15 research outputs found

    Robust Near-Field 3D Localization of an Unaligned Single-Coil Agent Using Unobtrusive Anchors

    Full text link
    The magnetic near-field provides a suitable means for indoor localization, due to its insensitivity to the environment and strong spatial gradients. We consider indoor localization setups consisting of flat coils, allowing for convenient integration of the agent coil into a mobile device (e.g., a smart phone or wristband) and flush mounting of the anchor coils to walls. In order to study such setups systematically, we first express the Cram\'er-Rao lower bound (CRLB) on the position error for unknown orientation and evaluate its distribution within a square room of variable size, using 15 x 10cm anchor coils and a commercial NFC antenna at the agent. Thereby, we find cm-accuracy being achievable in a room of 10 x 10 x 3 meters with 12 flat wall-mounted anchors and with 10mW used for the generation of magnetic fields. Practically achieving such estimation performance is, however, difficult because of the non-convex 5D likelihood function. To that end, we propose a fast and accurate weighted least squares (WLS) algorithm which is insensitive to initialization. This is enabled by effectively eliminating the orientation nuisance parameter in a rigorous fashion and scaling the individual anchor observations, leading to a smoothed 3D cost function. Using WLS estimates to initialize a maximum-likelihood (ML) solver yields accuracy near the theoretical limit in up to 98% of cases, thus enabling robust indoor localization with unobtrusive infrastructure, with a computational efficiency suitable for real-time processing.Comment: 7 pages, to be presented at IEEE PIMRC 201

    Localization for capsule endoscopy at UWB frequencies using an experimental multilayer phantom

    Full text link
    [EN] Localization inside the human body using ultrawideband (UWB) wireless technology is gaining importance in several medical applications such as capsule endoscopy. Performance analysis of RF based localization techniques are mainly conducted through simulations using numerical human models or through experimental measurements using homogeneous phantoms. One of the most common implemented RF localization approaches uses the received signal strength (RSS). However, to the best of our knowledge, no experimental measurements employing multilayer phantoms are currently available in literature. This paper investigates the performance of RSS-based technique for two-dimensional (2D) localization by employing a two-layer experimental phantom-based setup. Preliminary results on the estimation of the in-body antenna coordinates show that RSS-based method can achieve a location accuracy on average of 0.5-1 cm within a certain range of distances between in-body and on-body antenna.This work was supported by the European Union’s H2020:MSCA:ITN program for the ”Wireless In-body Environment Communication- WiBEC” project under the grant agreement no. 675353. This work was also funded by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-16) from Universitat Politècnica de València and by the Ministerio de Economía y Competitividad, Spain (TEC2014-60258-C2-1-R), by the European FEDER funds.Barbi, M.; Pérez Simbor, S.; García Pardo, C.; Andreu Estellés, C.; Cardona Marcet, N. (2018). Localization for capsule endoscopy at UWB frequencies using an experimental multilayer phantom. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/WCNCW.2018.8369015

    Impact of Receivers Location on the Accuracy of Capsule Endoscope Localization

    Full text link
    [EN] In recent years, localization for capsule endoscopy applications using Ultra-Wideband (UWB) technology has become an attractive field of study due to its potential benefits for patients. Performance analysis of RF-based localization techniques are very limited in literature. Most of the available studies rely on software simulations using digital human models. Nonetheless, no realistic studies based on in-vivo measurements has been reported yet. This paper investigates the performance of RSS-based technique for three-dimensional (3D) localization in the UWB frequency band. Impact of receivers selection as well as of the evaluated path loss model on the localization accuracy is investigated. Results obtained through CST-based simulations and from recently conducted in-vivo measurements are presented and compared.This work was supported by the European Union's H2020:MSCA:ITN program for the "Wireless In-body Environment Communication- WiBEC" project under the grant agreement no. 675353. This work was also funded by the Ministerio de Economia y Competitividad, Spain (TEC2014-60258-C2-1-R), by the European FEDER funds.Barbi, M.; Garcia-Pardo, C.; Cardona Marcet, N.; Andrea Nevárez; Vicente Pons Beltrán; Frasson, M. (2018). Impact of Receivers Location on the Accuracy of Capsule Endoscope Localization. IEEE. 340-344. https://doi.org/10.1109/PIMRC.2018.8580862S34034

    Analysis of the Localization Error for Capsule Endoscopy Applications at UWB Frequencies

    Full text link
    Localization for Wireless Capsule Endoscopy (WCE) in the Ultra-Wideband frequency band is a very active field of investigation due to its potential advantages in future endoscopy applications. Received Signal Strength (RSS) based localization is commonly preferred due to its simplicity. Previous studies on Ultra-Wideband (UWB) RSS-based localization showed that the localization accuracy depends on the average ranging error related to the selected combination of receivers, which not always is the one experiencing the highest level of received power. In this paper the tendency of the localization error is further investigated through supplementary software simulations and previously conducted laboratory measurements. Two-dimensional (2D) and three-dimensional (3D) positioning are performed and the trend of the localization error compared in both cases. Results shows that the distribution of the selected path loss values, corresponding to the receivers used for localization, around the in-body position to estimate also affects the localization accuracy.This work was supported by the H2020:MSCA:ITN program for the “Wireless In-body Environment Communication- WiBEC” project under the grant agreement no. 675353. This work was also supported by the European Union’s H2020:MSCA:ITN program for the ”mmWave Communications in the Built Environments - WaveComBE” project under the grant agreement no. 766231.Barbi, M.; Pérez-Simbor, S.; Garcia-Pardo, C.; Cardona Marcet, N. (2019). Analysis of the Localization Error for Capsule Endoscopy Applications at UWB Frequencies. IEEE. https://doi.org/10.1109/ISMICT.2019.8743813

    Cooperative Magneto-Inductive Localization

    Full text link
    Wireless localization is a key requirement for many applications. It concerns position estimation of mobile nodes (agents) relative to fixed nodes (anchors) from wireless channel measurements. Cooperative localization is an advanced concept that considers the joint estimation of multiple agent positions based on channel measurements of all agent-anchor links together with all agent-agent links. In this paper we present the first study of cooperative localization for magneto-inductive wireless sensor networks, which are of technological interest due to good material penetration and channel predictability. We demonstrate significant accuracy improvements (a factor of 3 for 10 cooperating agents) over the non-cooperative scheme. The evaluation uses the Cram\'er-Rao lower bound on the cooperative position estimation error, which is derived herein. To realize this accuracy, the maximum-likelihood estimate (MLE) must be computed by solving a high-dimensional least-squares problem, whereby convergence to local minima proves to be problematic. A proposed cooperative localization algorithm addresses this issue: first, preliminary estimates of the agent positions and orientations are computed, which then serve as initial values for a gradient search. In all our test cases, this method yields the MLE and the associated high accuracy (comprising the cooperation gain) from a single solver run. The preliminary estimates use novel closed-form MLE formulas of the distance, direction and orientation for single links between three-axis coils, which are given in detail.Comment: To appear at the IEEE PIMRC 2021 conference. This work has been submitted to the IEEE for publication. Copyright may be transferred without notic

    Processing Chain for Localization of Magnetoelectric Sensors in Real Time

    Get PDF
    The knowledge of the exact position and orientation of a sensor with respect to a source (distribution) is essential for the correct solution of inverse problems. Especially when measuring with magnetic field sensors, the positions and orientations of the sensors are not always fixed during measurements. In this study, we present a processing chain for the localization of magnetic field sensors in real time. This includes preprocessing steps, such as equalizing and matched filtering, an iterative localization approach, and postprocessing steps for smoothing the localization outcomes over time. We show the efficiency of this localization pipeline using an exchange bias magnetoelectric sensor. For the proof of principle, the potential of the proposed algorithm performing the localization in the two-dimensional space is investigated. Nevertheless, the algorithm can be easily extended to the three-dimensional space. Using the proposed pipeline, we achieve average localization errors between 1.12 cm and 6.90 cm in a localization area of size 50cmĂ—50cm

    Development of an Embedded Myokinetic Prosthetic Hand Controller

    Get PDF
    The quest for an intuitive and physiologically appropriate human machine interface for the control of dexterous prostheses is far from being completed. In the last decade, much effort has been dedicated to explore innovative control strategies based on the electrical signals generated by the muscles during contraction. In contrast, a novel approach, dubbed myokinetic interface, derives the control signals from the localization of multiple magnetic markers (MMs) directly implanted into the residual muscles of the amputee. Building on this idea, here we present an embedded system based on 32 magnetic field sensors and a real time computation platform. We demonstrate that the platform can simultaneously localize in real-time up to five MMs in an anatomically relevant workspace. The system proved highly linear (R2 = 0.99) and precise (1% repeatability), yet exhibiting short computation times (4 ms) and limited cross talk errors (10% the mean stroke of the magnets). Compared to a previous PC implementation, the system exhibited similar precision and accuracy, while being ~75% faster. These results proved for the first time the viability of using an embedded system for magnet localization. They also suggest that, by using an adequate number of sensors, it is possible to increase the number of simultaneously tracked MMs while introducing delays that are not perceivable by the human operator. This could allow to control more degrees of freedom than those controllable with current technologies

    Magnetic Sensor Calibration and Residual Dipole Characterization for Application to Nanosatellites

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83632/1/AIAA-2010-7518-617.pd

    UWB RSS-based Localization for Capsule Endoscopy using a Multilayer Phantom and In Vivo Measurements

    Full text link
    [EN] In recent years, the localization for capsule endoscopy applications using ultrawideband (UWB) technology has become an attractive field of investigation due to its potential benefits for patients. The literature concerning performance analysis of radio frequency-based localization techniques for in-body applications at UWB frequencies is very limited. Available studies mainly rely on finite-difference time-domain simulations, using digital human models and on experimental measurements by means of homogeneous phantoms. Nevertheless, no realistic analysis based on multilayer phantom measurements or through in vivo experiment has been reported yet. This paper investigates the performance of the received signal strength-based approach for 2-D and 3-D localizations in the UWB frequency band. For 2-D localization, experimental laboratory measurements using a two-layer phantom-based setup have been conducted. For 3-D localization, data from a recently conducted in vivo experiment have been used. Localization accuracy using path loss models, under ideal and non-ideal channel estimation assumptions, is compared. Results show that, under nonideal channel assumption, the relative localization error slightly increases for the 2-D case but not for the in vivo 3-D case. Impact of receivers selection on the localization accuracy has also been investigated for both 2-D and 3-D cases.This work was supported in part by the European Union's H2020 through the MSCA: ITN Program "Wireless in-Body Environment Communication-WiBEC" under Grant 675353, in part by the Programa de Ayudas de Investigacion y Desarrollo, Universitat Politecnica de Valencia under Grant PAID-01-16, and in part by the Ministerio de Economia y Competitividad, Spain, through the European FEDER Funds under Grant TEC2014-60258-C2-1-R.Barbi, M.; Garcia-Pardo, C.; Nevárez, A.; Pons Beltrán, V.; Cardona Marcet, N. (2019). UWB RSS-based Localization for Capsule Endoscopy using a Multilayer Phantom and In Vivo Measurements. IEEE Transactions on Antennas and Propagation. 67(8):5035-5043. https://doi.org/10.1109/TAP.2019.2916629S5035504367

    Adaptive Wireless Biomedical Capsule Localization and Tracking

    Get PDF
    Wireless capsule endoscopy systems have been shown as a gold step to develop future wireless biomedical multitask robotic capsules, which will be utilized in micro surgery, drug delivery, biopsy and multitasks of the endoscopy. In such wireless capsule endoscopy systems, one of the most challenging problems is accurate localization and tracking of the capsule inside the human body. In this thesis, we focus on robotic biomedical capsule localization and tracking using range measurements via electromagetic wave and magnetic strength based sensors. First, a literature review of existing localization techniques with their merits and limitations is presented. Then, a novel geometric environmental coefficient estimation technique is introduced for time of flight (TOF) and received signal strength (RSS) based range measurement. Utilizing the proposed environmental coefficient estimation technique, a 3D wireless biomedical capsule localization and tracking scheme is designed based on a discrete adaptive recursive least square algorithm with forgetting factor. The comparison between localization with novel coefficient estimation technique and localization with known coefficient is provided to demonstrate the proposed technique’s efficiency. Later, as an alternative to TOF and RSS based sensors, use of magnetic strength based sensors is considered. We analyze and demonstrate the performance of the proposed techniques and designs in various scenarios simulated in Matlab/Simulink environment
    corecore