4 research outputs found

    Semi-Supervised Learning Vector Quantization method enhanced with regularization for anomaly detection in air conditioning time-series data

    Get PDF
    Researchers of semi-supervised learning methods have been developing the family of Learning Vector Quantization models which originated from the well-known Self-Organizing Map algorithm. The models of this type can be characterized as prototype-based, self-explanatory and flexible. The thesis contributes to the development of one of the LVQ models – Semi-Supervised Relational Prototype Classifier for dissimilarity data. The model implementation is developed based on the related research work and thesis author findings, and applied to the task of anomaly detection from a real-time air condition data. We propose a regularization algorithm for gradient descent in order to achieve better convergence and a new strategy for initializing prototypes. We develop an innovative framework involving a human expert as a source of labeled data. The framework detects anomalies of environment parameters in both real-time and long-run observations and updates the model according to findings. The data set used for experiments is collected in real-time from sensors installed inside the Aalto Mechanical Engineering building located at Otakaari, 4, Espoo. Installation was done as a part of the project of VTT and Korean National Research Institute. The data consists of 3 main parameters – air temperature, humidity and CO2 concentration. Total number of deployed sensors is around 150. One month recorded data observations contains approximately 1.5M of data points. The results of the project demonstrate the efficiency of the developed regularized LVQ method for classification in given settings. Its regularized version generally overperforms its parent and various baseline methods on air conditioning, synthetic and UCI data. Together with the proposed classification framework, the system has shown its robustness and efficiency and is ready for deployment to a production environment

    Integration of Auxiliary Data Knowledge in Prototype Based Vector Quantization and Classification Models

    Get PDF
    This thesis deals with the integration of auxiliary data knowledge into machine learning methods especially prototype based classification models. The problem of classification is diverse and evaluation of the result by using only the accuracy is not adequate in many applications. Therefore, the classification tasks are analyzed more deeply. Possibilities to extend prototype based methods to integrate extra knowledge about the data or the classification goal is presented to obtain problem adequate models. One of the proposed extensions is Generalized Learning Vector Quantization for direct optimization of statistical measurements besides the classification accuracy. But also modifying the metric adaptation of the Generalized Learning Vector Quantization for functional data, i. e. data with lateral dependencies in the features, is considered.:Symbols and Abbreviations 1 Introduction 1.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . 1 1.2 Utilized Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Prototype Based Methods 19 2.1 Unsupervised Vector Quantization . . . . . . . . . . . . . . . . . . 22 2.1.1 C-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.2 Self-Organizing Map . . . . . . . . . . . . . . . . . . . . . . 25 2.1.3 Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.4 Common Generalizations . . . . . . . . . . . . . . . . . . . 30 2.2 Supervised Vector Quantization . . . . . . . . . . . . . . . . . . . . 35 2.2.1 The Family of Learning Vector Quantizers - LVQ . . . . . . 36 2.2.2 Generalized Learning Vector Quantization . . . . . . . . . 38 2.3 Semi-Supervised Vector Quantization . . . . . . . . . . . . . . . . 42 2.3.1 Learning Associations by Self-Organization . . . . . . . . . 42 2.3.2 Fuzzy Labeled Self-Organizing Map . . . . . . . . . . . . . 43 2.3.3 Fuzzy Labeled Neural Gas . . . . . . . . . . . . . . . . . . 45 2.4 Dissimilarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.4.1 Differentiable Kernels in Generalized LVQ . . . . . . . . . 52 2.4.2 Dissimilarity Adaptation for Performance Improvement . 56 3 Deeper Insights into Classification Problems - From the Perspective of Generalized LVQ- 81 3.1 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 The Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3 Evaluation of Classification Results . . . . . . . . . . . . . . . . . . 88 3.4 The Classification Task as an Ill-Posed Problem . . . . . . . . . . . 92 4 Auxiliary Structure Information and Appropriate Dissimilarity Adaptation in Prototype Based Methods 93 4.1 Supervised Vector Quantization for Functional Data . . . . . . . . 93 4.1.1 Functional Relevance/Matrix LVQ . . . . . . . . . . . . . . 95 4.1.2 Enhancement Generalized Relevance/Matrix LVQ . . . . 109 4.2 Fuzzy Information About the Labels . . . . . . . . . . . . . . . . . 121 4.2.1 Fuzzy Semi-Supervised Self-Organizing Maps . . . . . . . 122 4.2.2 Fuzzy Semi-Supervised Neural Gas . . . . . . . . . . . . . 123 5 Variants of Classification Costs and Class Sensitive Learning 137 5.1 Border Sensitive Learning in Generalized LVQ . . . . . . . . . . . 137 5.1.1 Border Sensitivity by Additive Penalty Function . . . . . . 138 5.1.2 Border Sensitivity by Parameterized Transfer Function . . 139 5.2 Optimizing Different Validation Measures by the Generalized LVQ 147 5.2.1 Attention Based Learning Strategy . . . . . . . . . . . . . . 148 5.2.2 Optimizing Statistical Validation Measurements for Binary Class Problems in the GLVQ . . . . . . . . . . . . . 155 5.3 Integration of Structural Knowledge about the Labeling in Fuzzy Supervised Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . 160 6 Conclusion and Future Work 165 My Publications 168 A Appendix 173 A.1 Stochastic Gradient Descent (SGD) . . . . . . . . . . . . . . . . . . 173 A.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . 175 A.3 Fuzzy Supervised Neural Gas Algorithm Solved by SGD . . . . . 179 Bibliography 182 Acknowledgements 20

    Efficient Kernelized Prototype-based Classification

    No full text
    Schleif F-M, Villmann T, Hammer B, Schneider P. Efficient Kernelized Prototype-based Classification. International Journal of Neural Systems. 2011;21(06):443-457
    corecore