996 research outputs found

    Type-Constrained Representation Learning in Knowledge Graphs

    Full text link
    Large knowledge graphs increasingly add value to various applications that require machines to recognize and understand queries and their semantics, as in search or question answering systems. Latent variable models have increasingly gained attention for the statistical modeling of knowledge graphs, showing promising results in tasks related to knowledge graph completion and cleaning. Besides storing facts about the world, schema-based knowledge graphs are backed by rich semantic descriptions of entities and relation-types that allow machines to understand the notion of things and their semantic relationships. In this work, we study how type-constraints can generally support the statistical modeling with latent variable models. More precisely, we integrated prior knowledge in form of type-constraints in various state of the art latent variable approaches. Our experimental results show that prior knowledge on relation-types significantly improves these models up to 77% in link-prediction tasks. The achieved improvements are especially prominent when a low model complexity is enforced, a crucial requirement when these models are applied to very large datasets. Unfortunately, type-constraints are neither always available nor always complete e.g., they can become fuzzy when entities lack proper typing. We show that in these cases, it can be beneficial to apply a local closed-world assumption that approximates the semantics of relation-types based on observations made in the data

    Holographic Embeddings of Knowledge Graphs

    Get PDF
    Learning embeddings of entities and relations is an efficient and versatile method to perform machine learning on relational data such as knowledge graphs. In this work, we propose holographic embeddings (HolE) to learn compositional vector space representations of entire knowledge graphs. The proposed method is related to holographic models of associative memory in that it employs circular correlation to create compositional representations. By using correlation as the compositional operator HolE can capture rich interactions but simultaneously remains efficient to compute, easy to train, and scalable to very large datasets. In extensive experiments we show that holographic embeddings are able to outperform state-of-the-art methods for link prediction in knowledge graphs and relational learning benchmark datasets.Comment: To appear in AAAI-1

    Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning

    Full text link
    Reasoning is essential for the development of large knowledge graphs, especially for completion, which aims to infer new triples based on existing ones. Both rules and embeddings can be used for knowledge graph reasoning and they have their own advantages and difficulties. Rule-based reasoning is accurate and explainable but rule learning with searching over the graph always suffers from efficiency due to huge search space. Embedding-based reasoning is more scalable and efficient as the reasoning is conducted via computation between embeddings, but it has difficulty learning good representations for sparse entities because a good embedding relies heavily on data richness. Based on this observation, in this paper we explore how embedding and rule learning can be combined together and complement each other's difficulties with their advantages. We propose a novel framework IterE iteratively learning embeddings and rules, in which rules are learned from embeddings with proper pruning strategy and embeddings are learned from existing triples and new triples inferred by rules. Evaluations on embedding qualities of IterE show that rules help improve the quality of sparse entity embeddings and their link prediction results. We also evaluate the efficiency of rule learning and quality of rules from IterE compared with AMIE+, showing that IterE is capable of generating high quality rules more efficiently. Experiments show that iteratively learning embeddings and rules benefit each other during learning and prediction.Comment: This paper is accepted by WWW'1

    Finding Streams in Knowledge Graphs to Support Fact Checking

    Full text link
    The volume and velocity of information that gets generated online limits current journalistic practices to fact-check claims at the same rate. Computational approaches for fact checking may be the key to help mitigate the risks of massive misinformation spread. Such approaches can be designed to not only be scalable and effective at assessing veracity of dubious claims, but also to boost a human fact checker's productivity by surfacing relevant facts and patterns to aid their analysis. To this end, we present a novel, unsupervised network-flow based approach to determine the truthfulness of a statement of fact expressed in the form of a (subject, predicate, object) triple. We view a knowledge graph of background information about real-world entities as a flow network, and knowledge as a fluid, abstract commodity. We show that computational fact checking of such a triple then amounts to finding a "knowledge stream" that emanates from the subject node and flows toward the object node through paths connecting them. Evaluation on a range of real-world and hand-crafted datasets of facts related to entertainment, business, sports, geography and more reveals that this network-flow model can be very effective in discerning true statements from false ones, outperforming existing algorithms on many test cases. Moreover, the model is expressive in its ability to automatically discover several useful path patterns and surface relevant facts that may help a human fact checker corroborate or refute a claim.Comment: Extended version of the paper in proceedings of ICDM 201

    Adversarial Sets for Regularising Neural Link Predictors

    Get PDF
    In adversarial training, a set of models learn together by pursuing competing goals, usually defined on single data instances. However, in relational learning and other non-i.i.d domains, goals can also be defined over sets of instances. For example, a link predictor for the is-a relation needs to be consistent with the transitivity property: if is-a(x_1, x_2) and is-a(x_2, x_3) hold, is-a(x_1, x_3) needs to hold as well. Here we use such assumptions for deriving an inconsistency loss, measuring the degree to which the model violates the assumptions on an adversarially-generated set of examples. The training objective is defined as a minimax problem, where an adversary finds the most offending adversarial examples by maximising the inconsistency loss, and the model is trained by jointly minimising a supervised loss and the inconsistency loss on the adversarial examples. This yields the first method that can use function-free Horn clauses (as in Datalog) to regularise any neural link predictor, with complexity independent of the domain size. We show that for several link prediction models, the optimisation problem faced by the adversary has efficient closed-form solutions. Experiments on link prediction benchmarks indicate that given suitable prior knowledge, our method can significantly improve neural link predictors on all relevant metrics.Comment: Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 201
    corecore