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Abstract

In adversarial training, a set of models learn
together by pursuing competing goals, usu-
ally defined on single data instances. How-
ever, in relational learning and other non-i.i.d
domains, goals can also be defined over sets
of instances. For example, a link predictor
for the IS-A relation needs to be consistent
with the transitivity property: if IS-A(x1, x2)
and IS-A(x2, x3) hold, IS-A(x1, x3) needs to
hold as well. Here we use such assumptions
for deriving an inconsistency loss, measuring
the degree to which the model violates the
assumptions on an adversarially-generated set
of examples. The training objective is de-
fined as a minimax problem, where an adver-
sary finds the most offending adversarial ex-
amples by maximising the inconsistency loss,
and the model is trained by jointly minimis-
ing a supervised loss and the inconsistency loss
on the adversarial examples. This yields the
first method that can use function-free Horn
clauses (as in Datalog) to regularise any neu-
ral link predictor, with complexity independent
of the domain size. We show that for several
link prediction models, the optimisation prob-
lem faced by the adversary has efficient closed-
form solutions. Experiments on link predic-
tion benchmarks indicate that given suitable
prior knowledge, our method can significantly
improve neural link predictors on all relevant
metrics.

1 INTRODUCTION

Adversarial training [Dalvi et al., 2004, Goodfellow
et al., 2014, Szegedy et al., 2014] is a learning setting
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Figure 1: Overview of regularisation via adversarial sets
for neural link prediction. Given a clause A with vari-
ables {X1, X2, X3}, an adversary maps each variable to
an adversarial entity embedding that maximises an in-
consistency loss, while the discriminator is trained by
minimising the link prediction and inconsistency loss.

where two or more models learn together by pursuing
competing goals. Adversarial learning has received in-
creasing attention in recent years, mainly motivated by
the observation that neural networks can be vulnerable
to carefully-crafted adversarial examples [Goodfellow
et al., 2014]. Adding additional loss terms to training
objectives for enforcing models to be robust to adversar-
ial examples can be very beneficial, for instance in the
context of image synthesis [Dosovitskiy et al., 2015].

Such competing goals are generally defined on single
data instances. For example, in Generative Adversar-
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ial Networks (GANs) [Goodfellow et al., 2014], a gen-
erator is trained to synthesise single fake data instances
(e.g. images) that are classified as real by a discrimi-
nator, while the discriminator is trained to discriminate
between single real and fake data instances. However,
for relational tasks such as link prediction or knowledge
base population [Nickel et al., 2012, Riedel et al., 2013b,
Socher et al., 2013, Chang et al., 2014, Toutanova et al.,
2015, Neelakantan et al., 2015], where objects can in-
teract with each other, such goals can also be defined in
terms of several instances.

For instance, consider the hypernymy relation IS-A.
Since state-of-the-art link predictors rank or score pairs
in isolation [Bordes et al., 2013, Toutanova et al., 2015,
Trouillon et al., 2016], they cannot explicitly account
for the transitivity property of IS-A. This means that a
predictor might infer IS-A(x1, x2) and IS-A(x2, x3), but
not IS-A(x1, x3). In this case, encouraging transitivity
to hold for such models can be achieved by defining a
goal on three related inputs rather than a single input:
{(x1, x2), (x2, x3), (x1, x3)}. The goal of the adversary
would be to find inputs that lead to inconsistent predic-
tions, while the predictor’s goal would be restoring con-
sistency on such sets of inputs.

In this paper, we introduce Adversarial Set Regularisa-
tion (ASR), a general and scalable method for regularis-
ing neural link prediction models by using background
knowledge. Our method is summarised by the adversar-
ial training architecture in Fig. 1. In ASR, we first define
a set of constraints on multiple problem instances in the
form of function-free First-order Logic (FOL) clauses.
From these clauses we then derive an inconsistency loss
that measures the extent to which constraints are vio-
lated.

The learning architecture is composed of two models,
an adversary and a discriminator, having two competing
goals. The adversary tries to find a set of adversarial in-
put representations for which, according to the discrim-
inator (a link prediction model), the constraints do not
hold. Such a set is found by maximising the inconsis-
tency loss. The discriminator, on the other hand, uses
the inconsistency loss on the adversarial input represen-
tations for regularising its training process.

Our proposed training algorithm, described in Sect. 3,
can be seen as a zero-sum game involving two players,
where: i) one player, the link predictor, has to predict
a target graph over a set of real inputs, while ensuring
global consistency over a set of generated adversarial
inputs; and ii) the other player, the adversary, has to gen-
erate adversarial input representations such that the link
predictor fails at constructing consistent graphs.

The link prediction model is trained by jointly minimis-
ing both the data loss and the inconsistency loss on the
adversarial input sets by updating the model, while the
adversary maximises the inconsistency loss by changing
the input sets. Another interpretation is that the adver-
sary acts as an adaptive regulariser for training neural
link predictors.

Our method is related to Rocktäschel et al. [2015] and
its variant KALE [Guo et al., 2016], which also min-
imise an inconsistency loss over sets of instances. A
core difference with the proposed approach is that, in-
stead of generating adversarial examples in representa-
tion space, they select random entities from the training
and test sets. This generally leads to less effective up-
dates, since the random entities can already satisfy the
imposed constraints. Furthermore, they also enforce con-
sistency not just by changing the relation-specific param-
eters, but also by changing the distributed representations
of the entity inputs. This can lead to poor generalisation
on entities less frequently sampled during training. De-
meester et al. [2016] overcome this problem, but their
approach only works for a single type of model and sim-
ple clauses. Our approach has no such restrictions, and
we formally show that it is a generalisation of their work.

We show empirically that, by training on adversarial in-
put sets, the link prediction model becomes indeed more
robust. In experiments, we use our approach to in-
ject prior assumptions into several state-of-the-art mod-
els, indicating the general nature of our approach. The
regularised models outperform the original models on
real-world data sets, namely WN18 and FB122. More-
over, using the same constraints and experimental setup,
we outperform KALE both in terms of absolute perfor-
mance, and in terms of relative improvements when com-
pared to their underlying base models.

Our contributions are threefold: i) we introduce a novel
approach to regularise neural link prediction models
based on prior relational assumptions, such as transitiv-
ity – this is the first work that uses adversarial input sets
for doing so; ii) we present an optimisation algorithm
for solving the underlying minimax problem; and iii) we
derive closed form solutions for the inner maximisation
problem that enable faster training, provide intuitive in-
sights into the goal of the adversary, and show that the
method of Demeester et al. [2016] can be derived from
our framework.

In the next sections we first briefly introduce the link pre-
diction problem and state-of-the-art link prediction mod-
els. Then we present our adversarial approach to inject-
ing prior knowledge. We conclude with experimental re-
sults and a discussion.



2 LINK PREDICTION

In this work, we focus on the problem of predicting
missing links in large, multi-relational networks such as
FREEBASE. In the literature, this problem is referred to
as link prediction. We specifically focus on knowledge
graphs, i.e., graph-structured knowledge bases where
factual information is stored in the form of relationships
between entities. Link prediction in knowledge graphs is
also known as knowledge base population. We refer to
Nickel et al. [2016] for a recent survey on approaches for
this problem.

A knowledge graph G , {(r, a1, a2)} ⊆ R × E × E
can be formalised as a set of triples (facts) consisting
of a relation type r ∈ R and two entities a1, a2 ∈ E ,
respectively referred to as the subject and the object of
the triple. Each triple (r, a1, a2) encodes a relationship
of type r between a1 and a2, represented by the fact
r(a1, a2).

Link prediction in knowledge graphs is often simplified
to a learning to rank problem, where the objective is to
find a score or ranking function φθr : E × E 7→ R for a
relation r that can be used for ranking triples according
to the likelihood that the corresponding facts hold true.

2.1 Neural Link Prediction

Recently, a specific class of link predictors received a
growing interest [Nickel et al., 2016]. These predictors
can be understood as multi-layer neural networks. Given
a triple x = (r, a1, a2), the associated score φθr (a1, a2)
is given by a neural network architecture encompassing
an encoding layer and a scoring layer.

In the encoding layer, the subject and object entities a1

and a2 are mapped to low-dimensional vector represen-
tations (embeddings) h1 , h(a1) ∈ Rk and h2 ,
h(a2) ∈ Rk, produced by an encoder hγ : E → Rk

with parameters γ. This layer can be pre-trained [Vylo-
mova et al., 2016] or, more commonly, learnt from data
by back-propagating the link prediction error to the en-
coding layer [Bordes et al., 2013, Nickel et al., 2016,
Trouillon et al., 2016].

In the scoring layer, the entity representations h1 and h2

are scored by a function φθr (h1,h2), parametrised by θ.

Summarising, the high-level architecture is defined as:

h1,h2 , hγ(a1),hγ(a2)

φr(a1, a2) , φθr (h1,h2)

Ideally, more likely triples should be associated with
higher scores, while less likely triples should be asso-
ciated with lower scores.

While the literature has produced a multitude of encod-
ing and scoring strategies, for brevity we overview only
a small subset of these. However, we point out that our
method makes no further assumptions about the network
architecture other than the existence of an argument en-
coding layer.

2.2 Encoding Layer

Given an entity a ∈ E , the entity encoder hγ is usually
implemented as a simple embedding layer hγ(a) , [γ]a,
where γ is an embedding matrix [Nickel et al., 2016].
For pre-trained embeddings, the embedding matrix is
fixed. Note that other encoding mechanisms are conceiv-
able, such as recurrent or convolutional neural networks.

2.3 Scoring Layer

DistMult DISTMULT [Yang et al., 2015] represents
each relation r using a parameter vector θr ∈ Rk, and
scores a link of type r between (h1,h2) using the fol-
lowing scoring function:

φθr (h1,h2) , 〈θr,h1,h2〉 ,
k∑

i=1

θr,ih1,ih2,i,

where 〈·, ·, ·〉 denotes the tri-linear dot product.

ComplEx COMPLEX [Trouillon et al., 2016] is an
extension of DISTMULT using complex-valued embed-
dings while retaining the mathematical definition of the
dot product. In this model, the scoring function is defined
as follows:

φθr (h1,h2) , Re
(
〈θr,h1,h2〉

)
,

where θr,h1,h2 ∈ Ck are complex vectors, x denotes
the complex conjugate of x, and Re (x) ∈ Rk denotes
the real part of x.

2.4 Training

Training neural link predictors amounts to minimising
a loss function defined over a target graph G of triples
{(r, a1, a2)}. Since such graphs usually only contain
positive examples (true facts), a common strategy is to
generate negative examples by corrupting the triples in
the graph [Rendle et al., 2009, Bordes et al., 2013, Yang
et al., 2015, Nickel et al., 2016].

Formally, given a triple (r, a1, a2), negative examples are
generated by a corruption process δ defined by:

δ(r, a1, a2) ,

{(r, ã1, a2) | ã1 ∈ E} ∪ {(r, a1, ã2) | ã2 ∈ E}.



The main motivation for this negative sampling strategy
is the Local Closed World Assumption (LCWA) [Dong
et al., 2014]. According to the LCWA, if a triple exists in
the graph, other triples obtained by corrupting either the
subject or the object of the triples not appearing in the
graph can be considered as negative examples.

Similarly to Bordes et al. [2013], we learn the model pa-
rameters θ and γ by minimising a hinge loss JF , re-
ferred to as fact loss, defined over positive and negative
examples:

JF (G;θ,γ) , (1)∑
(r,a1,a2)∈Ω

[
1− yr(a1, a2) · φθr (hγ(a1),hγ(a2))

]
+
,

where N , {x̃ | x ∈ G ∧ x̃ ∈ δ(x)} is the set of
negative examples (triples) generated by corrupting the
triples in G, Ω , G ∪ N is a set containing both posi-
tive and negative examples, and yr(a1, a2) = ±1 is an
indicator function with value 1 if (r, a1, a2) ∈ G, and−1
otherwise.

For several neural link prediction models, the fact scores
can be trivially increased by increasing the magnitude
of entity embeddings. A common solution is to either
regularise the entity representations [Yang et al., 2015,
Trouillon et al., 2016], or require them to live in sub-
spaces such as the unit cube [Demeester et al., 2016]
{h | h ∈ [0, 1]

k}, or in the unit sphere [Bordes et al.,
2013] {h | ‖h‖22 = 1}.

3 ADVERSARIAL SETS

Even though the training data may be consistent with
various assumptions we can make about the graph, on
sets of unseen triples the local nature of the classifiers
may still lead to inconsistencies. Taking the IS-A ex-
ample, we may see a high score for (IS-A, CAT, FELINE)
and (IS-A, FELINE, ANIMAL), but a low score for
(IS-A, CAT, ANIMAL), violating the transitivity property
of the IS-A hypernymy relation.

To address this problem, we generate adversarial input
sets, and encourage the model to fix its inconsistencies
with respect to these inputs. More specifically, we find
a set of adversarial entity embeddings as inputs to the
scoring layer of the model, instead of a set of actual en-
tity pairs. This has two core benefits. First, it allows us
to solve a continuous optimisation problem (over embed-
dings) as opposed to a combinatorial one (over actual en-
tities). The former can even have closed form solutions,
as shown in Sect. 3.3. Second, it forces the model to
learn general correlations between relations, as opposed

to knowledge about specific facts and entities through the
encoder.

For clarity, we now consider a single assumptionA, such
as the transitivity of relation r. Generalising to multi-
ple assumptions only requires instantiating one adversary
and one inconsistency loss for each of the assumptions.
In this work, we use Horn Clauses, a subset of FOL for-
mulae, to express our assumptions. For example, transi-
tivity of the hypernym relation can be expressed by:

IS-A(X1, X2) ∧ IS-A(X2, X3)⇒ IS-A(X1, X3), (2)

where the atom on the right-hand side of the implication
is referred to as the head of the clause, the conjunction
of atoms on the left-hand side is referred to as the body
of the clause, and all variables are universally quantified.

Let an adversarial input set S define a mapping from the
free variables in V in A to k-dimensional embeddings –
i.e. S : V 7→ Rk. We call S a set because it implicitly
specifies a set of adversarial inputs to the scoring layers
of the neural link predictors associated with the atoms in
A. For example, in the case of the transitivity clause in
Eq. (2), a mapping S with S(X1) = h1, S(X2) = h2

and S(X3) = h3 will define the set of inputs (h1,h2),
(h2,h3) and (h1,h3) to the scoring layer φIS-A.

Given the adversarial input set S, the inconsistency loss
JI(A;θ,S) measures the degree to which assumptionA
is violated on S with model parameters θ. It is computed
as a function of the neural link prediction scores on the
adversarial inputs in S. For the transitivity clause in Eq.
(2), the inconsistency loss is computed as a function of
φIS-A(h1,h2), φIS-A(h2,h3) and φIS-A(h1,h3).

Our loss function is then a linear combination of the fact
loss function in Eq. (1) and the inconsistency loss JI :

J (G,A;θ,γ,S) , JF (G;θ,γ) + αJI(A;θ,S),

where α ∈ R controls the extent to which the assumption
A should be enforced.

Our adversarial training algorithm attempts to find input
sets S with maximal inconsistency, and model parame-
ters θ,γ that minimise such an inconsistency. This can
be formalised by the following minimax problem:

min
θ,γ

max
S
J (G,A;θ,γ,S). (3)

Note that the search over possible S needs to take into
account the unit sphere or cube constraints mentioned
earlier: for any variable Xi ∈ V , the corresponding k-
dimensional embedding S(Xi) should live on the same
subspace (e.g. unit sphere or unit cube) as the entity em-
beddings.



To instantiate this framework we need to be able to map
an assumption A to an inconsistency loss JI(A;θ,S),
and to solve the optimisation problem in Eq. (3).

3.1 Inconsistency Losses

Given an assumption A expressed as a FOL clause
BODY ⇒ HEAD, as in Eq. (2), our goal is defining a
loss term JI(S) that assesses the degree to which A is
violated on a set of adversarial inputs S.

Recall that we represent S : V 7→ Rk as a binding of
the free variables V in A to adversarially-trained em-
beddings in Rk. This means that in practice we have to
search over variable-to-embedding bindings.

We construct the inconsistency loss JI compositionally,
by first calculating φ(HEAD) and φ(BODY), respectively
representing the scores for the head and body of the
clause, based on the binding of variables to embeddings
defined by S. Subsequently, we test whether the head
score is lower than the body score, i.e., φ(HEAD) <
φ(BODY) [Demeester et al., 2016]. If so, we assign a
penalty proportional to the margin between body score
and the head score. This yields the following inconsis-
tency loss:

JI(BODY ⇒ HEAD) , [φ(BODY)− φ(HEAD)]+ .

The motivation for this loss is that implications can be
understood as “whenever the body is true, the head has
to be true as well”. In terms of neural link prediction
models, this translates into “the score of the head should
at least be as large as the score of the body”.

For calculating the inconsistency loss, we need to spec-
ify how to calculate the scores of the head and body. To
score a single atom, we simply map the free variables
with the corresponding embeddings contained in the ad-
versarial set S and apply the neural link predictor scoring
function:

φ (r (Xi, Xj)) = φr (S(Xi),S(Xj)) .

This gives us the score of the head atom, and the scores
of the atoms within the body. Similarly to the product t-
norm used in Rocktäschel et al. [2015], we use the Gödel
t-norm, a continuous generalisation of the conjunction
operator in logic [Gupta and Qi, 1991] to score the body
of a clause, i.e., a conjunction of several atoms:

φ(A ∧B) , min{φ(A), φ(B)},

whereA andB are clause atoms. This allows us to back-
propagate through a conjunction of atoms. For disjunc-
tion one can use φ(A ∨ B) , max{φ(A), φ(B)}, and
for negation φ(¬A) , −φ(A), which allows the use

Algorithm 1 Solving the minimax problem in Eq. (3)
via Projected Stochastic Gradient Descent

Require: No. of epochs {τa, τd, τ}, learning rates {ηηηa, ηηη}
1: main AdversarialSetTraining(A)
2: Randomly initialise {θ0,γ0}
3: for i ∈ {1, . . . , τ} do
4: Si ← FindAdversarialSet(A,θi−1)
5: (θi,γi)← TrainDiscriminator(G,θi−1,γi−1,Si)
6: end for
7: return θτ ,γτ
8: end main
9: function FindAdversarialSet(A,θ)

10: Randomly initialise S0
11: for i = 1, . . . , τa do
12: hj ← proj(hj), ∀hj ∈ S
13: gi ← ∇SJI(A;θ,Si−1)
14: Si ← Si−1 + ηai gi
15: end for
16: return Sτa
17: end function
18: function TrainDiscriminator(G,θ,γ,S)
19: θ0 ← θ,γ0 ← γ
20: for i = 1, . . . , τd do
21: hj ← proj(hj), ∀j ∈ {1, . . . , |E|}
22: gi ← ∇〈θ,γ〉J (G,A;θi−1,γi−1,S)
23: (θi,γi)← (θi−1,γi−1)− ηigi
24: end for
25: return θτd ,γτd
26: end function

of arbitrary function-free FOL clauses as in Rocktäschel
et al. [2015]. However, in our experiments we only use
Horn clauses, and leave the investigation of more com-
plex clauses for future work.

3.2 Optimisation

To optimise the minimax objective in Eq. (3), we al-
ternate between two optimisation processes, as shown in
Alg. 1. On line 4, the algorithm finds an adversarial set
S by maximising the inconsistency loss using τa-many
Gradient Ascent iterations. On line 5, the link prediction
model is trained by jointly minimising the fact loss and
the inconsistency loss on the adversarial input set S via
τd-many Stochastic Gradient Descent iterations.

In our implementation of Alg. 1, we enforce all en-
tity and adversarial embeddings to live either on the unit
cube, i.e., proj(h) , min(max(h,0),1), or on the unit
sphere, i.e., proj(h) , h/ ‖h‖2. At the beginning of
the training process, we initialise the neural link pre-
dictor parameters {θ,γ} using uniform Xavier initiali-
sation [Glorot and Bengio, 2010]. When searching for
the adversarial set S that maximises the inconsistency
loss, we initialise S using randomly sampled entity em-
beddings. Note that this algorithm is independent of the
specific neural link prediction model used, and applica-
ble to any function-free FOL clause.



Table 1: Closed form expressions Jmax
I for DISTMULT

and COMPLEX on three types of clauses. For DIST-
MULT δ = θb − θr ∈ Rk, and for COMPLEX, δ =
θb − θr = ζ ∈ Ck, for entity embeddings restricted to
the unit sphere (left) and unit cube (right) subspaces.

Clause Model Unit Sphere Unit Cube

r(X1, X2)
⇒ r(X2, X1)

DISTMULT 0 0
COMPLEX maxi

{
2|θI

r,i|
}

2
∑

i |θI
r,i|

b(X1, X2)
⇒ r(X1, X2)

DISTMULT maxi {|δi|}
∑

i max {0, δi}
COMPLEX maxi

{√
(δR

i )2 + (δI
i)

2
} ∑

i max(0, δR
i ) + max(δR

i , |δI
i|)

b(X1, X2)
⇒ r(X2, X1)

DISTMULT maxi {|δi|}
∑

i max {0, δi}
COMPLEX maxj

{√
(ζR

i )2 + (ζ I
i)

2
} ∑

i max(0, ζR
i ) + max(ζR

i , |ζ I
i|)

3.3 Closed Form Solutions

While the algorithm above is much more efficient than
grounding out the clauses over the entity space (as in
Rocktäschel et al. [2015]), it still requires the inner loop
of maximising the inconsistency loss. Compared to
closed-form analytical solutions, the inner optimisation
loop can be computationally less efficient, require more
hyperparameters (learning rate, number of iterations etc.)
and offer fewer guarantees on whether the global opti-
mum is found.

In some cases, it is possible to analytically calculate the
solution Jmax

I (A;θ) to the inner optimisation problem
of maximising the inconsistency loss JI(A;θ,S) with
respect to the adversarial set S:

Jmax
I (A;θ) , max

S
JI(A;θ,S).

When Jmax
I is known up front, the inner training loop

disappears. We will call this approach the Closed-Form
Adversarial Set Regularisation (cASR) method, as op-
posed to the more general iterative method in Alg. 1. We
derive Jmax

I for several types of clauses, both for DIST-
MULT and COMPLEX, as shown in Tab. 1. Full deriva-
tions are provided in the supplementary material.

Let’s consider the closed-form inconsistency loss Jmax
I

for simple clauses of the form b(X1, X2)⇒ r(X1, X2),
and let θb,θr denote the predicate embeddings of pred-
icates b and r, respectively. From Tab. 1 we can see
that the expressions in the unit sphere case are indepen-
dent of the sign of θb,i − θr,i, indicating that the non-
symmetric implications cannot be explicitly modelled
with unit sphere constraints. Both our theoretical and
experimental results indicate that unit cube constraints
used by Demeester et al. [2016] are indeed better suited
for rule injection. Also note that the lifted clause injec-
tion method by Demeester et al. [2016] can be seen as a
special case of this formulation, which is however lim-
ited to a single neural link prediction model and a small
subset of clauses.

Figure 2: Jmax
I contours for simple implications with

COMPLEX, for varying θb,i − θr,i, for unit sphere (left)
and unit cube (right) constraints.
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Fig. 2 shows contours of the contribution to Jmax
I from

component θb,i − θr,i, for simple implications with
COMPLEX. We observe the rotation-symmetric be-
haviour for the unit sphere constraints (Fig. 2a). In con-
trast, for unit cube constraints (Fig. 2b) we see the quite
different impact of the real part (on its own a scaled ver-
sion of the expression for DISTMULT) and that the imag-
inary part contributes as soon as its absolute value ex-
ceeds the real part.

Minimising Jmax
I for unit sphere constraints in COM-

PLEX boils down to encouraging θr,i ≈ θb,i, for both
real and imaginary parts, whereas for unit cube con-
straints it encourages an ordering relation of the real parts
Re (θr,i) ≥ Re (θb,i), and the equality of the imaginary
parts Im (θr,i) ≈ Im (θb,i).

4 RELATED WORK

Rocktäschel et al. [2014, 2015] provide a framework for
jointly maximising the probability of observed facts and
propositionalised First-Order Logic clauses. Wang et al.
[2015] show how different types of clauses can be in-
cluded after training the model by using Integer Linear
Programming. Recently, Wang and Cohen [2016] pro-
pose a method for embedding facts and clauses using ma-
trix factorisation. However, all these approaches ground
the clauses in the training data. This limits their scal-
ability to comparably small knowledge bases that con-
tain only few entities. As mentioned in Demeester et al.
[2016], such problems provide an important motivation
for lifted clause injection methods that do not rely on
grounding of clauses, but rather regularise relation repre-
sentations directly and ensure that the assumptions hold
on the whole entity embedding space, improving gener-
alisation. Dong et al. [2014], Nickel et al. [2014] and
Wang et al. [2015] propose combining observable pat-
terns in the form of clauses and latent features for link
prediction tasks. However, in these models, clauses are



not used for learning better distributed representations of
entities and relation types.

Our model is related to MODEL FSL proposed by De-
meester et al. [2016], where they use very simple clauses
for defining a partial ordering among relation embed-
dings. Moreover, their approach is limited to the simple
matrix factorisation MODEL F by Riedel et al. [2013a],
while ASR extends and improves over MODEL FSL.
First, it can be used for injecting arbitrarily complex
first-order logic clauses, such as the transitivity clause
in Eq. (2). Second, it can be used jointly with any
knowledge graph embedding model. Furthermore, it also
improves over the general clause-injection methods by
Rocktäschel et al. [2015] and Guo et al. [2016] since it
avoids generating possible groundings of a clause. Gaif-
man models [Niepert, 2016] and related works train la-
tent representations using features derived from subre-
gions of a knowledge base: in such models, one can de-
fine relationships between subregions.

5 EXPERIMENTS

We now present our experimental results, starting by de-
scribing the experimental setup and hyper-parameters,
both on synthetic and real-world data-sets. All mod-
els were implemented in TensorFlow, and source code
is available on-line.1

Experimental Setup for Synthetic Data In order to
investigate the effect of ASR on particular types of
clauses, we created the following small synthetic knowl-
edge base. We randomly sampled subject-object pairs
from a low-dimensional entity space (with probability
0.1, and for |E| = 30). With each of these pairs, we
created facts by combining them with 15 relations in R
with probability 0.1, resulting in 135 training facts. Be-
sides those, we created clauses by randomly combining
relations into the appropriate clause template, i.e. sym-
metry constraints, implications, and transitivity. For each
experiment on a particular type of clause, 10 different
clauses of that type were applied together. The training
facts contain no evidence of these clauses. Each new fact
that could be inferred based on the clauses was added as
a positive item to the test data, together with a negative
example obtained by corrupting its subject-object pair.

Experimental Setup for Real Data We also evaluate
the proposed method on WORDNET (WN18) and FREE-
BASE (FB122) jointly with the set of rules released by
Guo et al. [2016]. WORDNET [Miller, 1995] is a lexical
knowledge base for the English language, where entities

1https://github.com/uclmr/inferbeddings

correspond to word senses, and relationships define lex-
ical relations between them. The WN18 dataset consists
of a subset of WORDNET, containing 40,943 entities,
18 relation types, and 151,442 triples. FREEBASE [Bol-
lacker et al., 2007] is a large knowledge graph that stores
general facts about the world. The FB122 dataset is a
subset of FREEBASE regarding the topics of people, lo-
cation and sports, and contains 9,738 entities, 122 rela-
tion types, and 112,476 triples. For both data sets, we
used the fixed training, validation, test sets and rules pro-
vided by Guo et al. [2016]; a subset of the rules is shown
in Tab. 2. Note that a subset of the test triples can be in-
ferred by deductive logic inference. For such a reason,
following Guo et al. [2016], we also partition the test
set in two subsets, namely Test-I and Test-II: Test-I con-
tains triples that cannot be inferred by deductive logic in-
ference, while Test-II contains all remaining test triples.
Statistics for the data sets are shown in Tab. 3.

Hyper-parameters We ran a grid search for the em-
bedding dimension k ∈ {20, 50, 100, 150, 200}, the mar-
gin γ ∈ {1, 2, 5, 10}, the weight of the adversarial loss
α ∈ {1, 10, 102, 103, 104}, the number of iterations for
the discriminator and the adversary τd, τa ∈ {1, 10},
fixed the number of epochs to τ = 100, and decided
the optimal subspace U among either unit cube or unit
sphere. We use AdaGrad [Duchi et al., 2011] for auto-
matically selecting the optimal learning rate, with an ini-
tial value of 0.1. For the synthetic dataset experiments,
we use the same settings, fixing the hyper-parameters to
k = 20, γ = 1, α = 1, τd = 10 and τa = 1.

Evaluation Metrics For evaluating each model, we
measure the quality of the ranking of test triples in terms
of Mean Reciprocal Rank (MRR) and HITS@k [Bordes
et al., 2013, Nickel et al., 2016]. MRR and Hits@K are
two standard evaluation measures on these data sets and
are used in two settings: raw and filtered [Bordes et al.,
2013]. Our results are reported in the filtered setting,
where metrics are computed after removing all the other
known triples appearing in the training, validation or test
sets from the ranking. This is motivated by observing
that ranking a test triple lower than another true triple
should not be penalised. For the experiments on syn-
thetic data, we calculate the Area Under the Precision-
Recall Curve (AUC-PR), based on the test data consist-
ing of true facts and a single corruption of each true fact.
Each experiment is repeated 10 times with different ran-
domly generated train facts, test facts, and clauses. The
reported AUC-PR values are averaged over these runs.

https://github.com/uclmr/inferbeddings


Table 2: Examples of the clauses used for FREEBASE (FB122) and WORDNET (WN18).

/PEOPLE/PERSON/NATIONALITY(X1, X2) ∧ /LOCATION/COUNTRY/OFFICIAL_LANGUAGE(X2, X3)⇒ /PEOPLE/PERSON/LANGUAGES(X1, X3)
/COUNTRY/ADMINISTRATIVE_DIVISIONS(X1, X2) ∧ /ADMINISTRATIVE_DIVISION/CAPITAL(X2, X3)⇒ /LOCATION/CONTAINS(X1, X3)
/LOCATION/COUNTRY/CAPITAL(X1, X2)⇒ /LOCATION/LOCATION/CONTAINS(X1, X2)

_HYPERNYM(X1, X2)⇒ _HYPONYM(X2, X1) _HYPONYM(X1, X2)⇒ _HYPERNYM(X2, X1)
_HAS_PART(X1, X2)⇒ _PART_OF(X2, X1) _PART_OF(X1, X2)⇒ _HAS_PART(X2, X1)

Table 3: Statistics for the data sets.

Dataset |E| |R| #Train #Valid #Test-I #Test-II

FB122 9,738 122 91,638 9,595 5,057 6,186
WN18 40,943 18 141,442 5,000 1,394 3,606

6 RESULTS AND DISCUSSION

In this section, we describe our findings on the synthetic,
WORDNET (WN18) and FREEBASE (FB122) datasets.

6.1 Synthetic Data

ASR We tested the effectiveness of adversarial train-
ing for five different types of clauses in the synthetic data
setup described in Section 5. Table 6 shows the resulting
AUC-PR, where entity embeddings lie on the unit cube
or on the unit sphere, and with vs. without iterative ad-
versarial training (α = 0 and α = 1, respectively). DIST-
MULT and COMPLEX are able to encode the various
types of clauses into the relation and argument represen-
tations. In line with arguments given above, the results
for unit cube entities are generally better than their coun-
terparts on the unit sphere, both on the standard models
and with ASR. The most complex type of clauses (i.e.
the transitivity over three different relations) yields lower
absolute AUC-PR values than simpler clauses. Nonethe-
less, we observe a significant increase in scores due to
the clauses. A noticeable case where the standard mod-
els cannot be improved is for DISTMULT on the clause
that expresses symmetry (the first clause in Table 1). This
is unsurprising since symmetry is satisfied by construc-
tion in DISTMULT. This experiment confirms that ASR
is able to encode different types of clauses (unlike De-
meester et al. [2016]), and for different models (unlike
Rocktäschel et al. [2015]).

Closed-Form Solutions Using the closed-form ex-
pressions for Jmax

I given in Table 1, we performed the
synthetic data set experiments again. The results, shown
in Table 7, indicate that the optimal adversarial training is
also able to encode clauses into the trained embeddings.
As with the iterative method, unit cube constraints per-
form better than on the unit sphere. For the synthetic
data experiments, no hyper-parameter optimisation was
performed, and we used the same number of discrimina-

tor training cycles as for the results presented in Table 6.
Compared to the iterative method, closed form results
on the unit sphere are consistently weaker. This is in line
with our earlier observations that their symmetric charac-
ter is not suited for modelling asymmetry in clauses. In
any case, we observed a strong reduction in training time:
the runs based on closed-form expressions took around a
fifth the time of the corresponding iterative runs.

6.2 Link Prediction in Freebase and Wordnet

We compare the proposed Adversarial Set Regularisation
(ASR) method with KALE, a recently proposed neu-
ral link prediction model that also leverages rules during
the training process, the Translating Embeddings model
(TRANSE) [Bordes et al., 2013], DISTMULT and COM-
PLEX. In particular, we compare ASR with two strong
KALE variants: KALE-PRE, which augments training
triples by means of logic inference, and KALE-JOINT,
which jointly considers training triples and rules during
training [Guo et al., 2016]. Results for TRANSE and
KALE are reported from Guo et al. [2016].

In experiments, we use ASR for regularising the learn-
ing process in DISTMULT and COMPLEX – we de-
note the resulting models by ASR-DISTMULT and ASR-
COMPLEX: we retain the original formulations of the
scoring functions φr, but train the models by solving the
minimax optimisation problem in Eq. (3) using Alg. 1.

Results for FREEBASE are reported in Tab. 4. We can see
that ASR-COMPLEX yields better results both in com-
parison with KALE and with the un-regularised model
COMPLEX. When comparing DISTMULT with its ASR-
regularised extension, we note an improvement from
0.628 to 0.675 for MRR, and from 72.9% to 75.2% for
Hits@10. Similarly, when comparing COMPLEX with
its extension ASR-COMPLEX, we note an improvement
from 0.641 to 0.698 for MRR, and from 71.9% to 75.7%
for Hits@10. Also note that ASR, when used jointly
with COMPLEX and DISTMULT, yields larger relative
improvements in comparison with KALE (a model in-
spired by TRANSE) and TRANSE.

Improvements are even more evident if we consider the
FB122 results in Test-II, where test facts are directly re-
lated to the logic clauses. We can see that, in terms
of MRR, the proposed regularisation method improves



Table 4: Link prediction results on the Test-I, Test-II and and Test-ALL on FB122, filtered setting.

Test-I Test-II Test-ALL
Hits@N (%) MRR Hits@N (%) MRR Hits@N (%) MRR

3 5 10 3 5 10 3 5 10

FB
12

2

TRANSE [Bordes et al., 2013] 36.0 41.5 48.1 0.296 77.5 82.8 88.4 0.630 58.9 64.2 70.2 0.480
KALE-PRE [Guo et al., 2016] 35.8 41.9 49.8 0.291 82.9 86.1 89.9 0.713 61.7 66.2 71.8 0.523
KALE-JOINT [Guo et al., 2016] 38.4 44.7 52.2 0.325 79.7 84.1 89.6 0.684 61.2 66.4 72.8 0.523
DISTMULT [Yang et al., 2015] 36.0 40.3 45.3 0.313 92.3 93.8 94.7 0.874 67.4 70.2 72.9 0.628
ASR-DISTMULT 36.3 40.3 44.9 0.330 98.0 99.0 99.2 0.948 70.7 73.1 75.2 0.675
cASR-DISTMULT 37.0 40.4 45.1 0.337 96.7 98.6 99.3 0.933 70.1 72.7 75.1 0.669
COMPLEX [Trouillon et al., 2016] 37.0 41.3 46.2 0.329 91.4 91.9 92.4 0.887 67.3 69.5 71.9 0.641
ASR-COMPLEX 37.3 41.0 45.9 0.338 99.2 99.3 99.4 0.984 71.7 73.6 75.7 0.698
cASR-COMPLEX 37.9 41.7 46.2 0.339 97.7 99.3 99.4 0.954 71.1 73.6 75.6 0.680

Table 5: Results on WN18 with limited training data –
i.e. 20%, 30%, 40% and 50% of the training set.

Training data 20% 30% 40% 50%

W
N

18 Hits@10 COMPLEX 38.9 46.6 54.1 60.5
ASR-COMPLEX 39.9 47.1 54.8 61.1

MRR COMPLEX 0.356 0.418 0.480 0.538
ASR-COMPLEX 0.366 0.423 0.484 0.540

Table 6: AUC-PR results for ASR-DISTMULT and ASR-
COMPLEX on synthetic datasets with various types of
clauses (with r 6= s 6= t). Comparison of standard
models without clauses (α = 0) and iterative adversar-
ial training with clauses (α = 1), with unit cube or unit
sphere constraints on the entity embeddings.

Clauses Model α = 0 α = 0 α = 1 α = 1
Unit Cube Unit Sphere Unit Cube Unit Sphere

r(X1, X2)
⇒ r(X2, X1)

DISTMULT 96.0 95.7 95.9 95.6
COMPLEX 45.0 42.4 90.6 91.2

r(X1, X2)
⇒ s(X1, X2)

DISTMULT 59.2 61.3 86.3 79.2
COMPLEX 60.8 61.2 85.8 79.7

r(X1, X2)
⇒ s(X2, X1)

DISTMULT 59.6 59.1 76.6 73.1
COMPLEX 54.7 51.4 87.5 81.0

r(X1, X2) ∧ r(X2, X3)
⇒ r(X1, X3)

DISTMULT 45.0 37.5 65.9 45.8
COMPLEX 40.9 36.3 54.8 42.5

r(X1, X2) ∧ s(X2, X3)
⇒ t(X1, X3)

DISTMULT 41.9 39.5 44.9 49.8
COMPLEX 39.1 37.8 40.3 45.4

Table 7: AUC-PR results on synthetic datasets for adver-
sarial training with closed form expressions.

Clause Model α = 1 α = 1
Unit Cube Unit Sphere

r(X1, X2)
⇒ r(X2, X1)

DISTMULT 97.3 95.2
COMPLEX 91.7 90.1

r(X1, X2)
⇒ s(X1, X2)

DISTMULT 85.0 69.5
COMPLEX 83.6 75.5

r(X1, X2)
⇒ s(X2, X1)

DISTMULT 76.9 67.8
COMPLEX 80.2 73.9

the MRR from 0.874 to 0.948 for DISTMULT, and from
0.887 to 0.984 for COMPLEX.

We ran the same experiments on WN18 (see the supple-
mental material for more exhaustive results) but did not
notice any significant improvements. One reason can be

that the neural link prediction model has enough training
data to learn the WN18 rules by itself. For this reason,
we also evaluate ASR in settings where the availability
of training data is limited. More specifically, at training
time, we use a limited sample of the training triples (i.e.
20%, 30%, . . . ) whose predicate appears in the head of a
clause. Results are available in Tab. 5: we note that, in a
limited data regime, ASR yields some marginal improve-
ments on WN18. In Tab. 4 we also report results for the
closed-form solutions described in Sect. 3.3 and derived
in the Appendix, denoted by cASR-COMPLEX and cASR-
DISTMULT. In both cases, the closed form solutions for
the inner adversarial training loop yield similar results to
their iterative counterparts, improving on all baselines.

7 CONCLUSIONS

In this paper, we introduced Adversarial Set Regulari-
sation (ASR), a general and scalable method for regu-
larising neural link prediction models. In the proposed
method, an assumption is used for deriving an incon-
sistency loss measuring the degree to which the model
violates the assumption on an adversarially-trained set
of input representations. The training objective is de-
fined as a zero-sum game, where an adversary finds the
most offending set of input representations by maximis-
ing the inconsistency loss, and the model uses the incon-
sistency loss on such a set for regularising its training
process. Our results demonstrate that incorporating prior
assumptions in the form of FOL clauses gives a steady
improvement over neural link prediction models, espe-
cially when the availability of training data is limited.
Furthermore, the proposed method yields consistent im-
provements over the recently-proposed KALE method.
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