37 research outputs found

    The use of the mesh free methods (radial basis functions) in the modeling of radionuclide migration and moving boundary value problems

    Get PDF
    Recently, the mesh free methods (radial basis functions-RBFs) have emerged as a novel computing method in the scientific and engineering computing community. The numerical solution of partial differential equations (PDEs) has been usually obtained by finite difference methods (FDM), finite element methods (FEM) and boundary elements methods (BEM). These conventional numerical methods still have some drawbacks. For example, the construction of the mesh in two or more dimensions is a nontrivial problem. Solving PDEs using radial basis function (RBF) collocations is an attractive alternative to these traditional methods because no tedious mesh generation is required. We compare the mesh free method, which uses radial basis functions, with the traditional finite difference scheme and analytical solutions. We will present some examples of using RBFs in geostatistical analysis of radionuclide migration modeling. The advection-dispersion equation will be used in the Eulerian and Lagrangian forms. Stefan's or moving boundary value problems will also be presented. The position of the moving boundary will be simulated by the moving data centers method and level set method

    Hybrid Chebyshev Polynomial Scheme for the Numerical Solution of Partial Differential Equations

    Get PDF
    In the numerical solution of partial differential equations (PDEs), it is common to find situations where the best choice is to use more than one method to arrive at an accurate solution. In this dissertation, hybrid Chebyshev polynomial scheme (HCPS) is proposed which is applied in two-step approach and one-step approach. In the two-step approach, first, Chebyshev polynomials are used to approximate a particular solution of a PDE. Chebyshev nodes which are the roots of Chebyshev polynomials are used in the polynomial interpolation due to its spectral convergence. Then, the resulting homogeneous equation is solved by boundary type methods including the method of fundamental solution (MFS) and the equilibrated collocation Trefftz method. However, this scheme can be applied to solve PDEs with constant coefficients only. So, for solving a wide variety of PDEs, one-step hybrid Chebyshev polynomial scheme is proposed. This approach combines two matrix systems of two-step approach into a single matrix system. The solution is approximated by the sum of particular solution and homogeneous solution. The Laplacian or biharmonic operator is kept on the left hand side and all the other terms are moved to the right hand side and treated as the forcing term. Various boundary value problems governed by the Poisson equation in two and three dimensions are considered for the numerical experiments. HCPS is also applied to solve an inhomogeneous Cauchy-Navier equations of elasticity in two dimensions. Numerical results show that HCPS is direct, easy to implement, and highly accurate

    A Kansa-Radial Basis Function Method for Elliptic Boundary Value Problems in Annular Domains

    Get PDF
    We employ a Kansa-radial basis function (RBF) method for the numerical solution of elliptic boundary value problems in annular domains. This discretization leads, with an appropriate selection of collocation points and for any choice of RBF, to linear systems in which the matrices possess block circulant structures. These linear systems can be solved efficiently using matrix decomposition algorithms and fast Fourier transforms. A suitable value for the shape parameter in the various RBFs used is found using the leave-one-out cross validation algorithm. In particular, we consider problems governed by the Poisson equation, the inhomogeneous biharmonic equation and the inhomogeneous Cauchy–Navier equations of elasticity. In addition to its simplicity, the proposed method can both achieve high accuracy and solve large-scale problems. The feasibility of the proposed techniques is illustrated by several numerical examples

    Boundary knot method: A meshless, exponential convergence, integration-free, and boundary-only RBF technique

    Full text link
    Based on the radial basis function (RBF), non-singular general solution and dual reciprocity principle (DRM), this paper presents an inheretnly meshless, exponential convergence, integration-free, boundary-only collocation techniques for numerical solution of general partial differential equation systems. The basic ideas behind this methodology are very mathematically simple and generally effective. The RBFs are used in this study to approximate the inhomogeneous terms of system equations in terms of the DRM, while non-singular general solution leads to a boundary-only RBF formulation. The present method is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of non-singular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no need to introduce the artificial boundary and results in the symmetric system equations under certain conditions. It is also found that the BKM can solve nonlinear partial differential equations one-step without iteration if only boundary knots are used. The efficiency and utility of this new technique are validated through some typical numerical examples. Some promising developments of the BKM are also discussed.Comment: 36 pages, 2 figures, Welcome to contact me on this paper: Email: [email protected] or [email protected]

    Local Radial Basis Function Methods for Solving Partial Differential Equations

    Get PDF
    Meshless methods are relatively new numerical methods which have gained popularity in computational and engineering sciences during the last two decades. This dissertation develops two new localized meshless methods for solving a variety partial differential equations. Recently, some localized meshless methods have been introduced in order to handle large-scale problems, or to avoid ill-conditioned problems involving global radial basis function approximations. This dissertation explains two new localized meshelss methods, each derived from the global Method of Approximate Particular Solutions (MAPS). One method, the Localized Method of Approximate Particular Solutions (LMAPS), is used for elliptic and parabolic partial differential equations (PDEs) using a global sparse linear system of equations. The second method, the Explicit Localized Method of Approximate Particular Solutions (ELMAPS), is constructed for solving parabolic types of partial differential equations by inverting a finite number of small linear systems. For both methods, the only information that is needed in constructing the approximating solution to PDEs, consists of the local nodes that fall within the domain of influence of the data. Since the methods are completely mesh free, they can be used for irregularly shaped domains. Both methods are tested and compared with existing global and local meshless methods. The results illustrate the accuracy and efficiency of our proposed methods

    Fast Method of Particular Solutions for Solving Partial Differential Equations

    Get PDF
    Method of particular solutions (MPS) has been implemented in many science and engineering problems but obtaining the closed-form particular solutions, the selection of the good shape parameter for various radial basis functions (RBFs) and simulation of the large-scale problems are some of the challenges which need to overcome. In this dissertation, we have used several techniques to overcome such challenges. The closed-form particular solutions for the Matérn and Gaussian RBFs were not known yet. With the help of the symbolic computational tools, we have derived the closed-form particular solutions of the Matérn and Gaussian RBFs for the Laplace and biharmonic operators in 2D and 3D. These derived particular solutions play an important role in solving inhomogeneous problems using MPS and boundary methods such as boundary element methods or boundary meshless methods. In this dissertation, to select the good shape parameter, various existing variable shape parameter strategies and some well-known global optimization algorithms have also been applied. These good shape parameters provide high accurate solutions in many RBFs collocation methods. Fast method of particular solutions (FMPS) has been developed for the simulation of the large-scale problems. FMPS is based on the global version of the MPS. In this method, partial differential equations are discretized by the usual MPS and the determination of the unknown coefficients is accelerated using a fast technique. Numerical results confirm the efficiency of the proposed technique for the PDEs with a large number of computational points in both two and three dimensions. We have also solved the time fractional diffusion equations by using MPS and FMPS
    corecore