounds, and the overall number of rounds

is reduced from 7 to 6. Although this is a modest improvement, for larger values of

n, it is more significant. For example, we need 18 rounds for bit decomposition of

128-bit values, in contrast to 23 rounds with fixed-length blocks (see Table 6.5). We

wrote a script to find the optimal division into blocks for this method, for various

values of n; the results appear in Table 6.6.

Table 6.6: Optimal block-size and costs for the variable-length approach (computation

is from right-to-left)

Size n ANDs Rounds Block Sizes

16 63 7 5, 4, 3, 2, 2

32 128 10 8, 7, 6, 5, 4, 2

64 255 13 11, 10, 9, 8, 7, 6, 5, 4, 4

128 519 18 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 2

Observe that the number of ANDs required for this method is greater than in

Table 6.5, thus further contributing to the aforementioned tradeoff. We stress that

this tradeoff is significant since different parameters may provide better performance

on slow, medium and fast networks.

Bit decomposition using conditional sum adders. We conclude with a different

approach that is based on a conditional sum adder. This variant takes a divide-and-

conquer approach to computing the blocks. That is, it splits the n-bit input into two

blocks of n/2 bits, uses a conditional sum adder to compute the sum of the lower

block with carry 0 and the sum of the higher block with carries 0 and 1, and then

140 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

uses MUX gates to select the correct outputs for the higher block. At the bottom

level, a pair of bits is simply added using a full adder. This tree-based approach

leads to a logarithmic number of rounds at an overall cost of O(n log n) AND gates,

since there are a linear number of MUX gates at every level. The concrete costs for

this method are presented in Table 6.7. As can be seen, the number of rounds is

significantly reduced, but at the cost of a notable increase in the number of ANDs.

In slow networks with fast computing devices, this approach can be preferable.

Table 6.7: Costs for the conditional-sum adder approach

Size n ANDs Rounds

16 121 6

32 280 7

64 631 8

128 1398 9

6.1.6 Security

Let v be a value. We say that type(v) = Z2n if v ∈ Z2n and we say that type(v) = Z2

if v ∈ {0, 1}. We will relate to the addition, scalar multiplication and multiplication

of values below. In all cases, these operations are only possible for values of the same

type.

In Fmpc, we define a general MPC functionality that enables carrying out stan-

dard operations on shared values: addition, scalar multiplication and multiplication

(beyond sharing input and getting output). However, in contrast to the usual defini-

tion, we define Fmpc to carry out these operations on both shares of bits and shares

of ring elements. In addition, the functionality enables the decomposition of a ring

element in Z2n to n shares of bits, and the ring composition of n shares of bits to a

ring element. This provides a much more general functionality since computations

can be carried out both using arithmetic circuits and Boolean circuits.

Section 6.1. MPC for Bit Decomposition and Ring Composition 141

Functionality 6.1： Fmpc – The Mixed MPC Functionality

Fmpc runs with parties P1, . . . , Pm and the ring Z2n , as follows:

• Upon receiving (input, id, i, v) from party Pi where v ∈ Z2n or v ∈ {0, 1} and id

has not been used before, Fmpc sends (input, id, i) to all parties and locally stores

(id, v).

• Upon receiving (add, id1, id2, id3) from all honest parties, if there exist v1, v2 such

that (id1, v1) and (id2, v2) have been stored and type(v1) = type(v2), and id3 has

not been used before, then Fmpc locally stores (id3, v1 + v2).

• Upon receiving (scalarmult, id1, id2, c) from all honest parties, if there exists a v

such that (id1, v) has been stored and type(c) = type(v), and id2 has not been used

before, then Fmpc locally stores (id2, c · v).

• Upon receiving (mult, id1, id2, id3) from all parties, if there exist v1, v2 such that

(id1, v1) and (id2, v2) have been stored and type(v1) = type(v2), and id3 has not

been used before, then Fmpc locally stores (id3, v1 · v2).

• Upon receiving (decompose, id, id1, . . . , idn) from all parties, if there exists a v such

that (id, v) has been stored and type(v) = Z2n , and id1, . . . , idn have not been used

before, then Fmpc locally stores (idi, vi) for i = 1, . . . , n, where v = v1, . . . , vn.

• Upon receiving (recompose, id1, . . . , idn, id) from all parties, if there exist v1, . . . , vn

such that (idi, vi) has been stored and type(vi) = Z2 for all i = 1, . . . , n, and id has

not been used before, then Fmpc locally stores (id, v), where v = v1, . . . , vn.

• Upon receiving (output, id, i) from all parties, if there exists a v such that (id, v)

has been stored then Fmpc sends (output, id, v) to party Pi.

The multiplication protocol. A formal description of the protocol that securely

computes the multiplication functionality Fmult in the Fcr-hybrid model appears in

Protocol 7.

Observe that add and scalarmult in Fmpc are operations that depend only on the

honest parties. This is due to the fact that they involve local operations only, and

142 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

thus the adversary cannot interfere in their computation. The standard Fmpc func-

tionality fulfilled by secret-sharing based protocols is the same as Functionality 6.1,

with the exception that all operations of one type only and there are not decompose

or recompose operations. We denote the standard Fmpc functionality that works over

the ring R by FR
mpc (and so denote FZ2

mpc for bits and FZ2n
mpc for the ring Z2n .

Security of bit decomposition and ring composition. The fact that our pro-

tocols are secure follow immediately from the fact that they are comprised solely of

the following elements:

• Local transformation operations from valid bit shares to valid ring shares and vice

versa,

• Bit-MPC add and multiply operations over bit shares, and

• Ring-MPC add and multiply operations over ring shares.

Since the MPC operations use secure protocols and work on valid shares of the appro-

priate type, these operations are securely carried out. Furthermore, since the local

transformations require no communication, an adversary cannot cheat. Thus, the

combination of the bit and ring protocols, along with the bit decomposition and ring

composition protocols presented above, constitute a protocol that securely computes

the mixed MPC functionality Fmpc.

In order for the above to work, we need the bit and ring protocols to have the

property that the original simulator (that did not consider bit-decompositon) also

successfully simulate the protocol in the presence of the bit-decomposition protocols.

It is straightforward to see that the simulation of the new protocol is exactly the same

as before except for outputs that depend on a share of some value. This happens when

local bit decomposition converts a share into a secret shared value. This simulation

is not trivial since the above MPC functionality does not keep shares as its internal

state. Nevertheless, fortunately, this exception does not happen in our functionality

since full bit-decomposition does not reveal any value that depends on a share. By

being deliberate in this point, we are able to simulate the functionality as before.

6.1.7 Efficiency

The complexity of our MPC conversions of shares between that of Z2n and that of

Zn
2 are given in Table 6.8. These numbers refer to the three-party protocol of [5]

Section 6.1. MPC for Bit Decomposition and Ring Composition 143

that is secure in the presence of malicious adversaries. The most optimized version

of that protocol requires each party to send just 7 bits per AND gate, meaning an

overall cost of 21 bits per AND gate for all parties. In Table 6.8 we provide the

communication cost and number of rounds for our protocol, with different tradeoffs

between computation and round complexity:

Table 6.8: Complexity of decomposition and ring composition

Version Total comm. bits Rounds

Basic conversion (n = 32) 1,344 32

Variable-length adder (n = 32) 2,688 10

Conditional-sum adder (n = 32) 5,880 7

Basic conversion (n = 128) 5,376 128

Variable-length adder (n = 128) 10,899 18

Conditional-sum adder (n = 128) 29,358 9

We now compare our protocol to the previous best protocols. We stress that pre-

vious protocols work generically for any ring, and as such are more general. However,

this shows that much can be gained by focusing on rings of specific interest, espe-

cially the ring of integers which is of interest in many real-world computations. In

Table 6.9, we present the cost of our protocols versus those of [39], [99] and [119],

when applied to the ring Z232 . In all cases, we consider the concrete cost when us-

ing the low-communication three-party protocol of [5] that requires only 7-bits of

communication per party per AND gate. The results show the striking improvement

our method makes over previous protocols, for the specific case of the ring Z2n , and

when using replicated secret sharing. For our protocol, we present the costs for the

32-round version, with minimum AND complexity.

144 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

Table 6.9: Comparison of Complexity of 32-bit Integer Conversions for Secure 3-Party

Computation

Protocol Method Total comm. bits Rounds

Bit Decomposition [39] +[5] 723,912 38

[99] +[5] 408,072 25

Ours+[5] 1,302 32

Ring-Composition [119] +[5] 340, 704 62

Ours+[5] 1,302 32

We remark that a direct conversion of the SPDZ bit decomposition method to

the case of rings would yield the complexity of [39]+[5] in Table 6.9. Thus, our

special-purpose conversion protocols are significant with respect to the efficiency of

the result.

6.2 MPC for Exponentiation

6.2.1 Introduction

An Use Case: Securing Key Management by MPCs Basically, when we want

to process confidential information on distributed systems, MPC could be an

answer. As one of notable example of such applications, we can consider dis-

tributed ledgers for cryptocurrency, as we know Blockchain. The protection of

secret keys in cryptosystems is an critical issue in several systems, in particular

distributed system. Since the authority managing secret keys could be a single

point of failure, key management is a problem that plague system engineers.

However, even today, the signing key of the Blockchain is often managed by

depositing with trusted authority such as exchanges in many services, thus it

cannot be said that it is managed securely enough.

One of the solutions against this issue, we can consider applying MPCs to com-

pute digital signatures among the nodes of distributed ledger, while concealing

its signing keys. These research are also probably best known as distributed

signatures or threshold signatures [122, 57, 84]. The secret sharing-based MPCs

like [6, 5, 34, 92] can construct distributed signature schemes, since these MPCs

Section 6.2. MPC for Exponentiation 145

can compute any functions by composition of primitive MPC operations.

Difficulty To handle cryptographic operation like digital signatures, we should de-

sign MPC protocols for algebraic operations. In particular, modular exponen-

tiation is most important building block for constructing many cryptographic

protocols. Of course, the modular exponentiation is considered as the instruc-

tion widely-used other than cryptography, and it should be provided as a basic

instruction.

However, we know that the cryptographic operations basically require large

computation cost. Therefore, MPCs for cryptographic operations should be

more inefficient.

Secret sharing-based MPCs generally requires communication between parties

for computing multiplication. Hence, the complexity of the MPCs are domi-

nated by the total number and the depth of the multiplications. The number

of multiplications indicates the communication complexity of the MPC and the

depth of multiplications indicates the round complexity (i.e., the number of

communications) of the MPC.

One more important things is that non-obviousness of type conversion on MPCs.

For non-MPC computations, we can easily perform both of arithmetic opera-

tions (e.g., addition, multiplication) and bit-wise operation (e.g., XOR, AND,

left/right-shift). On the other hand, in MPCs, the data for arithmetic opera-

tion should be shared by arithmetic shares and the data for boolean operation

should be shared by boolean shares. The conversion between these distinct type

of shares also requires MPCs, namely additional communication and computa-

tion cost. A general method for modular exponentiation as known as square-

and-multiply (or binary exponentiation) also needs to deal with boolean and

arithmetic operations.

The MPCs based on replicated secret sharing are generally efficient than other

frameworks, but the cryptographic operations are still heavy even for these schemes,

let alone modular exponentiation as mentioned above. In this paper, as an important

tool to apply MPC to distribuited signatures, we focus on how to construct MPC for

modular exponentiation on recent MPC frameworks.

146 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

Contribution In this section, we propose a new MPC protocol for modular ex-

ponentiation with public base for MPC framework based on replicated secret shar-

ing [6, 5, 34, 92]. These frameworks are known as best practice for 3-party compu-

tation, but still unsuitable for cryptographic operation since these operations require

much amount of multiplications.

Our proposed scheme is dedicated for modular exponentiation, which is based on

the structure of secret sharing deployed by the frameworks of [6, 5, 34, 92].

More precisely, previous MPCs for modular exponentiation based on replicated

secret sharing require O(n2) communication complexity by processing square-and-

multiply method on MPC, where n is the size of the secret in bits. On the other hand,

the proposed schemes in this paper require O(n) communication without deteriorating

the order of round complexity. For more concrete comparison, see Sect. 6.3.2.

We will show three types of construction, depending on the size of the modulus.

First is the case when the modulus is power of 2, and second is the case for modulus

is prime. Third scheme is also the case when the modulus is prime, with additional

condition about the base and the exponent.

In addition, as an application of the proposed scheme, we consider applying this

protocols to the distributed signatures, which generates signatures while concealing

signing keys. We will show the experimental results assuming a scenario of distributed

signatures.

6.2.2 Related Work

Before describing the proposed scheme, we will see the standard way to compute

exponentiation on MPC. As the best of our knowledge, there is no dedicated MPC

protocol for computing exponentiation

Section 6.2. MPC for Exponentiation 147

　 Protocol 6.3： Previous work: modular exponentiation with public base

• Inputs: Each party Pi holds a public value a, the share [x]qi for a secret x

and the opcode pub expo for public exponentiation.

• The protocol:

1. The parties perform [xn−1]
2
i , , . . . , [x0]

2
i = bit decomp([x]qi)

2. For j = 0, . . . , n− 1 : [xj]
q
2 = inject([xj]

2
i)

3. [y]qi = [1]qi

4. For j = n− 1, . . . , 0 : [y]qi = a2
j · [xj]

q
i · [y]

q
i + (1− [xj]

q · [y]qi)

5. The parties output (pub expo, [y]qi)

This operation as the whole is denoted by [y]q = pub expo(a, [x]q)

Protocol 6.3 is an implementation of the ”square-and-multiply” method, which is

a standard way of computing modular exponentiation. This method can be applied

also the base is private.

Efficiency We can easily see that the dominant part of complexity in this proce-

dure is the for-loop. This protocol takes Rbd +Rinj + 2n round complexity and

Cbd + Cinj + 3n2 communication complexity, where Cbd, Cinj are the commu-

nication complexity of bit-decomposition and bit-injection, and Rbd, Rinj are

round complexity of bit-decomposition and bit-injection, respectively. If we ap-

ply the scheme of [6, 7], Protocol 6.3 takes 3n + 2 rounds and 15n2 + 6n-bit

communication complexity.

6.2.3 A Key Technique: Skew Exponentiation

Our basic idea is, like bit-decomposition of [7, 92, 77], to compute the shares of

ax1 , ax2 , ax3 for some base a and share [x = x1 + x2 + x3]
q. If we have such values, we

can easily see that the exponentiation can be computed by ax = ax1 · ax2 · ax3 .

148 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

First, we introduce a new skew operation, named ”Skew Exponentiation” as a

first step of proposed scheme. After that, we will describe how to apply it to MPC

exponentiation.

Looking back on the procedure of skew decomp, what make this trick possible

is the structure of replicated secret sharing. More precisely, in 2-out-of-3 replicated

secret sharing, all values are retained in either two parties. Therefore, the parties can

obtain a 2-out-of-3 share of each sub-shares xi (i ∈ {0, 1, 2}) without communication

by considering the value that they don’t own as 0.

In this construction method, each element consisting [xi]
q is xi itself or 0. More-

over, in the problem setting of modular exponentiation with public base, the base a

is known. Hence, the parties that have xi can also compute axi directly. From this

discussion, we can construct skew exponentiation as follows.

　 Protocol 6.4： Skew Exponentiation

• Inputs: Each party Pi holds a public value a, the share [x]qi for a secret x

and the opcode skew expo for public exponentiation.

• The protocol:

1. Each party Pi sets

– Let [ax0]q = ((ax0 , ax0), (ax0 , 0), (0, 0))

– Let [ax1]q = ((0, 0), (ax1 , ax1), (ax1 , 0))

– Let [ax2]q = ((ax2 , 0), (0, 0), (ax2 , ax2))

– Output (skew expo, [ax0]q, [ax1]q, [ax2]q)

2. The parties output (skew expo, ([ax0]qi , [a
x1]qi , [a

x2]qi)).

This operation as the whole is denoted by ([ax0]q, [ax1]q, [ax2]q) =

skew expo(a, [x]q)

Section 6.2. MPC for Exponentiation 149

6.2.4 Communication-Efficient Modular Exponentiation

We recall that what we want to compute is ax = ax0+x1+x2 mod m. Note that x is not

equal to x0 + x1 + x2 but x0 + x1 + x2 mod m. Therefore, we couldn’t compute the

share [ax] by [ax0] · [ax1] · [ax2] naively, without checking whether the sum x0+x1+x2

goes over modulus.

Scheme 1: the case when modulus is prime

Next we consider the case the modulus is prime p.

In this case, we can see that ax = ax
′+kp = axak where k ∈ {0, 1, 2} by Fermat’s

little theorem. Namely, x0+x1+x2 can go over the modulus at most twice. Therefore,

we should check modulus overflow at the point of computing x0+x1 and (x0+x1)+x2.

If the these values go over the modulus p, we can fix it by multiplying a−1.

To detecting the modulus overflow, we use bit-decomposition in this protocol. The

point is that, if a certain value a is larger than the modulus p, the parity of a mod p

is flippled, since p is odd. Therefore, when we check the least significant bit of x0, x1,

and x0 + x1 mod p, if the parity is not consistent, it means that x1 + x2 exceed p.

We show the first our modular exponentiation protocol in Protocol 6.5. Step 1 is

the skew exponentiation shown in 6.4, and Step 2 is “temporal” result of the modular

exponentiation. As mentioned the above, we should check whether the exponent of

the result in Step 2 overflow the modulus, and fix if it indeed overflow. Step 3–6

is the description of modulus overflow check for x0 + x1, and similarly Step 7–9 is

check for (x0 + x1) + x2. What we actually need are only least significant bit (LSB)

of these values, we don’t have to compute full procedure of bit decomp, but can close

the process when we get LSBs of the values.

Efficiency: Each bit decomp and multiplication can be performed in parallel. In

the above procedure, Step 2 takes 2-round and 6n-bit communication. Each

bit decomp takes (n+1)-round and 10n+4-bit communication (using [77] since

q is prime) and Step 3, 4, 5, 7, and 8 can be done in parallel. Steps 10 and

11 take 2-round and 6n-bit communication respectively and these steps can

be done in parallel. Step 12 and 13 take 1-round and 6n-bit communication

respectively. In total, modexpp takes 2+(n+1)+2+1+1 = (n+7)-round and

6n+ 5 · (10n+ 4) + 2 · 6n+ 2 · 6n = (80n+ 20)-bit communication complexity.

150 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

　 Protocol 6.5： Modular Exponentiation with prime modulus

• Inputs: Each party Pi holds a public value a, the share [x]qi for a secret x and the

opcode modexpp for modular exponentiation with prime modulus.

• The protocol:

1. ([ax0]q, [ax1]q, [ax2])← skew expo([x]q)

2. [s]q = [ax0]q · [ax1]q · [ax2]q

3. [dn−1]
2, . . . , [d0]

2 = bit decomp([x0]
q)

4. [en−1]
2, . . . , [e0]

2 = bit decomp([x1]
q)

5. [fn−1]
2, . . . , [f0]

2 = bit decomp([x0 + x1]
q)

6. [b1]
2 = [x0 + x1 > p]2 = [d0 ⊕ e0 ̸= f0]

q = [d0 ⊕ e0 ⊕ f0]
q

7. [gn−1]
2, . . . , [g0]

2 = bit decomp([x2]
q)

8. [hn−1]
2, . . . , [h0]

2 = bit decomp([x0 + x1 + x2]
q)

9. [b2]
2 = [x0 + x1 + x2 > p]2 = [f0 ⊕ g0 ̸= h0]

q = [f0 ⊕ g0 ⊕ h0]
q

10. [b1]
q = bit inject([b1]

2)

11. [b2]
q = bit inject([b2]

2)

12. [t]q = [s]q · [b1]q · a−1 + [s]q(1− [b1]
q)

13. [t]q = [t]q · [b2]q · a−1 + [t]q(1− [b2]
q)

14. The parties output (modexpp, [t]
q)

This operation as the whole is denoted by ([t]q) = modexpp(a, [x]
q)

Scheme 2: the case where modulus is power of 2

Next we consider the case when q = 2n for some n ∈ Z. To consider this case, we

recall Euler’s theorem.

Theorem 6.2.1 (Euler’s theorem). If n and a are coprime positive integers, aϕ(n) = 1

mod n where ϕ(·) is Euler’s totient-function.

By Euler’s theorem, if a is prime, a2
n−1

= 1 mod 2n, which implies a2
n
= 1

Section 6.2. MPC for Exponentiation 151

mod 2n. Namely, in this case, we don’t have to check the overflow of exponent.

　 Protocol 6.6： Modular Exponentiation with the case where modulus is

power of 2

• Inputs: Each party Pi holds a public value a, the share [x]qi for a secret

x and the opcode modexp2n for modular exponentiation with the modulus

of power of 2.

• The protocol:

1. [ax0]q, [ax1]q, [ax2] = skew expo([x]q)

2. [s]q = [ax0]q · [ax1]q·][ax2]q

3. output (modexp 2n, [s]q).

This operation as the whole is denoted by ([s]q) = modexp2n(a, [x]
q)

Note that we cannot apply this procedure if a is even. In addition, it is difficult

to apply the technique like Scheme 1 since there is no multiplicative inverse for all

even value in Z2n , that is we cannot compute a−1 on Z2n if a is even. However, if we

encounter case to apply the Scheme 2, this is very efficient.

Efficiency Scheme 2 requires requires only 2 multiplication for n-bit elements and

no bit decomp. Total cost of Scheme 2 is 2 rounds and 6n-bit communication

complexity.

Scheme 3: special case that the discrete logarithm is small

We can consider the case when the size of the base and the exponent value are

different. For example, we consider the case when p = 2q + 1, and x0, x1, x2 ∈ Zq,

a ∈ Zp. In such case, x0 + x1 + x2 can exceed p at most once.

152 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

　 Protocol 6.7： Modular Exponentiation in the special case where p = 2q + 1

• Inputs: Each party Pi holds a public value a, the share [x]qi for a secret x and the opcode

modexp sp for modular exponentiation in the special case.

• The protocol:

1. [ax0]p, [ax1]p, [ax2]p = skew expo([x]q)

2. [s]p = [ax0]p · [ax1]p·][ax2]p

3. [dn−1]
2, . . . , [d0]

2 = bit decomp([x0 + x1]
q)

4. [en−1]
2, . . . , [e0]

2 = bit decomp([x1]
p)

5. [fn−1]
2, . . . , [f0]

2 = bit decomp([x0 + x1 + x2]
p)

6. [b]2 = [x0 + x1 + x2 > p]2 = [d0 ⊕ e0 ⊕ f0]
2

7. [b]p = bit inject([b]2)

8. [t]p = [s]p · [b]p · a−1 + [s]p(1− [b]p)

9. output (modexp sp, [s]q).

This operation as the whole is denoted by ([s]q) = modexp sp(a, [x]q)

In addition, if the case p > 3q+1, we don’t have to check the overflow of x0+x1+x2

since x0 + x1 + x2 mod p = x0 + x1 + x2 in this parameter.

　 Protocol 6.8： Modular Exponentiation in the special case where p > 3q + 1

• Inputs: Each party Pi holds a public value a, the share [x]qi for a secret x and the opcode

modexp sp2 for modular exponentiation in the special case.

• The protocol:

1. [ax0]p, [ax1]p, [ax2]p = skew expo([x]p)

2. [s]p = [ax0]p · [ax1]p·][ax2]p

3. output (modexp sp2, [s]p).

This operation as the whole is denoted by ([s]q) = modexp sp2(a, [x]q)

Section 6.2. MPC for Exponentiation 153

Efficiency: Scheme 3 requires less number of invocation of bit decomp. In particular,

in the case where 3q+1 ≤ p, we can perform same procedure as Scheme 2. If the

case where 2q+1 < p ≤ 3q+1 total cost of Scheme 3 is obviously n+4 rounds

and (36n − 18)-bit communication complexity. If the case where 3q + 1 < p,

Scheme 3 takes only 2 rounds and 6n-bit communication as same as Scheme 2.

6.2.5 Security

In this section, we discuss the proof of the security for the proposed scheme described

in Sect. 6.2.4.

Universal Composability First, we confirm how the security of sub-protocols (like

addition and multiplication described in Sect. 3.3.3, and local-resharing of sub-shares)

can imply the security of the proposed scheme.

Here we describe the concept of universal composability (UC) framework proposed

by [29]. Protocols which is secure in UC framework maintain its security even if it

is composed with arbitrary other (secure and insecure) protocols. In particular, [78]

clarified a condition under which the security of protocols implies the security of these

protocols under universal composition as follows.

Proposition 6.2.2 (Thm. 1.5 in [78]). Every protocol that is secure in the stand-

alone model and has start synchronization and a straight-line black-box simulator is

secure under concurrent general composition (universal composition).

In the above theorem, “straight-line” simulator means that the non-rewinding

simulator, and “start synchronization” means that the inputs of all parties are fixed

before the execution begins (also called as “input availability”).

Our protocols and sub-protocols in this paper satisfies start synchronization.

Therefore, it is sufficient to prove security in the classic stand-alone setting and au-

tomatically derive universal composability.

Security of Sub-protocols The security of sub-protocols described in Sect. 3.3.3

are proven in [6].

The proof in [6] consist of three steps as follows. Here we denote πF ≡ f to say

that π privately computes f in the F -hybrid model.

1. Proving the sub-protocols π privately compute f in the Fmult-hybrid model

in the presence of one semi-honest corrupted party, where Fmult is an ideal

functionality for computing multiplication (namely, πFmult ≡ f).

154 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

2. Proving a protocol ρ privately computes Fmult in the FCR-hybrid model in the

presence of one semi-honest corrupted party, where FCR is an ideal functionality

for computing correlated randomness (namely, Fmult ≡ ρFCR).

3. Proving a protocol σ privately computes FCR in plain model in the presence of

one semi-honest corrupted party (namely, σ ≡ FCR).

The above three steps and the composition theorem described in Theore 6.2.2 lead

πρσ ≡ f , which concludes the proof.

Security of Our Protocols Adding to the sub-protocols in Sect. 3.3.3, our protocols

contain one more sub-protocol, that is, local exponentiation (or local re-sharing of

sub-shares).

Fortunately, we can easily confirm that step 1 of the above proof still can be proven

even π contains local re-sharing of sub-shares since this functionality consist of local

computation only, as same as addition protocol. This is not affect the simulation

in the Fmult-hybrid model and πFmult ≡ f . Regarding Step 2 and 3 of the proof,

we can apply same proof as [6] for our protocol since we adopt same algorithms for

multiplication and correlated randomness.

Finally, we can apply the proof of 6.2.5 to our protocol and thus all sub-protocols

including local re-sharing of sub-shares are secure in terms of Definition 2.4.2. As

described above, theorem 6.2.2 [78] guarantee that our all sub-protocols are secure in

UC model. Therefore, by the UC composition theorem [29], we can prove the security

of our protocols in Sect. 6.2.4.

On the Security for Malicious Adversaries We recall that our protocols in this

paper are basically secure against semi-honest adversaries (see Definition 2.4.2).

However, the protocols also can be secure in the presence of malicious adver-

saries by applying the technique of [56] (or its optimized version [5]), which

allows us to construct a 3PC for malicious adversaries from 3PC protocols for

semi-honest adversaries. If we apply the scheme in [5], the communication

complexity is roughly 7 times that of the protocols in Sect 6.2.4.

6.2.6 Efficiency

We summarize the round and communication complexity for each protocol in Ta-

ble 6.10. Basically, our proposed schemes requires O(n) round and O(n)-bit commu-

nication complexity, whereas previous scheme requires O(n2)-bit communication.

Section 6.2. MPC for Exponentiation 155

As an example, we show the comparison of communication bits between previous

scheme and Scheme 1. We can clearly see how efficient the proposed schemes is

compared with the previous scheme. The previous scheme takes over 300kb when

n=256 bit. On the other hand, Scheme 1 requires 15,360-bit communication. As for

Scheme 2 or 3 with 3q + 1 ≤ p case, these takes only 1,536-bit communication.

Table 6.10: Complexity of MPC for Modular Exponentiation over Replicated Secret

Sharing

Method Round Communication

Previous (Square-and-Multiply) 2⌈log q⌉+ 1 12⌈log q⌉2 + 6⌈log q⌉ − 6

Scheme 1 (q is prime) ⌈log q⌉+ 7 80⌈log q⌉ − 20

Scheme 2 (q is power of 2) 2 6⌈log q⌉

Scheme 3 with 2q + 1 < p ≤ 3q + 1 ⌈log p⌉+4 36⌈log p⌉ − 18

Scheme 3 with 3q + 1 ≤ p 2 6⌈log p⌉

Figure 6.1: Comparison for communication bits between previous scheme and scheme

1 in this paper

156 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

6.3 Experimental Evaluation

6.3.1 Implementation Aspects

The cryptosystems which are based on discrete logarithm are basically constructed

by modular exponentiations of group elements, these are suitable for our schemes.

Table 6.11 shows the key sizes of discrete-log based cryptosystems which is recom-

mended in some evaluation documents. We can see that the size of exponent is much

smaller than the size of group elements. In this setting, we can apply Scheme 3 in

this paper, which is most efficient one in our proposal.

Table 6.11: Appropriate data length of discrete-log based cryptosystem for 128/256-

bit security

Method discrete keys Logarithm Group

Security level 128 256 128 256

Lenstra/Verheul [83] 230 474 6790 49979

Lenstra Updated [82] 256 512 4440 26268

ECRYPT [48] 256 512 3072 15360

NIST [100] 256 512 3072 15360

ANSSI [101] 200 200 2048 3072

RFC3776 [102] 256 512 3253 15489

We consider a simple scenario for distributed signatures based on discrete loga-

rithm: the key storage server is distributed three parties P1, P2, P3. Let the signing

key x of the signature scheme is a element of Zq where q is prime. We assume x is

shared among P1, P2, P3 by the replicated secret sharing scheme. Now, a certain au-

thorized user throw a query to the distributed server to generate own signature σ ∈ Zp

using shared his/her signing key by MPC, where p is prime satisfying p > 3q+1 (this

assumption is reasonable according to Table 6.11). As signature schemes suitable for

such scenario, we can choose BLS signature [20] or Waters signature [123].

Environment and Settings We run our experiments on a cluster of three servers,

each with two 10-core Intel Xeon (E5-2650 v3) processors and 128GB RAM, connected

via a 10Gbps Ethernet. (We remark that little RAM was utilized and thus this is not

Section 6.3. Experimental Evaluation 157

a parameter of importance here.)

Based on the parameter shown in Table 6.11, we run two experiments assuming

128-bit security and 256-bit security, respectively. From Table 6.10, we implement

and compare Scheme 3 and previous scheme with the field of size n = log p. For each

experiment, we measure the latency of one MPC process of modular exponentiation,

while fixing the size of q (discrete logarithm) and changing the size of p (i.e., the size

of field).

We also run experiments for various network latency using tc1 command on Linux.

In the experiments, we tried three latency settings assuming LAN/WAN: 0.1ms, 5ms

and 50ms. We suppose that 0.1ms is very low-latency of LAN, 5ms is round-trip

delay of 500km distance (e.g.,between Tokyo-Osaka), and 50ms is round-trip delay of

5000km distance (e.g., between Los Angeles-New York) 2.

6.3.2 Results and Discussion

The results on Scheme 3 are shown in Figure 6.2 and Figure 6.3. We can see that

the proposed scheme works even on WAN network at the same speed as the LAN

network latency. This characteristic comes from that the round complexity is constant

for the size of the field. On the other hand, the previous scheme takes O(n) rounds

and therefore the latency is much larger than the result in Figure. 6.2 and 6.3. For

example, if the size of field is 2048, the round complexity of proposed scheme is

3 · 2048 + 2 = 6146 according to Table 6.11. It takes 0.1 · 6, 146 = 614.6ms when

the case of 0.1ms-latency network, and 50 · 6146 = 307, 300ms when the case of

50ms-latency network ignoring the computation cost etc. In the worst case of this

experiment, which is the log p = 27, 648 bits with 50ms-latency network for 256-bit

security, it takes 50 · (3 · 27, 648+ 2) = 4, 147, 300ms = 69.1 minutes for only network

delay. Namely, our proposed scheme is roughly one or two order of magnitude faster

than previous scheme in a certain setting.

1This command allows us to show/change network traffic settings, like latency, packet loss, etc.
(The name means “traffic control”.)

2We assume the speed of the light passing through the optical fiber is roughly 200,000km/s

158 Chapter 6. Application (2): 3-Party Computation for High-Level Functions

Figure 6.2: Latency-field size with 128-bit security paramete]r (log q = 256 bit)

Figure 6.3: Latency-field size with 256-bit security parameter (log q = 512 bit)

Chapter 7 Conclusion

Finally, we conclude this thesis.

In this thesis, we focus on the question of achieving MPC protocols with very

high throughput on a fast network. This challenge in achieving this is both on the

computational and network levels, and both on theory and implementation levels.

In particular, we have been focused on achieving limits of high-throughput MPC

and its implementation in the settings that 3-party, honest-majority and basically

assuming only information-theoretic assumptions, and utilizing cache memories and

CPU instructions for vectorization to reduce computation cost.

The results achieving in this thesis are the following:

High-throughput semi-honest secure 3-party computation based on repli-

cated SS with honest-majority: We describe a new information-theoretic pro-

tocol (and a computationally-secure variant) for secure 3-party computation with an

honest majority. The protocol has very minimal computation and communication; for

Boolean circuits, each party sends only a single bit for every AND gate (and nothing

is sent for XOR gates).

Optimizing cheating detection for honest-majority MPC We improve general

techniques for cheater detection protocol in MPC, which is based on cut-and-choose

protocols on multiplication triples. In addition, we utilize them to significantly im-

prove the recently published protocol of Furukawa et al. We reduce the bandwidth

of their protocol down from 10 bits per AND gate to 7 bits per AND gate, and show

how to improve some computationally expensive parts of their protocol. Our imple-

mentation achieves a rate of approximately 1.15 billion AND gates per second on

a cluster of three 20-core machines with a 10Gbps network. Thus, we can securely

compute 212,000 AES encryptions per second (which is hundreds of times faster than

previous work for this setting). Our results demonstrate that high-throughput secure

computation for malicious adversaries is possible.

Compiler for secret-sharing based secure computation We design and imple-

ment a MPC compiler for our three-party honest majority MPC. Our implementation

159

160 Chapter 7. Conclusion

is an extension of a well-known MPC compiler called “SPDZ compiler” so that it can

work with general underlying protocols. In this thesis we called the compiler we made

“generalized SPDZ compiler”. Moreover, our SPDZ extensions were made in mind

to enable the use of SPDZ for arbitrary protocols and to make it easy for others to

integrate existing and new protocols.

Dedicated MPC protocol for complex functionalities : the cases of bit

decomposition, ring composition and modular exponentiation We propose

RSSS-based three party computation protocols for (1) bit decomposition; namely,

arithmetic-to-Boolean type conversion (2) ring composition; namely, Boolean-to-

arithmetic type conversion (3)modular exponentiation on the case where the base

is public and the exponent is private.

Compared with the previous best protocols, our bit decomposition and ring com-

position achieve two order of magnitude less communication bits in 32-bit integer

case, which is considered as a reasonable parameter. The protocols are integrated

into the generalized SPDZ compiler described above and thus we can see the prac-

tical efficiency of these protocols in the complex mixed operation of arithmetic and

Boolean, like SQL query on fixed-point numbers.

Regarding modular exponentiation, we will show the practical effect of our proto-

col by experiments on the scenario for distributed signatures, which is useful for secure

key management on the distributed environment (e.g., distributed ledgers). Our mod-

ular exponentiation protocols are more efficient in terms of both of communication

complexity and round complexity than previous standard scheme. More precisely, for

the size of secret values n, the proposed schemes require O(n) bits communication

whereas the previous scheme requires O(n2) bits. As for the round complexity, a

several variants in our proposal require O(n) round as same as previous scheme, and

other variants in our proposal require just O(1) rounds.

References

[1] Intel Haswell cache performance. http://www.7-cpu.com/cpu/Haswell.html.

[2] Rakesh Agrawal, Alexandre V. Evfimievski, and Ramakrishnan Srikant. In-

formation sharing across private databases. In Proceedings of the 2003 ACM

SIGMOD International Conference on Management of Data, San Diego, Cali-

fornia, USA, June 9-12, 2003, pages 86–97, 2003.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining.

In Proceedings of the 2000 ACM SIGMOD International Conference on Man-

agement of Data, May 16-18, 2000, Dallas, Texas, USA., pages 439–450, 2000.

[4] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure

Computation on Floating Point Numbers. In 20th Annual Network and Dis-

tributed System Security Symposium, NDSS 2013, San Diego, California, USA,

February 24-27, 2013, 2013.

[5] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell,

Ariel Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized Honest-

Majority MPC for Malicious Adversaries - Breaking the 1 Billion-Gate Per

Second Barrier. In 2017 IEEE Symposium on Security and Privacy, SP 2017,

San Jose, CA, USA, May 22-26, 2017, pages 843–862, 2017.

[6] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

High-Throughput Semi-Honest Secure Three-Party Computation with an Hon-

est Majority. In Proceedings of the 2016 ACM SIGSAC Conference on Com-

puter and Communications Security, Vienna, Austria, October 24-28, 2016,

pages 805–817, 2016.

161

162 REFERENCES

[7] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Kelle, Yehuda Lindell, Ariel

Nof, Kazuma Ohara and Hikaru Tsuchida. Generalizing the SPDZ Compiler

For Other Protocols. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, CCS 2018, Toronto, ON, Canada,

October 15-19, 2018, pages 880–895, 2018.

[8] Gilad Asharov and Yehuda Lindell. A Full Proof of the BGW Protocol for

Perfectly-Secure Multiparty Computation. Electronic Colloquium on Computa-

tional Complexity (ECCC), 18:36, 2011.

[9] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Osama

Khan, Lea Kissner, Zachary N. J. Peterson, and Dawn Song. Remote data

checking using provable data possession. ACM Trans. Inf. Syst. Secur.,

14(1):12:1–12:34, 2011.

[10] Donald Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In

Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings,

pages 420–432, 1991.

[11] Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rogaway. Security

with low communication overhead. In Advances in Cryptology - CRYPTO ’90,

10th Annual International Cryptology Conference, Santa Barbara, California,

USA, August 11-15, 1990, Proceedings, pages 62–76, 1990.

[12] Donald Beaver and Shafi Goldwasser. Multiparty Computation with Faulty

Majority. In Advances in Cryptology - CRYPTO ’89, 9th Annual International

Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,

Proceedings, pages 589–590, 1989.

[13] Donald Beaver, Silvio Micali, and Phillip Rogaway. The Round Complexity of

Secure Protocols (Extended Abstract). In Proceedings of the 22nd Annual ACM

Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland,

USA, pages 503–513, 1990.

REFERENCES 163

[14] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness The-

orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ex-

tended Abstract). In Proceedings of the 20th Annual ACM Symposium on

Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10, 1988.

[15] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections

(extended abstract). In Proceedings of the Twenty-Sixth Annual ACM Sympo-

sium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada,

pages 544–553, 1994.

[16] G. R. Blakley. Safeguarding cryptographic keys. In Managing Requirements

Knowledge, International Workshop on(AFIPS), volume 00, page 313, 12 1899.

[17] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework

for Fast Privacy-Preserving Computations. In Computer Security - ESORICS

2008, 13th European Symposium on Research in Computer Security, Málaga,

Spain, October 6-8, 2008. Proceedings, pages 192–206, 2008.

[18] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-

performance secure multi-party computation for data mining applications. Int.

J. Inf. Sec., 11(6):403–418, 2012.

[19] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,

Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus

Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft.

Secure Multiparty Computation Goes Live. In Financial Cryptography and

Data Security, 13th International Conference, FC 2009, Accra Beach, Barba-

dos, February 23-26, 2009. Revised Selected Papers, pages 325–343, 2009.

[20] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil

pairing. J. Cryptology, 17(4):297–319, 2004.

[21] C. Boyd. Digital Multisignatures. Cryptography and Coding.

[22] Colin Boyd. A new multiple key cipher and an improved voting scheme. In

Advances in Cryptology - EUROCRYPT ’89, Workshop on the Theory and

164 REFERENCES

Application of of Cryptographic Techniques, Houthalen, Belgium, April 10-13,

1989, Proceedings, pages 617–625, 1989.

[23] Felix Brandt. How to obtain full privacy in auctions. Int. J. Inf. Sec., 5(4):201–

216, 2006.

[24] Bristol Cryptography Group. SPDZ software. https://www.cs.bris.ac.uk/

Research/CryptographySecurity/SPDZ/, 2016.

[25] Sai Sheshank Burra, Enrique Larraia, Jesper Buus Nielsen, Peter Sebastian

Nordholt, Claudio Orlandi, Emmanuela Orsini, Peter Scholl, and Nigel P.

Smart. High Performance Multi-Party Computation for Binary Circuits Based

on Oblivious Transfer. IACR Cryptology ePrint Archive, 2015:472, 2015.

[26] Niklas Büscher, Andreas Holzer, Alina Weber, and Stefan Katzenbeisser. Com-

piling Low Depth Circuits for Practical Secure Computation. In Computer

Security - ESORICS 2016 - 21st European Symposium on Research in Com-

puter Security, Heraklion, Greece, September 26-30, 2016, Proceedings, Part II,

pages 80–98, 2016.

[27] Niklas Büscher and Stefan Katzenbeisser. Compilation for Secure Multi-party

Computation. Springer Briefs in Computer Science. Springer, 2017.

[28] Ran Canetti. Security and Composition of Multiparty Cryptographic Protocols.

J. Cryptology, 13(1):143–202, 2000.

[29] Ran Canetti. Universally Composable Security: A New Paradigm for Cryp-

tographic Protocols. In 42nd Annual Symposium on Foundations of Computer

Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 136–

145, 2001.

[30] Octavian Catrina and Sebastiaan de Hoogh. Secure Multiparty Linear Pro-

gramming Using Fixed-Point Arithmetic. In Computer Security - ESORICS

2010, 15th European Symposium on Research in Computer Security, Athens,

Greece, September 20-22, 2010. Proceedings, pages 134–150, 2010.

[31] Octavian Catrina and Amitabh Saxena. Secure Computation with Fixed-Point

Numbers. In Financial Cryptography and Data Security, 14th International

REFERENCES 165

Conference, FC 2010, Tenerife, Canary Islands, Spain, January 25-28, 2010,

Revised Selected Papers, pages 35–50, 2010.

[32] David Chaum. Untraceable electronic mail, return addresses and digital

pseudonyms. In Secure Electronic Voting, pages 211–219. 2003.

[33] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty Uncondition-

ally Secure Protocols (Extended Abstract). In Proceedings of the 20th Annual

ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,

USA, pages 11–19, 1988.

[34] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda

Lindell, and Ariel Nof. Fast Large-Scale Honest-Majority MPC for Malicious

Adversaries. In Advances in Cryptology - CRYPTO 2018 - 38th Annual Inter-

national Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,

Proceedings, Part III, pages 34–64, 2018.

[35] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable

Secret Sharing and Achieving Simultaneity in the Presence of Faults (Extended

Abstract). In 26th Annual Symposium on Foundations of Computer Science,

Portland, Oregon, USA, 21-23 October 1985, pages 383–395, 1985.

[36] Thomas M. Cover. Broadcast channels. IEEE Trans. Information Theory,

18(1):2–14, 1972.

[37] Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share Conversion, Pseudo-

random Secret-Sharing and Applications to Secure Computation. In Theory of

Cryptography, Second Theory of Cryptography Conference, TCC 2005, Cam-

bridge, MA, USA, February 10-12, 2005, Proceedings, pages 342–362, 2005.

[38] R.A. Croft and S.P. Harris. Public-Key Cryptography and Reusable Shared

Secrets. Cryptography and Coding.

[39] Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas

Toft. Unconditionally Secure Constant-Rounds Multi-party Computation for

Equality, Comparison, Bits and Exponentiation. In Theory of Cryptography,

166 REFERENCES

Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,

March 4-7, 2006, Proceedings, pages 285–304, 2006.

[40] Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen.

Asynchronous Multiparty Computation: Theory and Implementation. In Public

Key Cryptography - PKC 2009, 12th International Conference on Practice and

Theory in Public Key Cryptography, Irvine, CA, USA, March 18-20, 2009.

Proceedings, pages 160–179, 2009.

[41] Ivan Damg̊ard and Marcel Keller. Secure Multiparty AES. In Financial Cryp-

tography and Data Security, 14th International Conference, FC 2010, Tenerife,

Canary Islands, Spain, January 25-28, 2010, Revised Selected Papers, pages

367–374, 2010.

[42] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,

and Nigel P. Smart. Practical Covertly Secure MPC for Dishonest Majority

- Or: Breaking the SPDZ Limits. In Computer Security - ESORICS 2013

- 18th European Symposium on Research in Computer Security, Egham, UK,

September 9-13, 2013. Proceedings, pages 1–18, 2013.

[43] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty

Computation from Somewhat Homomorphic Encryption. In Advances in Cryp-

tology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,

CA, USA, August 19-23, 2012. Proceedings, pages 643–662, 2012.

[44] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A Framework

for Efficient Mixed-Protocol Secure Two-Party Computation. In 22nd Annual

Network and Distributed System Security Symposium, NDSS 2015, San Diego,

California, USA, February 8-11, 2015, 2015.

[45] Yvo Desmedt. Society and group oriented cryptography: A new concept. In

Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Appli-

cations of Cryptographic Techniques, Santa Barbara, California, USA, August

16-20, 1987, Proceedings, pages 120–127, 1987.

[46] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Advances in

Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference,

REFERENCES 167

Santa Barbara, California, USA, August 20-24, 1989, Proceedings, pages 307–

315, 1989.

[47] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE

Trans. Information Theory, 22(6):644–654, 1976.

[48] ECRYPT-CSA. Algoriths, key size and protocols report(2018). H2020-ICT-

2014 – Project 645421, 2018.

[49] Herbert Enderton. A mathematical introduction to logic (2nd ed.). Boston,

MA: Academic Press, ISBN 978-0-12-238452-3., 2001.

[50] Shimon Even, Oded Goldreich, and Abraham Lempel. A Randomized Protocol

for Signing Contracts. Commun. ACM, 28(6):637–647, 1985.

[51] Ronald Fisher and Frank Yates. Statistical Tables for Biological, Agricultural

and Medical Research (3rd ed.). Oliver & Boyd., 1938.

[52] Matthew K. Franklin and Michael K. Reiter. The design and implementation

of a secure auction service. IEEE Trans. Software Eng., 22(5):302–312, 1996.

[53] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and

Helmut Veith. CBMC-GC: An ANSI C Compiler for Secure Two-Party Compu-

tations. In Compiler Construction - 23rd International Conference, CC 2014,

Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings, pages

244–249, 2014.

[54] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private match-

ing and set intersection. In Advances in Cryptology - EUROCRYPT 2004, In-

ternational Conference on the Theory and Applications of Cryptographic Tech-

niques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 1–19, 2004.

[55] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting

scheme for large scale elections. In Advances in Cryptology - AUSCRYPT ’92,

Workshop on the Theory and Application of Cryptographic Techniques, Gold

Coast, Queensland, Australia, December 13-16, 1992, Proceedings, pages 244–

251, 1992.

168 REFERENCES

[56] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-Throughput

Secure Three-Party Computation for Malicious Adversaries and an Honest Ma-

jority. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Paris, France, April 30 - May 4, 2017, Proceedings, Part II, pages 225–255,

2017.

[57] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-

Optimal DSA/ECDSA Signatures and an Application to Bitcoin Wallet Se-

curity. In Applied Cryptography and Network Security - 14th International

Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings, pages

156–174, 2016.

[58] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust

threshold DSS signatures. Inf. Comput., 164(1):54–84, 2001.

[59] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applica-

tions. Cambridge University Press, 2004.

[60] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental

Game or A Completeness Theorem for Protocols with Honest Majority. In

Proceedings of the 19th Annual ACM Symposium on Theory of Computing,

1987, New York, New York, USA, pages 218–229, 1987.

[61] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complex-

ity of Interactive Proof Systems. SIAM J. Comput., 18(1):186–208, 1989.

[62] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast Garbling

of Circuits Under Standard Assumptions. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, Denver, CO,

USA, October 12-16, 2015, pages 567–578, 2015.

[63] Michael Harkavy, J. Doug Tygar, and Hiroaki Kikuchi. Electronic auctions

with private bids. In Proceedings of the 3rd USENIX Workshop on Electronic

Commerce, Boston, Massachusetts, USA, August 31 - September 3, 1998, 1998.

REFERENCES 169

[64] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low Cost Constant

Round MPC Combining BMR and Oblivious Transfer. In Advances in Cryp-

tology - ASIACRYPT 2017 - 23rd International Conference on the Theory and

Applications of Cryptology and Information Security, Hong Kong, China, De-

cember 3-7, 2017, Proceedings, Part I, pages 598–628, 2017.

[65] McKinsey Global Institute. The ‘big data’ revolution in US healthcare: accel-

erating value and innovation, January, 2013.

[66] McKinsey Global Institute. Big data: The next frontier for innovation, compe-

tition, and productivity, May, 2011.

[67] Yuval Ishai and Eyal Kushilevitz. On the Hardness of Information-Theoretic

Multiparty Computation. In Advances in Cryptology - EUROCRYPT 2004, In-

ternational Conference on the Theory and Applications of Cryptographic Tech-

niques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 439–455,

2004.

[68] Marcel Keller. The Oblivious Machine - or: How to Put the C into MPC. IACR

Cryptology ePrint Archive, 2015:467, 2015.

[69] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively Secure OT Ex-

tension with Optimal Overhead. In Advances in Cryptology - CRYPTO 2015 -

35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,

2015, Proceedings, Part I, pages 724–741, 2015.

[70] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster Mali-

cious Arithmetic Secure Computation with Oblivious Transfer. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Se-

curity, Vienna, Austria, October 24-28, 2016, pages 830–842, 2016.

[71] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ

Great Again. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual In-

ternational Conference on the Theory and Applications of Cryptographic Tech-

niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III, pages

158–189, 2018.

170 REFERENCES

[72] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical

actively secure MPC with dishonest majority. In 2013 ACM SIGSAC Confer-

ence on Computer and Communications Security, CCS’13, Berlin, Germany,

November 4-8, 2013, pages 549–560, 2013.

[73] Marcel Keller and Avishay Yanai. Efficient Maliciously Secure Multiparty Com-

putation for RAM. In Advances in Cryptology - EUROCRYPT 2018 - 37th

Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part

III, pages 91–124, 2018.

[74] Marcel Keller and Avishay Yanay. ORAM in SPDZ-BMR. https://github.

com/mkskeller/SPDZ-BMR-ORAM, 2018.

[75] Liisi Kerik, Peeter Laud, and Jaak Randmets. Optimizing MPC for robust and

scalable integer and floating-point arithmetic. In Financial Cryptography and

Data Security - FC 2016 International Workshops, 4th WAHC, Christ Church,

Barbados, February 26, 2016, Revised Selected Papers, pages 271–287, 2016.

[76] Florian Kerschbaum. Outsourced private set intersection using homomorphic

encryption. In 7th ACM Symposium on Information, Compuer and Commu-

nications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012, pages 85–86,

2012.

[77] Ryo Kikuchi, Dai Ikarashi, Takahiro Matsuda, Koki Hamada, and Koji Chida.

Efficient Bit-Decomposition and Modulus-Conversion Protocols with an Hon-

est Majority. In Information Security and Privacy - 23rd Australasian Confer-

ence, ACISP 2018, Wollongong, NSW, Australia, July 11-13, 2018, Proceed-

ings, pages 64–82, 2018.

[78] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-Theoretically Se-

cure Protocols and Security under Composition. SIAM J. Comput., 39(5):2090–

2112, 2010.

[79] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. Dishonest Major-

ity Multi-Party Computation for Binary Circuits. In Advances in Cryptology

REFERENCES 171

- CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,

USA, August 17-21, 2014, Proceedings, Part II, pages 495–512, 2014.

[80] John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy Adams-

Moran. Efficient lookup-table protocol in secure multiparty computation.

In ACM SIGPLAN International Conference on Functional Programming,

ICFP’12, Copenhagen, Denmark, September 9-15, 2012, pages 189–200, 2012.

[81] Sven Laur, Riivo Talviste, and Jan Willemson. From Oblivious AES to Efficient

and Secure Database Join in the Multiparty Setting. In Applied Cryptography

and Network Security - 11th International Conference, ACNS 2013, Banff, AB,

Canada, June 25-28, 2013. Proceedings, pages 84–101, 2013.

[82] Arjen K. Lenstra. Key lengths. The handbook of Information Security, 2004.

[83] Arjen K. Lenstra and Eric R. Verheul. Selecting crytographic key sizes. Journal

Of Cryptology, vol.14, p.255-293, 2001.

[84] Yehuda Lindell. Fast Secure Two-Party ECDSA Signing. In Advances in Cryp-

tology - CRYPTO 2017 - 37th Annual International Cryptology Conference,

Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, pages 613–

644, 2017.

[85] Yehuda Lindell and Ariel Nof. A Framework for Constructing Fast MPC over

Arithmetic Circuits with Malicious Adversaries and an Honest-Majority. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-

nications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,

2017, pages 259–276, 2017.

[86] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practi-

cal distributed key generation and applications to cryptocurrency custody. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-

cations Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages

1837–1854, 2018.

[87] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Ad-

vances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology

172 REFERENCES

Conference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings,

pages 36–54, 2000.

[88] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient

Constant Round Multi-party Computation Combining BMR and SPDZ. In

Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,

Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, pages 319–

338, 2015.

[89] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure vickrey auctions without

threshold trust. In Financial Cryptography, 6th International Conference, FC

2002, Southampton, Bermuda, March 11-14, 2002, Revised Papers, pages 87–

101, 2002.

[90] Philip D. MacKenzie and Michael K. Reiter. Two-party generation of DSA

signatures. Int. J. Inf. Sec., 2(3-4):218–239, 2004.

[91] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - Secure

Two-Party Computation System. In Proceedings of the 13th USENIX Security

Symposium, August 9-13, 2004, San Diego, CA, USA, pages 287–302, 2004.

[92] Payman Mohassel and Peter Rindal. ABY3: A Mixed Protocol Framework for

Machine Learning. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, CCS 2018, Toronto, ON, Canada,

October 15-19, 2018, pages 35–52, 2018.

[93] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party

computation: The garbled circuit approach. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security, Denver, CO,

USA, October 12-16, 2015, pages 591–602, 2015.

[94] Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathe-

matics of Computation, 1985.

REFERENCES 173

[95] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions

and mechanism design. In Proceedings of the First ACM Conference on Elec-

tronic Commerce (EC-99), Denver, CO, USA, November 3-5, 1999, pages 129–

139, 1999.

[96] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In

CCS 2001, Proceedings of the 8th ACM Conference on Computer and Com-

munications Security, Philadelphia, Pennsylvania, USA, November 6-8, 2001.,

pages 116–125, 2001.

[97] Chao Ning and Qiuliang Xu. Multiparty computation for modulo reduction

without bit-decomposition and a generalization to bit-decomposition. In Ad-

vances in Cryptology - ASIACRYPT 2010 - 16th International Conference on

the Theory and Application of Cryptology and Information Security, Singapore,

December 5-9, 2010. Proceedings, pages 483–500, 2010.

[98] Chao Ning and Qiuliang Xu. Constant-rounds, linear multi-party computation

for exponentiation and modulo reduction with perfect security. In Advances in

Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory

and Application of Cryptology and Information Security, Seoul, South Korea,

December 4-8, 2011. Proceedings, pages 572–589, 2011.

[99] Takashi Nishide and Kazuo Ohta. Multiparty Computation for Interval, Equal-

ity, and Comparison Without Bit-Decomposition Protocol. In Public Key Cryp-

tography - PKC 2007, 10th International Conference on Practice and Theory

in Public-Key Cryptography, Beijing, China, April 16-20, 2007, Proceedings,

pages 343–360, 2007.

[100] NIST. Recommendation for key management. Special Publication 800-57 Party

1 Rev.4, 2016.

[101] NSA. Mécanismes cryptographiques. Règles et recommandations, Rev. 2.03,

2014.

[102] NSA. Commercial national security algorithms. Information Assurance Direc-

torate at the NSA, 2016.

174 REFERENCES

[103] National Bureau of Standards. Data Encryption Standard, FIPS-Pub.46. Na-

tional Bureau of Standards. U.S. Department of Commerce, Washington D.C.,

January 1977.

[104] Kazuma Ohara, Yohei Watanabe, Mitsugu Iwamoto, Kazuo Ohta. Multi-Party

Computation for Modular Exponentiation based on Replicated Secret Sharing.

In IEICE Transaction, Vol.E102-A, No.9, Sep. 2019. (to appear)

[105] Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elec-

tions. In Security Protocols, 5th International Workshop, Paris, France, April

7-9, 1997, Proceedings, pages 25–35, 1997.

[106] Haijun Pan, Edwin S. H. Hou, and Nirwan Ansari. Enhanced name and vote

separated e-voting system: an e-voting system that ensures voter confidentiality

and candidate privacy. Security and Communication Networks, 7(12):2335–

2344, 2014.

[107] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans

Fugal. Fastpass: a centralized ”zero-queue” datacenter network. In ACM SIG-

COMM 2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22,

2014, pages 307–318, 2014.

[108] Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR

Cryptology ePrint Archive, 2005:187, 2005.

[109] Tal Rabin and Michael Ben-Or. Verifiable Secret Sharing and Multiparty Pro-

tocols with Honest Majority (Extended Abstract). In Proceedings of the 21st

Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,

Washigton, USA, pages 73–85, 1989.

[110] Jaak Randmets. AES performance on the new Sharemind cluster. Personal

comm. May, 2016.

[111] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computa-

tion with online/offline dual execution. In 25th USENIX Security Symposium,

USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 297–314,

2016.

REFERENCES 175

[112] Adi Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

[113] Adi Shamir, Ronald L. Rivest, and Leonard M. Adleman. Mental Poker. The

Mathematical Gardner, Belmont, Cali., Wadsworth International.

[114] Victor Shoup. Practical threshold signatures. In Advances in Cryptology -

EUROCRYPT 2000, International Conference on the Theory and Application

of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding,

pages 207–220, 2000.

[115] Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against

chosen ciphertext attack. J. Cryptology, 15(2):75–96, 2002.

[116] Vivek Kumar Singh, Burcin Bozkaya, and Alex Pentland. Money

Walks: Implicit Mobility Behavior and Financial Well-Being, PLoS ONE

10(8): e0136628. https://journals.plos.org/plosone/article?id=10.

1371/journal.pone.0136628, 2015.

[117] Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, Thomas Schnei-

der, and Farinaz Koushanfar. Tinygarble: Highly compressed and scalable se-

quential garbled circuits. In 2015 IEEE Symposium on Security and Privacy,

SP 2015, San Jose, CA, USA, May 17-21, 2015, pages 411–428, 2015.

[118] Riivo Talviste. Applying Secure Multi-Party Computation in Practice. Ph.D

dissertation, University of Tartu, 2016.

[119] Tomas Toft. Constant-Rounds, Almost-Linear Bit-Decomposition of Secret

Shared Values. In Topics in Cryptology - CT-RSA 2009, The Cryptographers’

Track at the RSA Conference 2009, San Francisco, CA, USA, April 20-24,

2009. Proceedings, pages 357–371, 2009.

[120] Jaideep Vaidya and Chris Clifton. Secure set intersection cardinality with appli-

cation to association rule mining. Journal of Computer Security, 13(4):593–622,

2005.

[121] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated Garbling

and Efficient Maliciously Secure Two-Party Computation. In Proceedings of the

176 REFERENCES

2017 ACM SIGSAC Conference on Computer and Communications Security,

CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 21–37,

2017.

[122] Yujue Wang, Duncan S. Wong, Qianhong Wu, Sherman S. M. Chow, Bo Qin,

and Jianwei Liu. Practical Distributed Signatures in the Standard Model. In

Topics in Cryptology - CT-RSA 2014 - The Cryptographer’s Track at the RSA

Conference 2014, San Francisco, CA, USA, February 25-28, 2014. Proceedings,

pages 307–326, 2014.

[123] Brent Waters. Efficient Identity-Based EncryptionWithout Random Oracles. In

Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques, Aarhus,

Denmark, May 22-26, 2005, Proceedings, pages 114–127, 2005.

[124] Wikipedia. Carry-Select Adder. https://en.wikipedia.org/wiki/

Carry-select_adder, March 2015.

[125] Andrew Chi-Chih Yao. Protocols for Secure Computations (Extended Ab-

stract). In 23rd Annual Symposium on Foundations of Computer Science,

Chicago, Illinois, USA, 3-5 November 1982, pages 160–164, 1982.

[126] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets (Extended

Abstract). In 27th Annual Symposium on Foundations of Computer Science,

Toronto, Canada, 27-29 October 1986, pages 162–167, 1986.

[127] Samee Zahur, Mike Rosulek, and David Evans. Two Halves Make a Whole -

Reducing Data Transfer in Garbled Circuits Using Half Gates. In Advances

in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,

April 26-30, 2015, Proceedings, Part II, pages 220–250, 2015.

List of Publications

Related Papers

Journal Papers

1. Kazuma Ohara, Yohei Watanabe, Mitsugu Iwamoto, Kazuo Ohta: “Multi-Party

Computation for Modular Exponentiation based on Replicated Secret Sharing.”

IEICE Transaction, Vol.E102-A,No.9,Sep. 2019. (to appear)

Refereed Conference Papers (with Formal Proceedings)

2. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, Kazuma Ohara:

“High-Throughput Semi-Honest Secure Three-Party Computation with an Hon-

est Majority.” ACM Conference on Computer and Communications Security

2016: 805-817.

3. Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell,

Ariel Nof, Kazuma Ohara, Adi Watzman, Or Weinstein: “Optimized Honest-

Majority MPC for Malicious Adversaries - Breaking the 1 Billion-Gate Per

Second Barrier. ” IEEE Symposium on Security and Privacy 2017: 843-862.

4. Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lindell,

Kazuma Ohara, Hikaru Tsuchida: “Generalizing the SPDZ Compiler For Other

Protocols. ” ACM Conference on Computer and Communications Security

2018: 880-895.

177

178 REFERENCES

Referred Papers

Refereed Conference Papers, Posters and Demo (with Formal Pro-

ceedings)

5. Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Kazuma Ohara,

Hikaru Tsuchida: “How to Choose Suitable Secure Multiparty Computation

Using Generalized SPDZ.” ACM Conference on Computer and Communications

Security 2018 (ACM CCS 2018): 2198-2200.

6. Toshinori Araki, Assaf Barak, Jun Furukawa, Yehuda Lindell, Ariel Nof, Kazuma

Ohara: DEMO: “High-Throughput Secure Three-Party Computation of Ker-

beros Ticket Generation.” ACM Conference on Computer and Communications

Security 2016: 1841-1843.

Non-Refereed Papers

7. 大原一真，荒木敏則，土田光，古川潤: “異なるサイズの環が混在する不正検知可

能なマルチパーティ計算”,暗号と情報セキュリティシンポジウム2018(SCIS2018)，

2A1-4，2018年．

8. 土田光，荒木敏則，大原一真，古川潤: ”不正検知可能なマルチパーティー計

算による生体情報と遺伝子情報の保護”, 暗号と情報セキュリティシンポジウム

2018(SCIS2018)，2A1-5，2018年．

9. 荒木俊則，古川潤，Yehuda Lindell, Ariel Nof, 大原一真．”通信量の小さい 3

者間マルチパーティ計算とビットスライス法による実装”, 暗号と情報セキュリ

ティシンポジウム 2017（SCIS2017），2D3-5，2017年．

10. Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lindell,

Kazuma Ohara, Hikaru Tsuchida: “Generalizing the SPDZ Compiler For Other

Protocols.” IACR Cryptology ePrint Archive 2018: 762 (2018). Available from

https://eprint.iacr.org/2018/762.

11. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, Kazuma Ohara:

“High-Throughput Semi-Honest Secure Three-Party Computation with an Hon-

est Majority.” IACR Cryptology ePrint Archive 2016: 768 (2016). Available

from https://eprint.iacr.org/2016/768.

REFERENCES 179

Review Articles

12. 大原一真: “秘密分散法を用いた秘密計算”システム制御情報学会誌「システム/

制御/情報」プライバシー保護データマイニング特集号, Vol.63, No.2, 2019.

Author Biography

Kazuma Ohara was born in Kanagawa, Japan, on October 9, 1989. He received his

B.E. degree from the University of Electro-Communications, Tokyo, Japan, in 2012,

and his M.E. degree from the University of Electro-Communications, Tokyo, Japan,

in 2014, respectively. Since 2014, he has been working for NEC Central Research

Laboratories, NEC Corporation. Since 2017, he has been a Ph.D course student

at the Graduate School of Informatics and Engineering, the University of Electro-

Communications. He is engaged in research on cryptography. His research interests

include not only secure multi-party computation but design, implementation and

proof of security on cryptographic protocols such as group signatures, searchable en-

cryptions. He was awarded a paper prize from the 2014 Symposium on Cryptography

and Information Security (SCIS 2014) in 2015, and a best paper award from the 23rd

ACM Conference on Computer and Communications Security (ACM CCS 2016) in

2016.

180

