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ABSTRACT

HYBRID CHEBYSHEV POLYNOMIAL SCHEME FOR THE NUMERICAL

SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

by Balaram Khatri Ghimire

August 2016

In the numerical solution of partial differential equations (PDEs), it is common to find
situations where the best choice is to use more than one method to arrive at an accurate
solution. In this dissertation, hybrid Chebyshev polynomial scheme (HCPS) is proposed
which is applied in two-step approach and one-step approach. In the two-step approach, first,
Chebyshev polynomials are used to approximate a particular solution of a PDE. Chebyshev
nodes which are the roots of Chebyshev polynomials are used in the polynomial interpolation
due to its spectral convergence. Then, the resulting homogeneous equation is solved by
boundary type methods including the method of fundamental solution (MFS) and the
equilibrated collocation Trefftz method. However, this scheme can be applied to solve PDEs
with constant coefficients only. So, for solving a wide variety of PDEs, one-step hybrid
Chebyshev polynomial scheme is proposed. This approach combines two matrix systems of
two-step approach into a single matrix system. The solution is approximated by the sum of
particular solution and homogeneous solution. The Laplacian or biharmonic operator is kept
on the left hand side and all the other terms are moved to the right hand side and treated
as the forcing term. Various boundary value problems governed by the Poisson equation
in two and three dimensions are considered for the numerical experiments. HCPS is also
applied to solve an inhomogeneous Cauchy-Navier equations of elasticity in two dimensions.
Numerical results show that HCPS is direct, easy to implement, and highly accurate.

ii
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Chapter 1

INTRODUCTION

1.1 Background

Partial differential equations (PDEs) are mathematical equations used to describe various
naturally occurring physical phenomena. More known Examples of the application of
PDEs include modeling spring motions and mechanical vibration or describing heat and
sound waves, among many. Despite the usefulness of PDEs in solving many real world
problems in science and engineering, so called closed-form analytical solutions in most
instances are hard to achieve. As a result, numerous numerical approaches to solving PDEs
have been proposed over the past centuries. The most well-established methods are finite
difference method (FDM) [31, 59], finite volume method (FVM) [38], finite element method
(FEM) [60, 61], boundary element method (BEM) and meshless methods [4, 51, 55]. Today
FEM has become the most ubiquitous analysis tool in analyzing engineering problems,
e.g., solids, fluids, electronics, magnetic or mulitiphysical problems in the fields such as
civil engineering, aeronautical engineering, biomechanical engineering, and automotive
industries.

Despite the successes, mesh based methods possess some limitations such as mesh
generation, slow rate of convergence, spatial dependence, stability, low accuracy, and
difficult to implement in complex geometries [4]. In 1990, Edward Kansa developed Kansa
method and is considered as the original radial basis function collocation method (RBFCM)
[32, 33]. This method is a truly meshless, infinitely differentiable, numerically accurate,
stable with high rate of convergence, and spatial independence. Unlike the mesh based
methods in which every node has the connectivity to its neighbouring nodes, these points in
the meshless methods have no nodal connectivity and hence can handle complex geometries
without much difficulty [6]. Many RBFs have been used in the meshless literature, among
them thin plate splines, multiquadric (MQ), and Gaussian are the most widely used globally
supported RBFs [6, 7, 22, 32, 33]. Polynomials and trigonometric functions have also been
used as basis functions [40].

Chebyshev polynomials are a sequence of orthogonal polynomials which can be defined
recursively and well documented [3, 54]. In particular, they are widely used in the numerical
solution of boundary value problems for partial differential equations with spectral methods
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[3, 5, 54]. It is therefore reasonable to approximate a particular solution of a PDE by using
Chebyshev polynomials as a basis function on rectangular domains containing the actual
domain of the problem. Chebyshev polynomials are used in numerical work because of its
property of bounded variation. The local maxima and minima of Chebyshev polynomials on
[−1,1] are exactly equal to 1 and −1 respectively, regardless of the order of polynomials,
which makes them valuable for mini-max approximation. Also, orthogonal polynomials
can be used to make the polynomial coefficients uncorrelated, to minimize the error, and
to minimize the sensitivity of calculations to round off error. The roots of Chebyshev
polynomials, also called Gauss-Lobatto nodes, are used in the polynomial interpolation for
high order of accuracy [3]. Therefore, many researchers in this filed have used Chebyshev
polynomials as a basis function.

Numerical methods have consistently evolved over recent decades and a number of
techniques are now available for analyzing physical phenomena. Although some of these
methods are generic and can be used in the analysis of different classes of problems, it is
impossible to find one specific method that can be considered the best choice for all types of
analysis. Thus, it is common to find situations where the best choice is to use more than one
method to arrive at an accurate solution and it is necessary to establish efficient strategies
for coupling them [50]. Monroe [50] employed one-stage MFS-MPS known as hybrid
meshless method to solve various elliptic PDEs and time dependent problems. Nath et al.

[53] used one-stage MFS-MPS for the steady Navier-Stokes equations in a lid-driven cavity.
Devising efficient coupling strategies is, however, not easy and straightforward techniques
such as those involving direct coupling between the chosen methods using a single global
matrix can lead to ill-conditioning or huge computational cost. One of the common goals
of developing meshless methods is to solve a given set of partial differential equations
(PDEs) with minimum human and computational costs. Hence, other than the accuracy and
efficiency, the simplicity of the developed meshless algorithm is also of great importance.
In this dissertation, Chebyshev polynomial is coupled with boundary meshless methods
such as the MFS to solve various boundary value problems. The performance of two-step
Chebyshev-MFS and Chebyshev-CTM approach, known as two-step hybrid Chebyshev
polynomial scheme (HCPS) for solving PDEs with constant coefficients will be studied first.
Then, to solve a wide variety of PDEs, the viability of one-step Chebyshev-MFS approach,
known as one-step HCPS will be explored in this dissertation.
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1.2 Literature Review

Accuracy, efficiency, stability, and simplicity are main considerations for solving partial
differential equations. State-of-the-art meshless methods have been proven as effective
numerical methods to fulfil these criteria. The meshless methods can be divided into two
categories:

• Meshless domain method: In this method, whole computational domain is discretized
into randomly distributed points. The Kansa method [32, 33] developed by Edward
Kansa, the method of particular solution (MPS) proposed by Chen et al. [6, 7] are the
well-known domain type meshless methods.

• Meshless boundary method: The nodes are distributed only on the boundary of the
computational domain. The MFS [37], the boundary knot method (BKM)[14], and
the singular boundary method (SBM) [15] are some of the meshless boundary alone
methods. These methods are sometimes called as indirect boundary element methods
(BEM) which is a mesh based boundary method [13].

In boundary element methods, the dimension of the problem is reduced by one as only the
boundary of the domain of the problem under consideration needs to be discretized. The
advantages of these techniques can be fully exploited if the governing differential equation is
homogeneous. It is therefore, often desirable to convert an elliptic boundary value problem
governed by an inhomogeneous differential equation to one governed by a homogeneous
differential equation. This can be achieved using the method of particular solutions (MPS).
To describe the MPS, let us consider the following boundary value problem:

Lu(x,y) = f (x,y), (x,y) ∈Ω, (1.1)

with Dirichlet boundary condition

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (1.2)

and Neumann boundary condition

∂u(x,y)
∂n

= h(x,y), (x,y) ∈ ∂Ω, (1.3)

where Ω⊂ R2 is a simply connected domain bounded by a simple closed curve ∂Ω, L is
an elliptic differential operator, f , g, and h are given functions, and the function f can be
smoothly extended to a rectangular domain containing Ω.
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In this dissertation, an approach that combines a particular solution and a boundary
method to solve the problem (1.1)-(1.3) is employed. Let u = up + uh be the solution of
(1.1)-(1.3) where up is the particular solution that satisfies (1.1), but does not necessarily
satisfy the boundary conditions (1.2)-(1.3), and its associated homogeneous solution uh(x,y)

satiesfies :

Luh(x,y) = 0, (x,y) ∈Ω, (1.4)

uh(x,y) = g(x,y)−up(x,y), (x,y) ∈ ∂Ω, (1.5)
∂uh(x,y)

∂n
= h(x,y)−

∂up(x,y)
∂n

, (x,y) ∈ ∂Ω. (1.6)

A particular solution satisfies the given differential equation in the infinite domain without
necessarily satisfying the given boundary conditions, and hence for a given differential
equation it is not unique. In 1967, Fox et al. [24] proposed the method of particular solutions
for solving the Laplace eigenvalue problem using the combination of Bessel functions and
sine functions as basis functions. In the meshless literature, Kansa method [32] is considered
as the global RBF collocation method introduced by Edward Kansa in 1990 which suffers
from full, dense, and ill-conditioning of matrices. As the earlier version of RBF collocation
methods suffer from full, dense, and ill-conditioning of matrices, many RBF collocation
methods have been developed to overcome these issues [2, 6, 7, 16]. Researchers in this field
developed various localized version of RBF collocation methods and applied extensively
to solve large-scale problems that arise in the field of science and engineering. The local
Kansa method [39, 65] and the localized method of particular solution [11, 26, 66] are two
main categories of the localized RBF collocation methods. These new methods are equally
capable to compete with the traditional mesh-based numerical methods such as the FEM
and the FDM. Various numerical results and their application in practical problems have
proved this fact [53, 66]. While employing method of particular solution, the key issue is to
construct the particular solutions Φ(r) to satisfy the following equation:

LΦ(r) = φ(r). (1.7)

Typically, there are two approaches to construct the particular solution Φ(r). One approach
is to utilize the RBFs as the basis functions for constructing the particular solution Φ(r).
The other approach is to use the RBFs as the basis functions for approximating φ(r) and for
deriving a particular solution Φ(r) from (1.7) by reverse differentiation process. Although it
is easy to derive a particular solution from the first scheme, it doesn’t guarantee the matrix
invertibility [19] while the matrix by the second scheme possesses the positive definite
property [12]. The Kansa method [32], a popular method in the meshless literature belongs
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in the first approach, while the method of particular solution (MPS) proposed by Chen et al.

[6, 66] belongs in the second approach. In this dissertation, the first approach is employed
to obtain a particular solution using Chebyshev polynomials as basis functions.

There exist various approaches using polynomials [10, 11, 17, 28, 34] for the evaluation
of approximate particular solutions. Chen et al. [11] obtained particular solutions in
analytical form for 2D Poisson equation when the source function f is a homogeneous
polynomial. Golberg et al. [28] implemented the MPS using Chebyshev interpolants for
2D and 3D Helmholtz type equations when the source function is monomial. However,
book keeping of the many monomial terms of the approximating polynomial f̂ and the
particular solutions corresponding to these terms becomes very tedious and inefficient.
Chen et al. [10] used a finite term geometric series expansion on a differential operator
to directly obtain a particular solution corresponding to each Chebyshev polynomials.
However, the procedure of the actual implementation is quite cumbersome. As a result, some
tedious algebraic operations require symbolic manipulations that impede the computational
efficiency. Karageorghis et al. [34] derived particular solutions for Poisson and bi-harmonic
equations directly using Chebyshev polynomials as basis functions. In [34], they made use
of special properties of the second derivatives of Chebyshev polynomials without the need
for the expanded form of the polynomials. They need to solve a block matrix system, the
dimension of which is big when the degrees of the Chebyshev polynomials used is high. Ding
et al. [17] proposed a recursive formulation or a matrix free method to derive a particular
solution. This method requires the expansion of the approximate source function which is in
terms of Chebyshev polynomials. To avoid the expansion of the Chebyshev polynomials,
a method is proposed that combines the direct collocation and the reduction of the second
order derivative of Chebyshev polynomials. It is easy in coding and implementation and the
use of Gauss-Lobatto nodes ensure the spectral convergence for the Chebyshev interpolation.
Also, there is no problem of ill-conditioning which occurs when RBF approximations are
used.

When a particular solution is found, then the associated homogeneous problem (1.4)-
(1.6) is solved by boundary methods including the method of fundamental solution (MFS)
and the collocation Trefftz method (CTM). The high accuracy of both the MFS and the
Chebyshev polynomial scheme will guarantee the accuracy of the solution of (1.1)-(1.3).
The MFS was first proposed in 1964 by Kupradze et al. [37] and it has been used for
solving various problems. Due to the fact that the MFS requires a fictitious boundary in
the solution process, the CTM which is based on T-complete functions [35] and does not
require a fictitious boundary for solving the homogeneous problem. However, the resulting
linear system will be highly ill-posed by the direct implementation of the CTM and requires
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special treatments. Despite of its successes, two-step approach has some limitations such
as this can only be used to solve elliptic PDEs with constant coefficients and we must
have fundamental solution of the differential operator. Monroe [50] employed one-stage
MFS-MPS hybrid method to solve elliptic PDEs with variable coefficients. Due to the use of
multiquadric (MQ) and inverse multiquadric (IMQ) RBFs, ill-conditioning of the collocation
matrix and choosing suitable shape parameter are some issues still to be addressed. Nath et

al. [53] successfully employed one-stage MFS-MPS for the steady Navier-Stokes equations
in a lid-driven cavity. This opened up the possibility of solving large class of PDEs. In
this dissertation, to address the ill-conditioning of the resulting matrices, and uncertainty
of choosing suitable shape parameter, hybrid Chebyshev polynomial scheme (HCPS) is
proposed. This numerical scheme is applied in two-step approach and one-step approach.
This numerical scheme is direct, highly accurate, easy to implement, and opened up the
possibility of solving a large class of PDEs in higher dimensions as well. Finally, this
dissertation will:

• address the problem of ill-conditioning by implementing Chebyshev polynomials as a
basis function.

• explore the two-step hybrid Chebyshev polynomial scheme (HCPS) for the solution
of second and fourth order elliptic PDEs with constant coefficients.

• explore the one-step hybrid Chebyshev polynomial scheme (HCPS) for the solution
of a wide variety of PDEs in higher dimensions.

• explore the radial basis function collocation method (RBDCM) for solving fourth-
order PDEs.

1.3 Synopsis

In this dissertation, a new numerical scheme hybrid Chebyshev polynomial scheme (HCPS)
is proposed for solving various types of PDEs which is applied in two approaches, two-
step HCPS and one-step HCPS. This numerical scheme is direct, less ill-posed, easy to
implement, and highly accurate. Also, this can be easily extended to higher order elliptic
PDEs and in higher dimensions as well.

Chapter 2 begins with a review of state-of-the-art meshless methods focusing particularly
on the methods and techniques used in this dissertation. The RBF collocation method, known
as the Kansa method, is introduced. The method of fundamental solution (MFS) and the
collocation Trefftz method (CTM), for solving homogeneous solution, are briefly described.
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Leave-one-out cross validation (LOOCV), an algorithm to choose the sub-optimal source
location while using the MFS, is then explained in the other section. Following this, method
of particular solution (MPS) and both one-stage and two-stage MFS-MPS methods will be
discussed briefly.

In Chapter 3, Chebyshev collocation method is presented in detail. Polynomial interpo-
lation is defined followed by interpolation error and Chebyshev polynomial interpolation. In
the next portions of Chapter 3, the formulation of two-step and one-step hybrid Chebyshev
polynomial scheme (HCPS) is presented in detail. The formulation of Cauchy-Navier
equations of elasticity will also be described in this chapter.

Chapter 4 consists of numerical results utilizing two-step hybrid Chebyshev polynomial
scheme (HCPS). While utilizing HCPS in two-step approach, we employed approach 1
and approach 2 for the numerical solution of various elliptic PDEs. Both approaches
provide highly accurate results. The performance of HCPS using collocation Trefftz method
(CTM) is also observed in this chapter. The numerical results for the Franke’s benchmark
test functions and biharmonic problem are presented in the numerical experiments. The
performance of the method of fundamental solution (MFS) over the collocation Trefftz
method (CTM) is presented in the last section of this chapter.

Similarly, the numerical results from one-step HCPS are presented in Chapter 5. Various
numerical experiments are performed to test the numerical accuracy of the proposed scheme
on the problems governed by the Poisson equation and inhomogeneous Cauchy-Navier
equations. Additionally, the accuracy and stability of the methods are tested for various
types of PDEs with different types of boundary conditions in higher dimensions as well.
One-step HCPS is also utilized to solve PDEs with constant coefficients in this chapter.
Comparison of Chebyshev collocation method with that of radial basis function collocation
methods (RBFCM) such as Kansa method, MPS, and MFS-MPS is also of particular interest
to us. Comparison between these two collocation methods (Chebyshev collocation method
and RBFCM) has been provided in the next section of the Chapter 5.

Solving fourth-order PDEs is always a challenging task for the researchers in this field. In
Chapter 6, the radial basis function collocation method (RBFCM) is used for the numerical
solution of fourth-order partial differential equations. Conclusions from the numerical
results and possible future works are listed in Chapter 7.
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Chapter 2

STATE-OF-THE-ART IN MESHLESS METHOD

2.1 Introduction

The radial basis functions are widely used in application for solving various science and
engineering problems including function interpolation and solutions of PDEs. The basic
idea of RBF collocation method for interpolation is derived from the piecewise polynomial
interpolation using a function of Euclidean distance which is defined as follows [4]:

Definition 2.1.1. Given a set of n distinct data points x1,x2, . . . ,xn, and corresponding data
values f1, . . . , fn, then RBF interpolant is given by

u(x) =
n

∑
i=1

αiφ(‖ x− xi ‖)

where φ is some radial basis function, ‖ . ‖ represents the Euclidean norm and consequently,
coefficients {αi}n

i=1 are determined by using the interpolation condition u(xi) = fi, i =

1,2, . . . ,n, which leads the following linear system:

Aααα = f

where the entries of A are αi j = φ(‖ xi−x j ‖), ααα = [α1,α2, . . . ,αn]
T and f= [ f1, f2, . . . , fn]

T .

The following globally supported radial basis functions are widely used in the literature.

Table 2.1: Globally supported RBFs.
Types of basis function φ(r),(r ≥ 0)

Multiquadric (MQ)
√

r2 + c2

Inverse multiquadric (IMQ) 1√
r2+c2

Thin plate spline (TPS) r2 ln(r)
Gaussian e−cr2

Conical r2n−1
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2.2 RBF Collocation Methods

In this section, we will briefly discuss some well-known RBF collocation methods.

2.2.1 The Kansa Method

The Kansa method [32], pioneered by Edward Kansa in 1990, is considered to be the first
radial basis function collocation method. This method has been successfully applied to solve
linear and nonlinear PDEs in physics, material science, and for many engineering problems.
The only geometric property utilized in this method is the distance between points in the
computational domain, consequently, extension to higher order dimension do not increase
the difficulty of the method [20, 21, 32, 64].

To briefly explain the Kansa Method, we consider the boundary value problem (1.1)-
(1.3). The important part of the Kansa method involves approximating the solution u with a
linear combination of RBFs, i.e.,

û(x) =
N

∑
j=1

α jφ(‖x− x j‖), (2.1)

where {α j}N
j=1 are coefficients to be determined. Applying the operators, and utilizing the

collocation techniques yield

N

∑
j=1

α jLφ(‖xk− x j‖) = f (xk), k = 1,2, . . . ,Ni (2.2)

and
N

∑
j=1

α jBφ(‖xk− x j‖) = g(xk), k = Ni +1, . . . ,N (2.3)

where Ni denotes the number of interior points and the number of boundary nodes is denoted
by Nb, i.e., N = Ni +Nb. The system (2.2) and (2.3) is a square linear system for which the
{α j}N

j=1 can be obtained using any appropriate linear system solver.

2.2.2 The Method of Particular Solutions (MPS)

Chen et al. [6, 7] proposed the method of particular solutions (MPS) by using the particular
solution of the chosen RBF with respect to a certain differential operator as the basis function.
In the MPS, û(x) in (2.1) is replaced by

û(x) =
N

∑
j=1

α jΦ(‖x− x j‖), (2.4)
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where
LΦ(‖x− x j‖) = φ(‖x− x j‖). (2.5)

For simple differential operator such as L= ∆, Φ can be obtained by integrating twice of φ

with respect to r. For more complicated differential operator, the derivation could be more
challenging and we refer readers to Reference [6, 7]. We note that the MPS representation
appears similar to the Kansa Method. The main difference between the MPS and the Kansa
method is that the MPS uses the corresponding derived particular solution of RBF by reverse
differentiation process [6]. Thus, the MPS may have more sound mathematical foundation.
Some numerical experiments demonstrate that the MPS outperforms the Kansa method in
both stability and accuracy, particularly in the evaluation of partial derivatives [12].

2.2.3 Localized Method of Particular Solutions (LMPS)

Inspired by the idea of compactly supported RBFs (CS-RBFs) and different from the global
RBF collocation methods, researchers in this field developed various localized methods
to alleviate the ill-conditioning of the resultant matrix, costly dense matrix of the RBF
interpolation, and the uncertainty of the selection of the optimal shape parameter [39, 65, 66].
In the localized methods, the resulting matrix would be a sparse matrix which can be solved
efficiently.

Let {xi}N
i=1 be a set of collocation points in Ω∪ ∂Ω. For each xi ∈ Ω, we choose a

nearest neighbor points Ωi = {xi
k}

n
k=1, in which xi

k = xk(i), denotes the local indexing for
each collocation point associated to Ωi. The construction requires that Ωi∩Ω j 6= /0 for some
j 6= i, and {xi}N

i=1 = ∪iΩi. We wish to formulate a numerical scheme to approximate u(x)

and its derivatives at all the collocation points {xi}N
i=1.

Consider the collocation method on the local domain Ωi, and let xi = xi
j ∈Ωi for some

j ≤ n. Then u(xi) can be approximated as follows:

û(xi) =
n

∑
k=1

α
i
kΦ(‖xi− xi

k‖), (2.6)

where n is the number of nearest neighboring points xi
k surrounding collocation point xi,

including the collocation point itself, α i
k are coefficients to be determined, Φ(x) is an RBF.

It is easy to show that Φ is non-singular and the inverse matrix can always be computed
given that all the nodal points inside Ωi are different nodes. The unknown coefficients are
written as [66],

α
i = Φ

−1ûi, (2.7)

where
α = [α1,α2, . . . ,αn]

T , û = [û(xi
1), . . . , û(x

i
n)]

T
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Hence û(xi) in terms of û is given by,

û(xi) =
n

∑
k=1

αkΦ(‖xi− xi
k‖) = Φ̂(xi)α = Φ̂(xi)Φ

−1
n ûn

û(xi) = Ψn(xi)û, (2.8)

where
Φ̂(xi) = [Φ(‖xi− xi

1,Φ(‖xi− xi
2, . . . ,Φ(‖xi− xi

n], (2.9)

and
Ψ(xi) = Φ̂(xi)Φ

−1 = [ψ1,ψ2, . . . ,ψn]. (2.10)

Let
ûN = [û(x1), . . . , û(xN)]

T . (2.11)

We reformulate in terms of global ûN instead of local ûn. This can be done by padding the
vector Ψn(x) with zero entries based on the mapping between ûn and ûN . It follows that

û(xi) = Ψ(xi)û, (2.12)

where, Ψ(xi) is an N×N sparse matrix only having N×n non zero elements. Substituting
above in (2.6) we get a linear sparse system of equations which when solved, we get an
approximate solution û at all of the collocation points as desired.

2.3 Boundary Collocation Methods

The method of fundamental solution (MFS) is one of the most popular methods in bound-
ary collocation methods which requires fictitious boundary outside the domain to avoid
singularities [18]. In this dissertation, we employ the MFS and the collocation Trefftz
method (CTM), another boundary type method which does not require fictitious boundary
for homogeneous solution. We briefly describe these two boundary methods in the next
sections.

2.3.1 Method of Fundamental Solutions

The method of fundamental solutions (MFS) is a popular classical meshless boundary-type
method. It is free of mesh and integration, and can be extended to higher dimensions.
The MFS was first proposed by Kupradze and Aleksidze [37] for solving certain boundary
value problems. The MFS requires only boundary discretization and it shares the same
advantages as the BEM over domain discretization methods [18]. The MFS started gaining
attention after its numerical implementation was proposed by Mathon and Johnston [47] in
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the 1970’s. Fairweather et.al. [18] applied the MFS for solving various types of boundary
value problems (BVPs). However, Golberg and Chen [27] extended the MFS for solving
nonhomogeneous problems and time-dependent problems. Gradually the MFS attracted
much attention in the science and engineering community. The singularities of the MFS
are placed outside the domain. Hence, a fictitious boundary is necessary to show where
the singularities are located. In the MFS, the shape and location of the source points are
significant to the accuracy of the method. Various efforts have been made for adopting the
MFS approach. Different formulations of modified MFS have since been developed so that
the fictitious boundary can coincide with the domain boundary. These include regularized
meshless method (RMM) in 2005 [68], the modified method of fundamental solutions
(MMFS) in 2009 [57], and the boundary distributed source method (BDSM) in 2010 [43].
In these methods, source points can be directly located on the real boundary. However, none
of the newer versions of the MFS can be easily implemented like MFS. The MFS is easy to
implement and it produces highly accurate results for homogeneous problems.

The implementation of the MFS is direct and easy to understand. The MFS utilizes the
fundamental solutions φF(x) which satisfy the governing differential equation of interest
(Table 2.2) and we approximate solution û(x) which is expressed in terms of boundary
points as follows:

u(x)≈ û(x) =
N

∑
j=1

α jφF
(
‖x− s j‖2

)
, x ∈Ω, (2.13)

where û(x) is the approximate solution,
{

s j
}N

j=1 are the source points on the fictitious
boundary, {α j} are unknown coefficients to be determined. To determine the sub-optimal
location of the source points, we use leave-one-out cross validation (LOOCV) method for
the MFS [56]. Once the source points have been chosen, the coefficients α j in (2.13) can be
obtained by collocation on the boundary ∂Ω. Some commonly used fundamental solutions
of elliptical differential operators in R2 and R3 are listed in Table 2.2.

The parameters an, and bn are calculated as follows:

a1 = 1, an =
an−1

4(n−1)2 ,

b1 = 0, bn =
1

4(n−1)2

(
an−1

n−1
+bn−1

)
,

Km, m ∈ Z denotes the modified Bessel functions of the second kind with order m.
Hm

0 , m ∈ Z denotes order zero Hankel functions of the mth kind.
Jm, m ∈ Z denotes order m Bessel functions of the first kind.
Ym, m ∈ Z denotes order m Bessel functions of the second kind.
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Table 2.2: Fundamental Solutions for Various Differential Operators.
L G(ρ) in R2 G(ρ) in R3

∆ ln(ρ) 1
ρ

∆2 ρ2 ln(ρ) ρ

∆n ρ2(n−1)(an ln(ρ)−bn) ρ(2n−3)

∆−λ 2 K0(λρ) e−λρ

ρ

(∆−λ 2)2 ρK1(λρ) e−λρ

∆(∆−λ 2) K0(λρ)+ ln(ρ) e(−λρ)−1

ρ

∆2−λ 4 −iH(1)
0 (λρ)+ 2K0(λρ)

π
e−λρ + e(−iλρ)

(∆−λ 2)n ρ(n−1)Kn−1(λρ) ρ
n−3

2 Kn−3
2
(λρ)

∆+λ 2 −iH(2)
0 (λρ) e−iλρ

ρ

(∆+λ )n ρ(n−1)Yn−1(λρ) ρ
n−3

2 Jn−3
2
(λρ)

2.3.2 Collocation Trefftz Method

The Trefftz method [63] was first proposed by E. Trefftz in 1926. It is a boundary-type
method. In [35], Kita and Kamiya classified the Trefftz formulation into the indirect and the
direct ones. Here, we use the indirect formulation, which is the original one presented by the
Trefftz. The solution is approximated by the linear combination of the functions satisfying
the governing equation [41]. Those functions are called the T-complete functions. Then, the
unknown parameters are determined by the collocation on the boundary. Li et.al. named
this method as a collocation Trefftz method (CTM) in their book [41]. The algorithm for the
CTM requires the explicit form of the T-complete functions. Consider a disk

S = {(r,θ)|0≤ r ≤ R, 0≤ θ ≤ 2π}.

We list below the T-complete functions of a few typical equations in 2D, which are often
used in practice [41]. Note that Iµ(r) and Jµ(r) are modified Bessel function and Bessel

Table 2.3: List of T-complete function.
PDEs T-complete function

∆u = 0 1,rneinθ

∆u−λ 2u = 0 I0(λ r), In(λ r)einθ

∆u+λ 2u = 0 J0(λ r),Jn(λ r)einθ

∆2u = 0 1,rneinθ ,r2,rn+2einθ

function of the first kind respectively, i is the imaginary unit, and r, and θ are the polar
co-ordinates.
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As an example, let us consider the Laplace boundary value problem,

∆u(x,y) = 0, (x,y) ∈Ω, (2.14)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω
D, (2.15)

∂u(x,y)
∂n

= h(x,y), (x,y) ∈ ∂Ω
N , (2.16)

where n denotes the unit outward normal vector on the boundary and g, and h are given
functions.

By the CTM, the solution of the problem (2.14)-(2.16) is

uh ≈
n

∑
i=0

aiûi,

where ûi are the T-complete functions given in Table 4.3 satisfying the Laplace equation
(2.14). The unknown parameters {ai} are determined by collocation on the boundary. For
an interior modified Helmholtz problem, the solution can be expressed as

u(r,θ) = a0I0(λ r)+
m

∑
i=1

aiIi(λ r)cos(iθ)+biIi(λ r)sin(iθ), (2.17)

where m is the order of the series solution, and a0,a1,a2, . . . ,am, b1, . . . ,bm are unknown
coefficients to be determined. Solving the problem using boundary collocation, we obtain
the following linear system of equations:

Be = d (2.18)

where, B = {Bi j} is the resulting collocation matrix, e is the vector of unknown coefficients
and d is the right hand side. The dimension of B is M× (2m+1) if the number of boundary
points is M.

Here, we would like to emphasize that, the resulting matrix is highly ill-conditioned by
the direct implementation of the CTM. Hence, to overcome the ill-posedness of the resulting
linear system, Kuo et. al. [36] implemented multiple scale Trefftz method and equilibrated
matrix concept which is briefly described below.

2.3.3 Multiple Scale CTM and Equilibrated Matrix

To alleviate the ill-conditioning of the linear system (2.18) while implementing the CTM,
we incorporate the multiple scale Trefftz method and the equilibrated matrix technique [36].
An equilibrated matrix is a resulting matrix of which all the column norms or row norms are
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the same, and under this treatment, the matrix has a significantly reduced condition number.
By this method, the series solution (2.17) is replaced with the following form:

u(r,θ) = â0
I0(λ r)

R0
+

m

∑
i=1

âi
Ii(λ r)
R2i−1

cos(iθ)+ b̂i
Ii(λ r)

R2i
sin(iθ),

where
â0 = a0R0, âi = aiR2i−1, b̂i = biR2i, (2.19)

and R0,R1, . . . ,R2m are the multiple-scale characteristic lengths. The concept of characteris-
tic length was first proposed by Liu [42] to reduce the ill-posedness of the Trefftz method
and the MFS for solving Laplace equations. The characteristic lengths are computed by

R j−1 = α

√
M

∑
i=1

B2
i j, j = 1,2, . . . ,2m+1.

Then, the linear system (2.18) is reduced to the system:

Ac = d, (2.20)

with A = {Ai j}, and Ai j = Bi j/R j−1. That is, all the column norms of the matrix A are 1/α .
So, A is an equilibrated matrix. Since A is well conditioned, we proceed to compute the
linear system (2.20).

2.4 Leave-One-Out Cross Validation

The method of fundamental solution (MFS) is used to solve the homogeneous solution
which is highly accurate. The singularities of the MFS are placed outside the domain hence
require a fictitious boundary. In the MFS, the shape and location of the source points are
significant to the accuracy of the method. While implementing the MFS, source locations
can be found in different ways. Chen et. al. [9] employed various effective techniques for
choosing suitable source locations. Readers can refer to [9] and references cited therein for
more detail. In this dissertation, a circle and a same shape boundary is taken as a fictitious
boundary. To find the suitable source location of the fictitious boundary, leave-one-out cross
validation (LOOCV) is employed.

Rippa [56] used the LOOCV in order to find the sub-optimal source location that
provides an accurate approximation while maintaining matrix stability. The algorithm
computes the error at a single point then bases the approximation on the remaining data
points. The procedure is repeated for each data points. The resulting vector is used to find
the sub-optimal source location say r.
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First, define x[k] = [x1,x2, . . . ,xk−1,xk+1, . . . ,xM]T , the vector of data points with xk

removed. Then, ũ[k] is the partial RBF interpolant to u,

ũ(x) =
M−1

∑
j=1

α jφ(‖x− x[k]j ‖). (2.21)

The approximation of the function at the deleted point is ũ[k](x). The error between the
approximation and actual function value at xk is

ek = |u(xk)− ũ[k](xk)|. (2.22)

The accuracy for the entire data set is determined by the norm of the vector of errors
e = [e1,e2, . . . ,eM]T obtained by removing, in turn, each of the data points and comparing
the approximation with the known value at the removed point. The above procedure would
be tedious and inefficient. However, Rippa simplified the algorithm and one can calculate
the error using the formula,

ek =
αk

A−1
k

, (2.23)

where αk is the kth coefficient of ũ for the entire data set and A−1
k is the kth diagonal element

of the inverse of the corresponding interpolation matrix. Once the vector e is determined by
using the formula above, the MATLAB function fminbnd can be used to find the relative
minimum of the cost function for c. The calling sequence for the cost function is

r = f minbnd{@(c)costeps(c,rb f ,DM,rhs),minc,maxc},

where DM is the distance matrix of the matrix A. minc,maxc is the interval used to search
for the sub-optimal source location r and rhs represents the right-hand side of the equation
Ax = b.

2.5 The Two-Stage MFS-MPS

To describe the two stage MFS-MPS, we consider the boundary value problem (1.1)-(1.3).
In the two-stage MFS-MPS approach, the solution u is split into a particular solution and a
homogeneous solution to solve the problem (1.1)-(1.3). Let u = up +uh be the solution of
(1.1)-(1.3) where up is the particular solution that satisfies (1.1), but does not necessarily
satisfy the boundary conditions (1.2)-(1.3), and its associated homogeneous solution uh(x,y)

satisfies (1.4)-(1.6). In this approach, up is first approximated by the solutions of (2.5), Φ(r),
as given in Section 2.2.2:

ûp(x) =
ni

∑
j=1

α jΦ(‖x− x j‖), (2.24)
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The unknown coefficients {α j}ni
j=1 are determined by solving the following system of linear

equations:
ni

∑
j=1

α jLΦ(‖xk− x j‖) = f (xk), k = 1,2, . . . ,ni. (2.25)

Then the homogeneous solution uh is approximated by fundamental solutions G(‖x−
xs

j‖), j = 1,2, . . . ,nb.

ûh(x) =
nb

∑
j=1

β jG(‖x− xs
j‖)), (2.26)

where {xs
j}

nb
j=1 are the source points. The coefficients {β j}nb

j=1 can be obtained by solving
the following system of linear equations:

nb

∑
j=1

β jBG(‖xk− xs
j‖) = g(xk)− ûp(xk), k = ni +1, . . . ,N. (2.27)

Therefore, we have a general form of an approximate solutions to (1.1)-(1.3) as follows:

û(x) =
ni

∑
j=1

α jΦ(‖x− x j‖)+
nb

∑
j=1

β jG(‖x− xs
j‖). (2.28)

2.6 The One-Stage MFS-MPS

Monroe [50] recently proposed one-stage MFS-MPS hybrid method for solving large class
of PDEs. This method is briefly introduced in this section.

In one-stage MFS-MPS, the solution of a given PDE can be written as the sum of
a particular solution and a homogeneous solution. That is, the approximate solution of
(1.1)-(1.3) can be written as,

û(x) =
ni

∑
j=1

α jΦ(‖x− x j‖)+
nb

∑
j=1

β jG(‖x− xs
j‖), (2.29)

where Φ(‖x−x j‖), j = 1, . . . ,ni is obtained from the solutions of (2.5), and G(‖x−xs
j‖), j =

1, . . . ,nb, is the fundamental solution of the differential operator. Thus, we observe that

LG(‖x− xs
j‖)) = 0, ∀x ∈ Ω̂, j = 1, . . . ,nb. (2.30)

From (2.29), it follows that

Lû(x) =
ni

∑
j=1

α jLΦ(‖x− x j‖). (2.31)
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Hence, from (1.1)-(1.3), the coefficients α j and β j can be obtained by solving the following
linear system of equations:

ni

∑
j=1

α jLΦ(‖xk− x j‖) = f (xk), k = 1,2, . . . ,ni, (2.32)

ni

∑
j=1

α jBΦ(‖x− x j‖)+
nb

∑
j=1

β jBΦ(‖x− xs
j‖) = g(xk), k = ni +1, . . . ,N. (2.33)

In one-stage approach, the fundamental solution of differential operator L and the solution
of (2.5) have been used together as a basis function to directly approximate the solution
of a partial differential equation. This approach is capable of solving PDEs with variable
coefficients and thus, is equally effective as that of Kansa method.
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Chapter 3

CHEBYSHEV COLLOCATION METHOD

3.1 Introduction

Chebyshev polynomials are a sequence of orthogonal polynomials which can be defined
recursively and well documented [3, 46]. The roots of Chebyshev polynomials, also called
Gauss-Lobatto nodes, are used in the polynomial interpolation for high order of accuracy.
The resulting polynomial minimizes the problem of Runge’s phenomena. It is called mini-
max polynomial of a function since the polynomial minimizes the maximum error. First five
Chebyshev polynomials are shown in Figure 3.1. Chebyshev polynomials of the first kind
[46],

T0(x) = 1, (3.1)

T1(x) = x,

T2(x) = 2x2−1,

T3(x) = 4x3−3x,

T4(x) = 8x4−8x2 +1,

T5(x) = 16x5−20x3 +5x,

T6(x) = 32x6−48x4 +18x2−1,

Tn+1(x) = 2xTn(x)−Tn−1(x), n ∈ N.

Chebyshev polynomials of the second kind [46],

U0(x) = 1, (3.2)

U1(x) = 2x,

Un+1(x) = 2xUn(x)−Un−1(x), n ∈ N.

The explicit formula for Chebyshev polynomials in trigonometric form instead of writing
the recursion formula (3.1) is given by the following Lemma:

Lemma 3.1.1. For x ∈ [−1,1],

Tn(x) = cos(ncos−1 x), n≥ 0. (3.3)
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This Lemma can be proved by using standard trigonometric identities. Readers can refer
to [46] and references cited therein for more detail. Thus, the recursive formula for the
Chebyshev polynomials of the first kind is given by,

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)−Tn−1(x), n≥ 1.

The roots of the Chebyshev polynomials, which are also called Chebyshev nodes or Gauss-
Lobatto nodes are also of particular interest. So, the natural question arises, what are the
roots of the Chebyshev polynomial T(n+1)(x)? By Lemma (3.1.1),

Tn+1(x) = cos((n+1)cos−1 x).

The roots of T(n+1)(x), x0, . . . ,xn, are therefore obtained if

(n+1)cos−1(x j) = ( j+
1
2
)π, 0≤ j ≤ n,

i.e., the (n+1) roots of T(n+1)(x) are

x j = cos
(

2 j+1
2n+2

π

)
. (3.4)

In this numerical scheme, first we approximate the particular solution by a linear combination
of the Chebyshev polynomials, then we apply the differential operator and collocate on
the Chebyshev nodes. For, it is required to have higher order derivatives of Chebyshev
polynomials. The first and second order derivatives of Chebyshev polynomials are expressed
in terms of first and second kind of Chebyshev polynomials. The relations between the first
kind of Chebyshev polynomials Tn and the second kind of Chebyshev polynomials Un are as
follows:

Tn(x) =Un(x)− xUn−1(x).

Un(x) = xUn−1(x)+Tn(x).

The first, and second derivatives of the Chebyshev polynomials are given by,
dTn

dx
= nUn−1,

d2Tn

dx2 =
n

x2−1
(n+1)(Tn−Un),

d2Tn

dx2 |(x=1) =
n4−n2

3
,

d2Tn

dx2 |(x=−1) = (−1)n n4−n2

3
.
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Figure 3.1: Chebyshev polynomial plot.

3.2 The Polynomial Interpolation

Given n+1 distinct points x0,x1, . . . ,xn, we seek a polynomial Qn(x) of the lowest degree
such that the following interpolation conditions are satisfied [3, 46]:

Qn(x j) = f (x j), j = 0, . . . ,n. (3.5)

The points x0, . . . ,xn are called the interpolation points. Here, we are interested in interpo-
lating the data. In other words, given a set of data (measurements and locations at which
these measurements were obtained), we want to find a rule (function) which allows us to
deduce information about the process we are studying also at locations different from those
at which we obtained our measurements [62]. The function that interpolates the data is an
an interpolant or an interpolating polynomial.

3.2.1 The Error in Polynomial Interpolation

In this section, a formula is provided for the error in polynomial interpolation [3, 23, 62].
Since the interpolant and the function agree with each other at the interpolant points, in
general, we do not expect them to be close each other elsewhere. So it is required to estimate
the difference between them. This difference is referred to as the interpolation error.
Following theorem estimates the interpolation error. Readers can refer to [62] and references
cited therein for the proof of the theorem.

Theorem 3.2.1. Let f (x) ∈Cn+1[a,b]. Let Qn(x) ∈∏n such that it interpolates f (x) at the
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n+1 distinct points x0,x1, . . . ,xn ∈ [a,b]. Then ∀x ∈ [a,b], ∃ξn ∈ (a,b) such that

f (x)−Qn(x) =
1

(n+1)!
f (n+1)(ξn)

n

∏
j=0

(x− x j). (3.6)

3.3 Methodology

In this section, we will first describe two-step hybrid Chebyshev polynomial scheme (HCPS),
then one-step HCPS in detail.

3.3.1 Two-Step HCPS formulation

To illustrate the two-step HCPS, we consider the boundary value problem (1.1)-(1.3).
In this approach, the solution u is split into a particular solution and a homogeneous

solution to solve the problem (1.1)-(1.3). Let u = up + uh be the solution of (1.1)-(1.3)
where up is the particular solution that satisfies (1.1), but does not necessarily satisfy the
boundary conditions (1.2)-(1.3), and its associated homogeneous solution uh(x,y) satisfies
(1.4)-(1.6). The important part of this method involves the approximation of a particular
solution up as a linear combination of the Chebyshev polynomials, i.e.,

up(x,y)≈ ûp(x,y) =
m

∑
i=0

n

∑
j=0

αi jTi(x)Tj(y), (x,y) ∈Ω, (3.7)

where {αi j} are unknown coefficients to be determined. By collocating on the Gauss-Lobatto
nodes {xk,yk}mn

k=0, unknown coefficients {αi j} can be obtained by solving the following
linear system:

m

∑
i=0

n

∑
j=0

αi jL{Ti(xk)Tj(yk)}= f (xk,yk). (3.8)

Since particular solutions do not necessarily satisfy the boundary conditions, we have
the flexibility in extending the domain Ω to a rectangle [a,b]× [c,d] that contains Ω. Fur-
thermore, we would like to re-scale the domain Ω and the rectangle [a,b]× [c,d] by the
change of variables ξ = (2x−a−b)/(b−a) , and η = (2y− c−d)/(d− c) so that the
new domain Ω̂ is embedded in a square [−1,1]× [−1,1]. The PDE will have to change
accordingly in terms of the new variables ξ and η [34].

As an illustration, we consider the following Poisson equation in the (x,y) plane,

∆u(x,y) = f (x,y), (x,y) ∈Ω, (3.9)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω. (3.10)
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By the change of variables,

x = α1ξ +β1, y = α2η +β2,

ξ =
x−β1

α1
, η =

y−β2

α2
,

with

β1 =
a+b

2
, β2 =

c+d
2

, (3.11)

α1 =
b−a

2
, α2 =

d− c
2

, (3.12)

the problem (3.9)-(3.10) is converted into the following problem in the (ξ ,η) plane,

∆U(ξ ,η) = F(ξ ,η), (ξ ,η) ∈ Ω̂, (3.13)

U(ξ ,η) = G(ξ ,η), (ξ ,η) ∈ ∂ Ω̂.

We note that u(x,y) =U(ξ ,η). Hence,

∂ 2u
∂x2 =

1
α2

1

∂ 2U
∂ξ 2 ,

∂ 2u
∂y2 =

1
α2

2

∂ 2U
∂η2 .

Thus, the original problem (3.9)-(3.10) is transformed into the following problem,

1
α2

1

∂ 2U
∂ξ 2 +

1
α2

2

∂ 2U
∂η2 = f (α1ξ +β1,α2ξ +β2), (ξ ,η) ∈ Ω̂, (3.14)

U(ξ ,η) = g(α1ξ +β1,α2ξ +β2), (ξ ,η) ∈ ∂ Ω̂, (3.15)

where Ω̂∪∂ Ω̂ = [−1,1]× [−1,1].
For (3.14) to be a Poisson equation, we would like to have α1 = α2, which is true

when b−a = d− c by (3.12). By embedding the original domain [a,b]× [c,d] into a larger
domain [a1,b1]× [c1,d1] such that b1− a1 = d1− c1, we would be able to achieve this
purpose. Consequently, the MFS or the equilibrated CTM are available for the differential
operators on the new domain.

The homogeneous solution is approximated by the fundamental solution of the differen-
tial operator say G(‖(x,y;ξ j,η j)‖), where j = 1, . . . ,Nb,

ûh(x) =
Nb

∑
j=1

β jG(‖(x,y;ξ j,η j)‖), (3.16)
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where (ξ j,η j), j = 1, . . . ,Nb are the source points. The coefficients β j, j = 1, . . . ,Nb can be
obtained by solving the following system of linear equations.

Nb

∑
j=1

β jBG(‖(xk,yk;ξ j,η j)‖) = g(xk,yk)− ûp(xk,yk). k = 1, . . . ,Nb. (3.17)

Therefore, we have a general form of an approximate solution to (1.1)-(1.3) as follows:

û(x,y) =
m

∑
i=0

n

∑
j=0

αi jTi(x)Tj(y)+
Nb

∑
k=0

βkG(x,y;ξk,ηk). (3.18)

3.3.2 One-Step HCPS Formulation

Let us consider the following elliptic partial differential equation :

Lu(x,y)+α(x,y)
∂u
∂x

+β (x,y)
∂u
∂y

+ γ(x,y)u = f (x,y), (x,y) ∈Ω (3.19)

with Dirichlet boundary condition,

u(x,y) = g(x,y), (x,y) ∈ ∂Ω1 (3.20)

and Neumann boundary condition,

∂u(x,y)
∂n

= h(x,y), (x,y) ∈ ∂Ω2 (3.21)

where Ω ⊂ R2 is a simply connected domain bounded by a simple closed curve ∂Ω =

∂Ω1∪Ω2, ∂Ω1∩Ω2 = /0. L is an elliptic differential operator with a known fundamental
solution. α , β , γ , f , g, and h are given functions. f is a function that can be smoothly
extended to a rectangular domain containing Ω. In this formulation all the terms except the
differential operator L are moved to the right hand side, the resulting equation is

Lu(x,y) = R
(

x,y,u,
∂u
∂x

,
∂u
∂y

)
, (x,y) ∈Ω, (3.22)

where

R
(

x,y,u,
∂u
∂x

,
∂u
∂y

)
= −α(x,y)

∂u
∂x
−β (x,y)

∂u
∂y
− γ(x,y)u+ f (x,y). (3.23)

In this one-step method, we assume that the solution can be directly approximated by the
sum of the particular solution and homogeneous solution. We approximate the particular
solution with a linear combination of the Chebyshev polynomials as follows:
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u(x,y)≈ û(x,y) =
m

∑
i=0

n

∑
j=0

αi jTi(x)Tj(y)+
Nb

∑
k=0

βkG(x,y,ξk,ηk), (3.24)

where {αi j} and {βk} are unknown coefficients to be determined. {ξ j}Nb
1 are Nb distinct

points on the fictitious boundary Ω̂ of Ω and G(x,y,ξk,ηk) is the known fundamental
solution of the differential operators. Note that due to reformulation of (3.19) into (3.22), we
have more than one option for determining the homogeneous solution. Moreover, particular
solution is not unique and does not have to satisfy the boundary conditions. So, we can
freely embed any irregular domain into a rectangular domain with the change of variables.

In (3.24), two different basis functions were used with two different distance functions
to approximate the solution. In this approach, unknown coefficients {αi j} and {βk} are
calculated simultaneously instead of finding them separately as in the two-step approach.
To approximate the particular solution, the derivatives of the Chebyshev polynomial is
employed for different differential operators.

Using Chebyshev polynomials, the approximation for R is given by,

R
(

x,y,u,
∂u
∂x

,
∂u
∂y

)
=

m

∑
i=0

n

∑
j=0

αi jTi(x)Tj(y). (3.25)

Since LG(x,y,ξk,ηk) = 0 for (x,y) ∈ Ω, and by collocation on the Gauss-Lobatto nodes
{xk,yk}mn

k=0, we have

Lu≈ Lû =
m

∑
i=0

n

∑
j=0

αi jL{Ti(xk)Tj(yk)}+
Nb

∑
k=0

βkLG(x,y,ξk,ηk) (3.26)

=
m

∑
i=0

n

∑
j=0

αi jL{Ti(xk)Tj(yk)}.

Furthermore,

∂u
∂x
≈ ∂ û

∂x
=

m

∑
i=0

n

∑
j=0

αi j
∂

∂x
{Ti(xk)Tj(yk)}+

Nb

∑
k=0

βk
∂

∂x
{G(x,y,ξk,ηk)}. (3.27)

∂u
∂y
≈ ∂ û

∂y
=

m

∑
i=0

n

∑
j=0

αi j
∂

∂y
{Ti(xk)Tj(yk)}+

Nb

∑
k=0

βk
∂

∂y
{G(x,y,ξk,ηk)}. (3.28)

Using (3.23) and (3.25), the governing equation becomes, for (x,y) ∈Ω

m

∑
i=0

n

∑
j=0

αi jL{Ti(x)Tj(y)}=−α(x,y)
∂ û
∂x
−β (x,y)

∂ û
∂y
− γ(x,y)û+ f (x,y), (3.29)
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Now (3.29) can be written as,

m

∑
i=0

n

∑
j=0

αi jΨ(x,y)+
Nb

∑
k=0

βkΘ(ξk,ηk) = f (x,y), (3.30)

where,

Ψ(x,y) = L{Ti(x)Tj(y)}+α(x,y)
∂{Ti(x)Tj(y)}

∂x
(3.31)

+β (x,y)
∂{Ti(x)Tj(y}

∂y
+ γ(x,y)Ti(x)Tj(y),

Θ(ξk,ηk) = α(x,y)
∂

∂x
{G(x,y,ξk,ηk)}+β (x,y)

∂

∂y
{G(x,y,ξk,ηk)} (3.32)

+γ(x,y)G(x,y,ξk,ηk).

The boundary conditions (3.20)-(3.21) become,

m

∑
i=0

n

∑
j=0

αi jTi(x)Tj(y)+
Nb

∑
k=0

βkG(x,y,ξk,ηk) = g(x,y), (x,y) ∈Ω1(3.33)

m

∑
i=0

n

∑
j=0

αi j
∂

∂n
{Ti(x)Tj(y)}+

Nb

∑
k=0

βk
∂

∂n
{G(x,y,ξk,ηk)} = h(x,y). (x,y) ∈Ω2(3.34)

Here, Chebyshev polynomials and its successive derivatives evaluated at the Gauss-Lobatto
nodes are all known. Hence, an (mn+Nb)× (mn+Nb) system of equations is formulated
as the following system:  A11 A12

A21 A22
A31 A32

[ a
b

]
=

 f
g
h


where A11 =Ψ(x,y), A12 =Θ(ξk,ηk), A21 =Ti(x)Tj(y), A22 =G, A31 =

∂

∂n{Ti(x)Tj(y)},
A32 =

∂G
∂n . When the coefficients {αi j} and {βk} are obtained by solving above linear system,

then the approximate solution û can be determined from (3.24).

3.4 The Cauchy-Navier Equations of Elasticity

We consider the following inhomogeneous Cauchy-Navier equations of elasticity on a unit
square.

µ∆u1 +
µ

1−2ν

(
∂ 2u1

∂x2 +
∂ 2u2

∂x∂y

)
= f1(x,y), (x,y) ∈Ω, (3.35)

µ

1−2ν

(
∂ 2u1

∂x∂y
+

∂ 2u2

∂y2

)
+µ∆u2 = f2(x,y), (x,y) ∈Ω, (3.36)
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subject to the Dirichlet boundary condition:

u1(x,y) = g1(x,y) and u2(x,y) = g2(x,y), (x,y) ∈ ∂Ω, (3.37)

where Ω, and ∂Ω are domain and its boundary respectively. In the Cauchy-Navier equation,
the constant ν ∈ [0,1/2] is Poisson’s ratio and µ > 0 is the shear modulus.

Now, we briefly describe how we employ one-step HCPS to solve Cauchy-Navier
equations of elasticity. Let {xk,yk}Nb

k=1 be the source points on the fictitious boundary Ω̂.
The approximate solution (û1, û2) of the boundary value problem (3.35)–(3.37) can be
approximated by

u1(x,y)≈ û1(x,y) =
Nb

∑
k=1

akG(x,y,ξk,ηk)+
m

∑
p=1

n

∑
q=1

bpqTp(x)Tq(y), (3.38)

u2(x,y)≈ û2(x,y) =
Nb

∑
k=1

ckG(x,y,ξk,ηk)+
m

∑
p=1

n

∑
q=1

dpqTp(x)Tq(y), (3.39)

where {ak},{bpq},{ck} and {dpq} are unknown coefficients to be determined. G(x,y,ξk,ηk)

is the known fundamental solution of the Laplace operator. Now, applying the fundamen-
tal solution of the differential operators and collocating on the known Chebyshev nodes
{(xi,yi)}mn

i=1, we formulate a system of equations of the order 2(mn+Nb)×2(mn+Nb). Let
r =

√
(x− xk)2 +(y− yk)2, 1≤ k ≤ mn, (x,y) ∈Ω∪∂Ω. It follows that

A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44




a
b
c
d

=


f1
f2
g1
g2


where

A11 =
µ

1−2ν

(
(y− yk)

2− (x− xk)
2

r4

)
,

A12 = µ
(
T ′′p (xi)Tq(yi)+Tp(xi)T ′′q (yi)

)
+

µ

1−2ν
(T ′′p (xi)Tq(yi)),

A13 =
µ

1−2ν

(
−2(x− xk)(y− yk)

r4

)
,

A14 =
µ

1−2ν

(
T ′p(xi)T ′q(yi)

)
.
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Also, we have

A21 =
µ

1−2ν

(
−2(x− xk)(y− yk)

r4

)
,

A22 =
µ

1−2ν

(
T ′p(xi)T ′q(yi)

)
,

A23 =
µ

1−2ν

(
(x− xk)

2− (y− yk)
2

r4

)
,

A24 =
µ

1−2ν

(
Tp(xi)T ′′q (yi)

)
+µ

(
T ′′p (xi)Tq(yi)+Tp(xi)T ′′q (yi)

)
,

and

A31 = A43 = ln(r), A32 = A44 = Tp(xi)Tq(yi), A33 = A34 = A41 = A42 = 0.

a = {ak}, b = {bpq}, c = {ck}, and d = {dpq}.
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Chapter 4

NUMERICAL RESULTS UTILIZING TWO-STEP HCPS

In this section, numerical results obtained from the two-step hybrid Chebyshev polynomial
scheme (HCPS) is presented. It is well-known that Chebyshev interpolants provide highly
accurate solution subject to the proper node distribution. In this dissertation, Chebyshev
polynomial is used as a basis function to approximate the particular solution which is
coupled with one of the two well known boundary methods, the method of fundamental
solution (MFS) and the collocation Trefftz method (CTM) for solving the elliptic partial
differential equations (PDEs). For the MFS, we use the well-known leave-one-out cross
validation (LOOCV), a method described in Chapter 2, to determine the sub-optimal source
location [56]. We have used several problems with known exact solutions to verify the
effectiveness of the proposed method. We carry out the numerical experiments from second
to fourth order PDEs. Since the fourth order PDE can be reduced to two second order
PDEs, the Chebyshev collocation technique for particular solutions are applicable. While
implementing our numerical schemes, it is assumed that the forcing term f (x,y) can be
smoothly extended to a rectangular domain which contains the given domain Ω.

Numerical implementation of the hybrid Chebyshev polynomial scheme often yield
significantly different results depending on:

• the number of collocation points

• the irregularities of the domains and a number of other possible factors.

In this dissertation, Chebyshev polynomial is used as a basis function which is less ill-posed
and free of shape parameter with high rate of convergence. In order to demonstrate the
viability of hybrid Chebyshev polynomial scheme in the context of above consideration,
some factors must be carefully examined. For example, we have to choose the suitable
source location while using the MFS. It is equally important to consider the number of
collocating points, i.e. the Chebyshev nodes in this case. When we increase the number of
Chebyshev nodes, then the degree of Chebyshev polynomials also increases which might
affect the accuracy.

While using the MFS, we let the source points distribute on a circle of radius r. Note
that the source radius r is the distance from the geometric center of the domain to anyone of
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the source points outside the domain. The source points, {(xs,ys)}, are determined by

xs = a+ r ∗ cos(2πi/ns), 1≤ i≤ ns

ys = b+ r ∗ sin(2πi/ns), 1≤ i≤ ns

where (a,b) is the center of the circle, r is the radius of the circle, and ns is the number of
source points. For the similar placement of fictitious boundary where the source points are
located is chosen to have the same shape as that of the boundary. The fictitious boundary
(xs,ys) are chosen from the physical boundary (x,y) with (xs,ys) = r ∗ (x,y) where (x,y) are
the boundary points. In the case of three dimensional computational domains, we let the
source points distribute on a sphere of radius r in a similar fashion.

To validate the numerical accuracy, we calculate the maximum absolute error (MAE)
which is defined as follows:

MAE = max
j

∣∣(û j−u j)
∣∣ , j = 1 . . .q,

where q is the number of testing nodes chosen randomly in the domain, û j and u j denote the
approximate solution and the exact solution at the jth node respectively. In the numerical
results, Nx and Ny denote Chebyshev nodes in x and y directions respectively.

While implementing hybrid Chebyshev polynomial scheme, it is required to transform
the original domain into [−1,1]2, and rescaling of corresponding PDE is necessary so
that the MFS and the collocation Trefftz method (CTM) are available for our numerical
experiments. This can be accomplished by two different ways which are Approach 1 and
Approach 2, say. In both approaches, we first transform the domain into [−1,1]2, and
approximate the particular solution using Chebyshev polynomials. After that, in approach 1,
we return to our original domain to approximate the homogeneous solution using the MFS
and the CTM. However, in approach 2, we work on the transformed domain by rescaling of
PDEs and embedding the original domain into a larger rectangular domain so that the MFS
and the CTM are available. Both approaches are stable and highly accurate. Numerical
experiments applied to different boundary value problems using the MFS and the CTM
on various computational domains will be presented in the coming sections. The profile
of the original domain and the transformed domain are shown in Figures 4.16, and 4.17
respectively.

4.1 Two-step HCPS

In this section, numerical experiments utilizing two-step hybrid Chebyshev polynomial
scheme with Approach 1 and Approach 2 will be given in detail. The computation is carried
out on amoeba-shaped, cassini-shaped, peanut-shaped and star-shaped domains.
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4.1.1 Poisson Equation, Approach 1

We first consider a Poisson equation with Dirichlet boundary condition:

∆u(x,y) = f (x,y), (x,y) ∈Ω, (4.1)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω.

The forcing term f (x,y), and the boundary data g(x,y) are generated from the following
exact solution:

u(x,y) = cos(3x)− cos(3y).

In Table 4.1, we list the numerical results for this problem with Ω being an amoeba-shaped,
cassini-shaped, star-shaped domains. The computational domain Ω as shown in Figure 4.1
is bounded by the curve defined by the following parametric equation:

∂Ω = {(x,y)|x = ρ cosθ ,y = ρ sinθ , 0≤ θ ≤ 2π},

where
ρ = esin(θ) sin2(2θ)+ ecos(θ) cos2(2θ).

For each domain, 250 uniformly distributed boundary points and 120 randomly selected
interior test points are taken for the numerical experiment. We employ the MFS for the
evaluation of the homogeneous solution. When using the MFS, we let the source points
distribute on a circle of radius r. By LOOCV, the sub-optimal source radii r for the cassini-
shaped, amoeba-shaped, peanut-shaped, and star-shaped domains are 1.398, 1.529, 1.985,
and 1.493 respectively. Since Chebyshev polynomials provide spectral convergence on the
domain [−1,1]2 and the MFS is a highly accurate boundary method, we expect the solution
to be highly accurate.

4.1.2 Modified Helmholtz Equation, Approach 1

In this example, modified Helmholtz equation with Dirichlet boundary condition on irregular
domains is considered for the numerical accuracy of the proposed scheme employing
Approach 1. The governing equation is given by,

(∆−λ
2)u(x,y) = f (x,y), (x,y) ∈Ω, (4.2)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

where f (x,y), and g(x,y) are generated from the following analytical solution:

u(x,y) = cos(3x)− cos(3y).
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Table 4.1: Example 1: MAE for Poisson using Approach 1.
Nx=Ny Amoeba Peanut Cassini Star

10 2.121e-02 2.177e-04 8.658e-04 4.604e-01
12 1.595e-03 7.216e-06 1.612e-05 4.496e-02
14 6.928e-05 1.608e-07 2.862e-07 1.524e-02
16 3.466e-06 4.476e-09 3.055e-09 4.482e-04
18 9.945e-08 4.980e-11 3.574e-11 2.020e-06
20 1.469e-09 1.953e-11 1.979e-13 4.289e-07
22 2.729e-11 4.426e-11 1.951e-13 2.095e-09
24 2.191e-10 6.836e-10 3.570e-13 5.020e-11
26 1.501e-10 1.834e-09 7.918e-13 6.581e-11
28 7.920e-10 3.438e-09 2.633e-12 2.692e-10
30 1.245e-09 2.736e-08 1.485e-11 3.451e-10
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Figure 4.1: The profile of amoeba domain.
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Figure 4.2: The profile of error plot.

The computation domain Ω as shown in Figure 4.3 is bounded by the curve defined by the
following parametric equation:

∂Ω = {(x,y)|x = ρ cosθ ,y = ρ sinθ , 0≤ θ ≤ 2π},

where
ρ = 1+ cos2(4θ).

For the MFS, the fictitious boundary where the source points are located is chosen to
have the same shape as that of the boundary. The sub-optimal source location in this case is
found by using the LOOCV method. The sub-optimal source locations for amoeba-shaped,
peanut-shaped, cassini-shaped and star-shaped domains are 1.032, 1.045, 1.022, and 1.056
respectively. For each domain, 250 boundary points and 120 test points are used. The
wave number λ = 50 is used. Table 4.2 shows the numerical result for the two-step hybrid
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Chebyshev polynomial scheme. From the numerical results, it can be easily concluded that
method is highly accurate and performs better than Poisson equation.

Table 4.2: Example 2: MAE for Helmholtz with approach 1.
Nx=Ny Amoeba Peanut Cassini Star

10 1.321e-02 7.937e-04 1.987e-04 3.159e-02
12 9.595e-04 2.879e-05 5.206e-06 2.363e-03
14 5.168e-05 7.484e-07 9.868e-08 1.245e-04
16 1.876e-06 1.476e-08 1.285e-09 4.895e-06
18 6.645e-08 2.226e-10 1.374e-11 1.492e-07
20 1.769e-09 2.714e-12 1.158e-13 3.632e-09
22 3.729e-11 2.004e-13 5.440e-15 7.221e-11
24 9.233e-13 9.707e-14 7.772e-15 1.197e-12
26 2.501e-14 1.407e-12 5.690e-15 2.486e-14
28 8.104e-15 7.958e-12 5.718e-15 1.663e-14
30 3.345e-14 4.028e-11 6.726e-15 2.051e-14
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Figure 4.3: The profile of Star shape.
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Figure 4.4: The profile of error plot.

4.1.3 Poisson Equation, Approach 2

The governing equation is given by (4.1). We use the MFS for the homogeneous solution.
We let the source points distribute on a circle of radius r outside the domain. The well-known
LOOCV method is used to find the sub-optimal source radius r. The source radii for amoeba-
shaped, cassini-shaped, peanut-shaped, and star-shaped domains are 1.529,1.398,2.105,
and 1.510 respectively. Table 4.3 shows the numerical result for the Poisson equation with
the second approach. The proposed method is highly accurate and stable. It is noted that as
the number of Chebyshev nodes increases, the degree of the Chebyshev polynomials also
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increases simultaneously. The highest accuracy is achieved at different Chebyshev nodes for
the different domains.

Table 4.3: Example 3: MAE for Poisson with approach 2.
Nx=Ny Cassini Peanut Amoeba Star

10 1.640e-03 3.807e-03 4.163e-02 1.487e-02
12 4.034e-05 1.982e-04 2.832e-03 1.948e-03
14 9.067e-07 5.417e-06 1.396e-04 5.825e-05
16 1.199e-08 1.149e-07 6.705e-06 8.059e-07
18 1.601e-10 1.991e-09 2.369e-07 8.566e-08
20 1.210e-12 2.053e-11 3.761e-09 3.997e-10
22 8.099e-14 2.605e-13 7.876e-11 1.778e-11
24 1.922e-13 5.467e-14 1.213e-12 3.102e-10
26 1.842e-13 7.965e-14 4.833e-13 9.897e-10
28 6.796e-13 1.446e-13 9.527e-13 1.509e-09
30 1.524e-13 1.469e-13 1.169e-12 9.734e-09

4.1.4 Modified Helmholtz Equation, Approach 2

The governing equation is given by (4.2). We use the MFS for the evaluation of the
homogeneous solution. The source points are chosen to have the same shape as that of the
physical boundary, and the LOOCV is used to find the sub-optimal source location. Using
the LOOCV, the sub-optimal source location for cassini-shaped, peanut-shaped, amoeba-
shaped, and star-shaped domains are 1.010, 1.034, 1.043, and 1.051 respectively. For each
domain, 250 boundary points and 120 test points are used. The wave number λ = 50 is used.
Table 4.4 shows the numerical result for the two-step HCPS with the second approach.

Table 4.4: Example 4: MAE for Helmholtz with approach 2.
Nx=Ny Cassini Peanut Amoeba Star

10 4.809e-04 1.586e-03 1.806e-02 3.199e-02
12 1.328e-05 5.757e-05 1.396e-03 2.401e-03
14 2.689e-07 1.496e-06 8.737e-05 1.269e-04
16 4.256e-09 2.924e-08 3.464e-06 5.005e-06
18 4.819e-11 4.452e-10 1.148e-07 1.530e-07
20 4.028e-13 5.431e-12 3.741e-09 3.736e-09
22 1.346e-14 9.064e-14 1.129e-10 7.452e-11
24 8.937e-15 5.104e-14 3.365e-12 1.238e-12
26 7.799e-14 4.873e-14 9.525e-14 1.820e-14
28 7.494e-15 1.887e-14 1.050e-13 2.231e-14
30 1.527e-14 7.904e-14 9.564e-14 2.907e-14
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Comparison of the numerical accuracy (error plot) of the second approach applied to
Poisson and Helmholtz equation is shown on the Figures 4.5 and 4.6.
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Figure 4.5: The profile of error plot for Pois-
son equation.

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

Chebyshev Nodes

M
ax

 A
bs

 E
rr

or

Max abs error for  Helmholtz (Approach 2)

 

 
Star
Peanut
Cassini
Amoeba

Figure 4.6: The profile of error plot for modi-
fied Hemholtz equation.

From the numerical results obtained from the Poisson and the modified Helmholtz
equations, it can be easily observed that second approach performs slightly better than the
first approach. So, it can be inferred that these two approaches are, in fact, equivalent.
Keeping this in mind, in this dissertation, we have employed second approach for the further
verification of the proposed hybrid Chebyshev polynomial scheme to solve various elliptic
PDEs in 2D and 3D. It is noted that similar accuracy will be achieved by the use of first
approach too.

4.1.5 HCPS on Circle

While implementing our numerical scheme, we used different irregular computational
domains for the numerical experiments such as amoeba-shaped, cassini-shaped, star-shaped
domains and unit square. We also employed our scheme on the circle. Circle is considered
as a regular and smooth boundary domain. Table 4.5 is the numerical result for the different
Chebyshev nodes on the circle of radius 1 as a physical domain Ω and a circle of radius
1.2 as a fictitious boundary. As in the previous examples, the MFS is employed for the
homogeneous solution. 250 uniformly distributed boundary points and 120 randomly
distributed test points are taken for the numerical experiment. Due to smooth and regular
boundary, we observe highly accurate and stable solutions on the Poisson and modified
Helmholtz equations.
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Table 4.5: Example 5: MAE for Poisson and Helmholtz on Circle.
Cheby Nodes Poisson Helmholtz

Nx=Ny Maximum Abs Error Maximum Abs Error
10 2.711e-06 8.343e-07
12 5.458e-08 1.057e-08
14 2.643e-10 1.008e-10
16 3.836e-12 6.042e-13
18 9.325e-15 5.551e-15
20 2.164e-15 6.217e-15
22 1.942e-15 6.217e-15
24 2.665e-15 7.271e-15
26 1.776e-15 4.329e-15
28 1.776e-15 6.911e-15
30 1.487e-12 8.319e-15
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Figure 4.7: MAE for Poisson and Helmholtz on circle.

4.1.6 HCPS Using Mixed Boundary Conditions

To verify the accuracy of numerical methods, we use Neumann boundary condition along
with the Dirichlet boundary condition, which is called mixed boundary conditions. In
this section, Poisson equation with mixed boundary conditions is presented to verify the
numerical accuracy of our proposed method. The computational domains are amoeba-
shaped, cassini-shaped and unit square.



37

∆u(x,y) = f (x,y), (x,y) ∈Ω, (4.3)

u(x,y) = g1(x,y), (x,y) ∈ ∂Ω1,

∂u(x,y)
∂n

= g2(x,y), (x,y) ∈ ∂Ω2,

where ∂Ω1 and ∂Ω2 are part of the boundary ∂Ω with ∂Ω1∪∂Ω2 = ∂Ω and ∂Ω1∩∂Ω2 = /0,
the forcing term and boundary data are obtained from the following analytical solution:

u(x,y) = sin(πx)cos
(

πy
2

)
.

The computational domain is bounded by the cassini curve as shown in Figure 4.8, which is
defined by the following parametric equation:

∂Ω = {(x,y)|x = ρ cosθ ,y = ρ sinθ , 0≤ θ ≤ 2π},

where

ρ =

(
cos(3θ)+

√
2− sin2(3θ)

) 1
3

.

In this example, ∂Ω1 and ∂Ω2 are the upper and lower half of the boundary ∂Ω respec-
tively. For the MFS, we use a circle as a fictitious boundary and the well-known LOOCV
method is used to find out the sub-optimal source location r. The sub-optimal source location
for the amoeba, cassini and unit square are 1.48, 1.96, and 1.87 respectively. The number of
boundary and test points are 250 and 120 respectively for amoeba and cassini whereas 276
and 64 for unit square. The profile of error is shown in Figure 4.9. The numerical results
shown in Table 4.6 clearly indicate the high accuracy of the proposed method.

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

x

y

Computational Domain

 

 

Dirichlet
Neuman
Source
Cheby pt

Figure 4.8: The profile of cassini domain
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Figure 4.9: Error Plot on mixed BCs.



38

Table 4.6: Example 6: MAE for Poisson with Mixed BCs.
Nx=Ny Cassini Unit Square Amoeba

10 1.266e-02 7.975e-05 5.430e-01
12 1.958e-04 1.920e-06 7.188e-02
14 3.565e-06 1.946e-08 2.700e-03
16 9.362e-08 2.457e-10 2.683e-04
18 1.832e-10 3.198e-12 1.375e-05
20 3.204e-12 4.559e-12 8.764e-07
22 6.902e-12 6.130e-12 9.825e-09
24 9.390e-12 1.154e-11 2.340e-11
26 2.390e-11 5.784e-11 6.443e-12
28 3.613e-11 1.606e-10 2.490e-13
30 8.021e-10 1.922e-10 1.469e-13

4.1.7 Franke’s Benchmark Test Functions

In this example, we consider the cases when three Franke’s benchmark test functions [25]
are the exact solutions for the Poisson equation and modified Helmholtz equation on the
unit square. The three Franke’s test functions are given below:
1. F1:

F1(x,y) =
3
4

e−
1
4 [(9x−2)2+(9y−2)2]+

3
4

e−
1
49 [(9x+1)2− 1

10 (9y+1)2]

+
1
2

e−
1
4 [(9x−7)2− 1

4 (9y−3)2]− 1
5

e−[(9x−4)2−(9y−7)2].

2. F2:

F2(x,y) =
1
9
(tanh(9y−9x)+1).

3. F3:

F3(x,y) =
1.25+ cos(5.4y)
6[1+(3x−1)2]

.

The profiles of Franke’s functions are shown in Figures 4.10, 4.11, and 4.12.
The numerical results for the Poisson and Helmholtz equations are listed in the Tables

4.7, and 4.8 respectively. The surface of these Franke’s functions are more complex than
those in previous examples. So, more Chebyshev nodes are needed to achieve high accuracy.
While using the MFS, we choose a fictitious boundary which has the same shape as that
of boundary. The sub-optimal source location for the source points (xs,ys) are found by
using the LOOCV method for both boundary value problems. For the Poisson equation,
the sub-optimal locations for F1,F2, and F3 are 1.449,1.326, and 1.382 respectively and
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Figure 4.10: The profile of F1.
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Figure 4.11: The profile of F2.
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Figure 4.12: The profile of F3.

for the modified Helmholtz equation, they are 1.025,1.024, and 1.026 respectively. For the
modified Helmholtz problem, the value of wave number λ directly affects the accuracy.
We let λ = 150. The number of boundary points and test points taken are 396 and 64
respectively. The numerical results for the Poisson and the modified Helmholtz equations
are listed in Tables 4.7 and 4.8 respectively. The error plots of the three Franke’s test
functions for the Poisson and the modified Helmholtz equations are given by the Figures
4.13 and 4.14 respectively.
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Table 4.7: Example 7: MAE for Poisson using Franke’s TFs.
Nx=Ny MAE(F1) MAE(F2) MAE(F3)

10 9.823e-02 1.696e-02 5.437e-03
15 4.647e-03 1.196e-03 1.832e-05
20 1.147e-03 1.931e-04 6.534e-07
25 8.456e-05 4.516e-05 8.242e-08
30 6.414e-08 2.021e-06 1.011e-09
35 5.168e-09 6.367e-07 5.253e-11
40 2.113e-09 2.631e-08 3.724e-12
45 1.369e-10 1.928e-08 3.780e-12
50 5.240e-10 1.381e-09 3.077e-12

Table 4.8: Example 7: MAE for Helmholtz using Franke’s TFs.
Nx=Ny MAE(F1) MAE(F2) MAE(F3)

10 2.647e-02 1.196e-03 1.832e-03
15 9.943e-03 3.120e-04 3.866e-05
20 5.617e-04 2.182e-04 1.072e-06
25 8.868e-05 4.992e-05 7.900e-08
30 3.312e-06 2.158e-06 1.807e-09
35 6.488e-08 1.395e-06 5.202e-11
40 1.816e-09 1.192e-07 1.100e-12
45 5.836e-11 1.474e-08 6.361e-14
50 6.732e-13 8.710e-10 2.026e-15
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Figure 4.13: Error for Poisson on Franke’s
TFs.
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Figure 4.14: Error for Helmholtz on Franke’s
TFs.

4.1.8 Higher Order PDEs

In the previous examples, the second order PDEs including Poisson and modified Helmholtz
equations are solved. In this example, following fourth order PDE with domain Ω being a
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unit square is considered: (∆2−λ 4)u = f (x,y), (x,y) ∈ Ω,
u = g(x,y), (x,y) ∈ ∂Ω,

∆u = h(x,y), (x,y) ∈ ∂Ω.
(4.4)

where λ = 50, f ,g, and h are given functions such that the exact solution is

u(x,y) = sin(πx)cos
(

πy
2

)
, (x,y) ∈Ω.

Since ∆2−λ 4 = (∆−λ 2)(∆+λ 2), we calculate the particular solution up of (4.4) in two
steps,

(∆+λ
2)up = vp, (4.5)

(∆−λ
2)vp = f . (4.6)

Using Chebyshev polynomial, we can find vp from (4.6) and then find up from (4.5). Hence,
we don’t have to take the derivatives of Chebyshev polynomial four times. We use 276
boundary points and 64 test points and the well-known LOOCV method is used to find the
sub-optimal source radius r. In this case, a circle of radius 2.4 is chosen. From the Table 4.9,
the high accuracy of our proposed method is observed. This shows that proposed method is
equally applicable for solving other fourth order PDEs too.

Table 4.9: Example 8: MAE for 4th order PDE.
Nx=Ny Max Abs Error

10 1.249e-05
12 3.968e-07
14 5.573e-09
16 7.300e-11
18 1.308e-12
20 1.554e-12
22 1.537e-12
24 8.236e-11
26 5.652e-10
28 4.093e-08
30 6.473e-08

4.2 HCPS using Collocation Trefftz Method

The MFS is a very powerful boundary method for solving homogeneous equations which
requires fictitious boundary. Another boundary only method, which does not require
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Figure 4.15: Error plot on fourth order PDE.

fictitious boundary, is Collocation Trefftz method (CTM) which is described in Section
2.3.2. The CTM avoids the determination of a suitable location for source points, which is a
great advantage over the MFS. In the following numerical examples, Chebyshev polynomial
is coupled with the CTM for solving Poisson equation and modified Helmholtz equation.

4.2.1 Poisson Equation

The governing equation is given by (4.1). As illustrated in 2.3.2, while using the CTM,
T-complete functions are taken as a basis function. The list of T-complete functions is
given in Table 4.3. By the direct implementation of the CTM, the resulting matrix is highly
ill-conditioned. So care must be taken to overcome this difficulty while employing the CTM.
In this dissertation, numerical experiments are performed by considering N1 � Nb, where
N1 is the order of the T-complete functions and Nb is the number of boundary points. This
is due to the fact that besseli( j,λ r) becomes very large for large j, which might affect the
accuracy directly. Hence, for the numerical experiments, while implementing the CTM, the
order of T-complete functions taken is 61. Similarly, boundary and test points taken are
250 and 120 respectively. The numerical result shown in Table 4.10 verifies that proposed
hybrid Chebyshev polynomial scheme is highly accurate and stable.

4.2.2 Modified Helmholtz Equation

The governing equation is given by (4.2). For the CTM, the T-complete functions are listed
in Table 4.3. We used wave number λ = 35. As usual 250 boundary points and 120 test
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Table 4.10: Example 9: MAE for CTM in Poisson Equation.
Nx=Ny Peanut Star Cassini Amoeba

10 2.376e-04 8.963e-03 5.671e-05 4.604e-02
12 6.479e-06 3.583e-04 1.066e-06 3.227e-03
14 1.409e-07 2.186e-05 1.639e-08 1.524e-04
16 2.464e-09 5.455e-07 1.945e-10 4.482e-06
18 2.571e-11 1.809e-08 2.399e-12 1.749e-07
20 3.228e-13 3.036e-10 1.831e-14 3.916e-09
22 2.109e-15 5.547e-12 1.110e-15 8.989e-11
24 1.322e-15 6.872e-14 1.443e-15 9.743e-13
26 1.332e-15 2.331e-15 1.720e-15 1.887e-14
28 1.110e-15 2.567e-15 1.276e-15 6.022e-15
30 1.363e-13 2.356e-10 8.579e-11 5.020e-13
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points are taken to verify the numerical accuracy. It can be inferred clearly that proposed
method is highly accurate and efficient. The numerical result is given in Table 4.11. The
computational domain is bounded by the cassini curve as shown in Figure ??, which is
defined by the following parametric equation:

∂Ω = {(x,y)|x = ρ cosθ ,y = ρ sinθ , 0≤ θ ≤ 2π},

where

ρ =

(
cos(2θ)+

√
2− sin2(2θ)

) 1
2

.

The error plot of Poisson equation and modified Helmholtz equation using the collocation
Trefftz method (CTM) is given in the Figures 4.18 and 4.19 respectively.
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Table 4.11: Example 10: MAE for CTM in modified Helmholtz.
Nx=Ny Peanut Cassini Amoeba Star

10 4.886e-05 3.569e-05 1.765e-02 3.338e-03
12 1.406e-06 3.561e-07 1.396e-03 1.930e-04
14 2.567e-08 1.229e-08 6.037e-05 7.078e-06
16 4.004e-10 3.995e-10 2.286e-06 2.205e-07
18 1.248e-11 3.040e-12 8.017e-08 4.462e-09
20 3.441e-13 5.784e-14 1.888e-09 1.039e-10
22 4.169e-15 6.952e-15 5.944e-11 2.002e-12
24 1.355e-14 2.638e-14 2.201e-12 5.018e-14
26 1.528e-14 4.560e-14 6.974e-14 1.998e-14
28 2.950e-14 8.115e-14 7.327e-15 2.048e-14
30 8.374e-14 7.387e-13 1.690e-14 1.328e-14
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Figure 4.18: The profile of error plot for Pois-
son equation.
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Figure 4.19: The profile of error plot for mod-
ified Helmholtz equation.

4.3 Comparison of the MFS and CTM

It is well-known fact that the MFS and the CTM are both boundary only meshless methods.
Theoretically both methods are considered as the special case of Trefftz method (TM). The
fundamental solution of differential operator is required for the MFS and source points are
placed on the fictitious boundary to avoid the singularity. The CTM, on the other hand, does
not require fictitious boundary but uses T-complete functions of the differential operator
as a basis function. In this dissertation, we have compared the performance of the MFS
and the CTM. The computational domains for the numerical examples are amoeba-shaped
and cassini-shaped. The number of boundary points and test points taken are 250 and 120
respectively. We use the same number of source points and boundary points for the MFS.
While implementing the CTM, the order of T-complete function taken for both examples
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is 61. We let the wave number (λ ) for the modified Helmholtz equation is 50. We observe
highly accurate and stable solution in both examples. Numerical examples show that the
performance of the CTM is in general better than the MFS.

4.3.1 The MFS and The CTM on Poisson Equation

Table 4.12 shows the numerical result on Poisson equation in various irregular domains
using the MFS and the CTM. The error plot is given in Figure 4.20.

Table 4.12: Example 11: MAE for the MFS and CTM in Poisson.
MFS CTM

Nx=Ny Cassini Amoeba Cassini Amoeba
10 1.640e-03 4.163e-02 5.671e-05 4.604e-02
12 4.034e-05 2.832e-03 1.066e-06 3.227e-03
14 9.067e-07 1.396e-04 1.639e-08 1.524e-04
16 1.199e-08 6.705e-06 1.945e-10 4.482e-06
18 1.601e-10 2.369e-07 2.399e-12 1.749e-07
20 1.210e-12 3.761e-09 1.831e-14 3.916e-09
22 8.099e-14 7.877e-11 1.110e-15 8.989e-11
24 1.922e-13 1.213e-12 1.443e-15 9.743e-13
26 1.842e-13 4.833e-13 1.720e-15 1.887e-14
28 6.796e-13 9.527e-13 1.276e-15 6.022e-15
30 1.523e-13 1.169e-12 8.579e-11 5.020e-13
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Figure 4.20: MAE for the Poisson Equation.
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4.3.2 The MFS and CTM on Helmholtz Equation

Table 4.13 shows the numerical result on modified Helmholtz equation in various irregular
domains using the MFS and CTM. The error plot is given in the Figure 4.21.

Table 4.13: Example 12: MAE for MFS and CTM in modified Helmholtz.
MFS CTM

Nx=Ny Amoeba Star Amoeba Star
10 1.806e-02 3.199e-02 1.765e-02 3.338e-03
12 1.396e-03 2.401e-03 1.396e-03 1.930e-04
14 8.737e-05 1.269e-04 6.037e-05 7.078e-06
16 3.464e-06 5.005e-06 2.286e-06 2.205e-07
18 1.148e-07 1.530e-07 8.017e-08 4.462e-09
20 3.741e-09 3.736e-09 1.888e-09 1.039e-10
22 1.129e-10 7.452e-11 5.944e-11 2.002e-12
24 3.365e-12 1.238e-12 2.201e-12 5.018e-14
26 9.525e-14 1.820e-14 6.974e-14 1.998e-14
28 1.050e-13 2.231e-14 7.327e-15 2.048e-14
30 9.564e-14 2.907e-14 1.690e-14 1.328e-14
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Figure 4.21: MAE for the modified Helmholtz equation.

We note that, by the direct implementation of the collocation Trefftz method, the resulting
linear algebraic systems from both the Poisson and the modified Helmholtz equations are
highly ill-conditioned. As discussed in Section 2.3.3, we use the multiple scales method to
obtain the equilibrated matrix which provides an equivalent but less ill-conditioned linear
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system. Comparison of the condition numbers between the conventional Trefftz method
and the equilibrated Trefftz method on the Poisson equation and the modified Helmholtz
equation over the amoeba-shaped domain are shown in the Figures 4.22 and 4.23 respectively.
From the figures, we clearly notice that the condition number from the conventional Trefftz
method grows rapidly as the order of the Trefftz method increases and the condition number
from the equilibrated Trefftz method is much better and relatively stable.
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Figure 4.22: Comparison of condition numbers in Poisson equation.
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Figure 4.23: Comparison of condition numbers in modified Helmholtz equation.
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Chapter 5

NUMERICAL RESULTS UTILIZING ONE-STEP HCPS

Various numerical examples in two dimensions (2D) and three dimenstions (3D) are pre-
sented to verify the accuracy of the one-step hybrid Chebyshev polynomial scheme (HCPS)
in this section. The advantage of one-step HCPS over two-step HCPS is its applicability to
solve PDEs with variable coefficients. Hence, four numerical examples on variable coef-
ficients PDEs with Dirichlet and Neumann boundary conditions on the different irregular
domains and the Cauchy-Navier equations for the displacements (u1,u2) on the unit square
have been presented. We investigate applications of the one-step HCPS for the numerical
solution of 3D boundary value problems in complex geometries governed by the Laplace
equation and subject to Dirichlet boundary conditions. For the MFS, we use the well-known
leave-one-out cross validation (LOOCV) algorithm to determine the sub-optimal source
location of the fictitious boundary from the original boundary [56].

5.1 PDEs with Variable Coefficients

5.1.1 Example 1

We consider the following boundary value problem with a Dirichlet boundary condition:

∆u(x,y)− x2yu(x,y) = f (x,y), (x,y) ∈Ω, (5.1)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

where f , and g are chosen based on the following exact solution:

u(x,y) = cos(3x)− cos(3y).

Table 5.1 shows the numerical results for the amoeba-shaped, cassini-shaped, star-shaped,
and unit square domains. We have used 250 boundary points and 120 test points for amoeba,
star and cassini whereas 276 boundary points and 64 test points for the unit square. To avoid
singularities when using the MFS, we distribute points on a circle of radius r. By using
the LOOCV, the sub-optimal radii r for the cassini, star, amoeba, and the unit square are
1.698, 1.702, 2.201 and 1.505 respectively. Since Chebyshev polynomials provide spectral
convergence on the domain and the MFS is also highly accurate boundary method, the l
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solutions are highly accurate as expected. The numerical result clearly verifies this fact. The
computational domain Ω as shown in Figure 5.1 is bounded by the curve defined by the
following parametric equation:

∂Ω = {(x,y)|x = ρ cosθ ,y = ρ sinθ , 0≤ θ ≤ 2π},

where
ρ = esin(θ) sin2(2θ)+ ecos(θ) cos2(2θ).
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Figure 5.1: The profile of Ameoba domain.
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Figure 5.2: Error Plot of Example 1.

Table 5.1: Example 1: MAE using various Nx and Ny.
Nx=Ny Unit square Amoeba Cassini Star

10 4.400e-02 9.527e-01 6.717e-03 9.864e-01
12 5.545e-04 5.525e-01 2.186e-04 1.627e-02
14 1.400e-05 5.143e-02 3.449e-05 1.533e-03
16 5.683e-07 1.370e-03 5.897e-06 6.457e-03
18 1.695e-09 6.769e-04 2.029e-07 3.119e-05
20 5.590e-11 8.290e-05 1.343e-09 2.814e-06
22 3.269e-13 1.997e-06 1.091e-11 1.597e-07
24 5.464e-13 5.473e-08 8.548e-14 5.549e-09
26 1.556e-11 2.562e-09 1.751e-13 9.531e-11
28 5.709e-11 5.367e-11 5.986e-13 2.803e-12
30 6.344e-11 1.230e-12 1.900e-13 1.012e-12
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5.1.2 Example 2

We consider the following mixed boundary value problem:

∆u(x,y)− x2y
∂u(x,y)

∂x
= f (x,y), (x,y) ∈Ω, (5.2)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

∂u(x,y)
∂n

= h(x,y), (x,y) ∈ ∂Ω,

where ∂Ω1∪∂Ω2 = ∂Ω and ∂Ω1∩∂Ω2 = /0, f ,g, and h are given functions based on the
analytical solution:

u(x,y) = sin(πx)cos
(

πy
2

)
.

The computational domain is bounded by the Cassini curve as shown in Figure 5.3, which is
defined by the following parametric equation:

∂Ω = {(x,y)|x = ρ cosθ ,y = ρ sinθ ,0≤ θ ≤ 2π},

where

ρ =

(
cos(3θ)+

√
2− sin2(3θ)

) 1
3

.

In this example, we consider the amoeba-shaped, cassini-shaped, and the unit square
domains. In the numerical experiments, we chose 250 uniformly distributed boundary points
and 120 randomly distributed test points for amoeba-shaped and cassini-shaped domains,
whereas 276 boundary points and 64 test points for unit square. We let the source points
distribute on a circle of radius r. We used the LOOCV method to choose the sub-optimal
source radius which are as follows: 2.25 for amoeba, 1.98 for cassini, and 2.01 for the unit
square. From Table 5.2, we can clearly see that the proposed method is highly accurate and
stable.

5.1.3 Example 3

In this example, we consider the following modified Helmholtz equation with Dirichlet
boundary condition:

(∆−λ
2)u(x,y) = f (x,y), (x,y) ∈Ω, (5.3)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

where f (x,y), and g(x,y) are generated from the following analytical solution:

u(x,y) = cos(3x)− cos(3y).
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Table 5.2: Example 2: MAE for mixed boundary condition.
Nx=Ny Unit Square Cassini Amoeba

10 4.166e-06 6.710e-04 4.430e-02
12 2.758e-08 1.088e-05 7.188e-03
14 3.915e-10 3.589e-07 2.700e-03
16 2.286e-12 6.217e-08 2.683e-04
18 1.232e-12 1.549e-10 1.375e-06
20 2.550e-15 5.339e-12 2.764e-08
22 9.992e-16 1.150e-13 1.325e-09
24 1.221e-15 2.790e-15 7.825e-11
26 1.663e-15 6.754e-15 2.443e-13
28 1.223e-15 2.746e-15 7.340e-15
30 2.381e-15 2.162e-15 1.469e-14
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Figure 5.3: The profile of Cassini domain.
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Figure 5.4: Error Plot of Example 2.

The computational domain Ω as shown in Figure 5.5 is bounded by the curve defined by the
following parametric equation:

∂Ω = {(x,y)|x = ρ cosθ ,y = ρ sinθ ,0≤ θ ≤ 2π},

where
ρ = 1+ cos2(4θ).

Table 5.3 shows the numerical result for the modified Helmholtz equation in different
domains: amoeba-shaped, cassini-shaped and star-shaped domains. For the MFS, the
fictitious boundary (xs,ys) where the source points are located is chosen to have the same
shape as that of the boundary. The sub-optimal source location in this case is found by
using well-known LOOCV algorithm. The sub-optimal source location for amoeba-shaped,
cassini-shaped and star-shaped domains are 1.009, 1.015, and 1.016 respectively. The
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number of boundary and test points taken for the amoeba, cassini and star domains are 250
and 120 respectively whereas for the unit square, 276 and 64 respectively. The wave number
λ = 35 is chosen for the numerical results. From the numerical results, we can easily see
that our method is highly accurate and stable.
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Figure 5.5: The profile of Star-shaped domain.
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Figure 5.6: Error Plot of Example 3.

Table 5.3: Example 3: MAE for modified Helmholtz problem.
Nx=Ny Cassini Amoeba Star

10 4.711e-04 8.765e-02 3.179e-02
12 1.288e-05 1.396e-02 2.375e-03
14 2.546e-06 8.609e-03 1.249e-04
16 3.938e-08 3.742e-04 4.897e-05
18 4.311e-09 1.632e-05 1.488e-06
20 4.872e-10 7.067e-06 3.607e-07
22 4.920e-12 2.793e-07 8.051e-08
24 3.219e-13 1.008e-08 1.313e-09
26 1.548e-14 3.288e-09 5.151e-10
28 5.922e-15 1.801e-09 1.398e-11
30 3.103e-15 5.750e-10 2.386e-12

5.1.4 Example 4

In this example, we consider the following boundary value problem in a gear-shaped domain:

∆u(x,y)− x2yu(x,y) = f (x,y), (x,y) ∈Ω, (5.4)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω,
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where f , and g are given functions based on the following exact solution

u(x,y) = cos(3x)− cos(3y).

The computational domain Ω in this example is a gear-shaped domain as shown in Fig 5.7
which is bounded by the following parametric equation:

∂Ω =

{
(x,y)|x = ρ(t)cos

(
t +

1
2

sin(7t)
)
,y = ρ(t)sin

(
t +

1
2

sin(7t)
)
, 0≤ θ < 2π

}
,

where
ρ(t) =

1
2

(
t +

1
2

sin(7t)
)
.

Source points are placed on a circle of radius r when using the MFS. By using the
well-known LOOCV, the sub-optimal value of r in this case is 1.6. For the numerical
implementation, 300 uniformly distributed points on the boundary are taken. Table 5.4
shows the maximum absolute errors for various Chebyshev nodes. Our numerical scheme is
highly accurate and stable in this case too.
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Figure 5.7: The profile of gear shape.
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Figure 5.8: Error Plot on gear-shaped domain.

5.2 Cauchy-Navier Equations of Elasticity

Finally, to verify the effectiveness of our proposed numerical scheme HCPS using one-step
approach, we consider a system of equations given by (3.35)-(3.36) known as Cauchy-Navier
equations of elasticity subject to the Dirichlet boundary conditions [30]. In this example
f1, f2,g1,and h1 are given functions based on the following exact solution:

u1(x,y) = ex+y, u2(x,y) = sin(x+ y).
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Table 5.4: Example 4: MAE on gear shape domain.
Nx=Ny Maximum Abs Error

10 1.754e+00
12 1.781e+00
14 2.011e-01
16 6.898e-02
18 2.611e-03
20 3.171e-04
22 1.426e-05
25 3.809e-07
26 1.098e-08
28 1.023e-09
30 2.032e-11

We take Poisson’s ratio and the shear modulus to be ν = 0.3, and µ = 1 respectively. Table
5.5 shows the maximum absolute errors in u1 and u2 for various Chebyshev nodes. From
the numerical results, we conclude that our numerical scheme is equally applicable to the
Cauchy-Navier equations too.

Table 5.5: MAE for Cauchy-Navier Equation.
Nx=Ny MAE (u1) MAE (u2)

10 5.423e-06 8.814e-07
11 4.763e-07 3.319e-07
12 3.224e-08 1.552e-08
13 4.607e-09 4.964e-09
14 1.113e-09 3.111e-10
15 3.966e-11 5.788e-11
16 5.803e-12 1.494e-11
17 1.088e-10 1.497e-10
18 2.923e-10 3.688e-10
19 4.244e-10 2.831e-10
20 9.320e-10 1.121e-09

5.3 3D Boundary Value Problems

HCPS was proven to be highly accurate, easy to implement, and very efficient numerical
method for solving 2D boundary value problems. It is a challenging task to work in higher
dimensions with complex geometries and large scale problems. However, it is relatively easy
to work in 3D problems in meshless method as compared to the mesh based methods such
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as finite element and finite difference method [4, 51, 55]. The hybrid formulation in three
dimensional space would be pretty much similar as that of two dimensional formulation. So
readers are referred to Section 3.3.2 for more details. Various numerical examples on 3D
domains are presented in this section.

In our numerical experiments, to verify the effectiveness of the one-step hybrid Cheby-
shev polynomial scheme (HCPS), we consider different three-dimensional domains such as
3D Stanford Bunny, unit sphere, double-sphere, and bumpy-sphere as shown in Figures 5.9,
5.10, 5.11, and 5.12 respectively.

Let us consider the following three dimensional boundary value problem:

Lu(x,y,z) = f (x,y,z), (x,y,z) ∈Ω, (5.5)

with Dirichlet boundary condition

u(x,y,z) = g(x,y,z), (x,y,z) ∈ ∂Ω1, (5.6)

and Neumann boundary condition

∂u(x,y,z)
∂n

= h(x,y,z), (x,y,z) ∈ ∂Ω2, (5.7)

where Ω ⊂ R3 is a simply connected domain bounded by a simple closed curve ∂Ω, Ω1

and Ω2 are part of the boundary Ω with ∂Ω1∪ ∂Ω2 = Ω, ∂Ω1∩Ω2 = /0, L is an elliptic
differential operator, f , g, and h are given functions.

5.3.1 3D Stanford Bunny

We first consider a Poisson equation with a Dirichlet boundary condition:

∆u(x,y,z) = f (x,y,z), (x,y,z) ∈Ω, (5.8)

u(x,y,z) = g(x,y,z), (x,y,z) ∈ ∂Ω.

The forcing term f (x,y,z) and the boundary data g(x,y,z) are given such that the exact
solution is:

u(x,y,z) = cos(x)cos(y)cos(z).

In this numerical experiment, our computational domain is the Stanford Bunny (see
Figure 5.9) whose boundary data points are available at the website of the Stanford Computer
Graphics Laboratory [1]. While implementing our numerical scheme, we use two different
data sets of Stanford Bunny. The number of data points taken are 1889 and 8171 for the
numerical experiment. First, we use regular size of Stanford bunny without blow up. N
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Figure 5.9: Profile of the Stanford Bunny with 1889 boundary points.

represents the total number of Chebyshev points taken for the numerical experiments. For
the MFS, the fictitious boundary (xs,ys) where the source points are located is chosen to be
the sphere. We use the LOOCV method to find the sub-optimal source radius which is 2.450
and 2.785 for the 8171 and 1889 data sets Stanford Bunny respectively. Table 5.6 shows the
numerical result. We clearly see that our proposed method is highly accurate and stable for
the three-dimensional Poisson equation.

Table 5.6: Max Abs Error for Stanford Bunny (Normal data).
N 1889 data CPU(s) 8171 data CPU(s)

1000 1.067e-05 0.42 5.540e-07 7.45
1728 3.761e-06 0.57 7.572e-06 9.34
2744 8.910e-07 0.90 1.082e-07 14.88
4096 7.222e-08 1.91 3.027e-09 15.04
5832 7.698e-10 5.04 1.165e-09 19.43
8000 4.215e-10 6.31 3.959e-10 37.73

10648 4.794e-11 16.90 5.309e-11 70.41
13824 1.702e-11 34.59 8.298e-11 99.20
17576 1.504e-11 66.87 3.666e-11 183.75
21952 5.881e-12 146.17 2.088e-11 332.89
27000 2.505e-11 241.17 5.233e-12 728.32

Usually the normal size (given data points) of standard Stanford bunny is very small.
So, in this case, the coordinate of the boundary points are multiplied by 10 and use that
data points for our numerical experiment. Table 5.7 demonstrates the numerical result for
the blow up case. As usual, sphere is used for the fictitious boundary and the well-known
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LOOCV method is used to find the sub-optimal source radius. The sub-optimal source radii
are 2.510 and 2.750 for the 8171 and 1889 data sets respectively. Our numerical scheme
performs better in the normal size than in the blow up case.

Table 5.7: Max Abs Error for Stanford Bunny (10 times blow up).
N 1889 data CPU(s) 8171 data CPU(s)

1000 1.987e+04 0.37 2.486e+03 8.99
1728 4.464e+01 0.78 3.790e+00 12.34
2744 1.204e-04 1.25 2.665e-04 13.83
4096 8.191e-06 1.91 6.674e-06 18.66
5832 1.263e-06 3.42 4.241e-07 27.43
8000 1.155e-07 6.61 1.720e-08 35.44

10648 5.178e-09 14.10 5.004e-09 77.96
13824 9.746e-10 31.27 2.508e-09 90.53
17576 4.205e-10 64.07 9.189e-10 178.97
21952 1.569e-10 134.51 8.535e-11 385.63
27000 5.734e-11 242.25 1.788e-11 691.18

Figure 5.10: The computational Domain and the distributions of the boundary points on the
surface of 3D sphere.

5.3.2 Sphere, Double Sphere and Bumpy Sphere

In this example, our 3D computational domains are unit sphere (see Figure 5.10), double-
sphere (see Figure 5.11), and bumpy-sphere (see Figure 5.12). We consider Poisson equation
(5.8) with Dirichlet boundary condition. For the MFS, the fictitious boundary where the
source points are located is chosen to be Sphere. For our numerical experiment, the number
of boundary points and test points taken for the sphere are 1000 and 360 respectively. Simi-
larly for the double-sphere, boundary points and test points are 1000 and 416 respectively,
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and for the bumpy-sphere 1000 and 120 respectively. We use the LOOCV method to find the
sub-optimal source radius. The source radii r for sphere, double-sphere, and bumpy-sphere
are 2.524, 3.013, and 3.854 respectively. We observe the numerical result in Table 5.8. From
this observation, we assert that our numerical scheme is highly accurate, and efficient for
three-dimensional boundary value problems.

Figure 5.11: The computational Domain and the distributions of the boundary points on the
surface of double-sphere.

Table 5.8: MAE for bumpy-sphere, sphere, and double-sphere.
N Bumpy-sphere CPU(s) Sphere CPU(s) Double-sphere CPU(s)

1000 3.549e-06 0.55 2.617e-06 0.50 4.617e-04 0.50
1331 8.834e-06 0.68 2.072e-06 0.70 3.581e-04 0.71
1728 1.315e-11 0.96 1.538e-11 1.03 8.103e-08 0.93
2197 1.112e-10 1.48 4.691e-11 1.42 4.973e-07 1.44
2744 2.318e-11 2.14 9.009e-11 2.17 8.827e-11 2.25
3375 1.040e-10 3.25 1.122e-11 3.72 1.396e-10 3.17
4096 5.414e-10 5.38 3.136e-11 5.06 1.961e-11 4.87
4913 4.294e-12 7.39 8.089e-11 7.69 2.328e-10 7.89
5832 5.126e-11 11.87 1.186e-10 11.78 1.004e-10 11.80
6859 1.600e-11 17.43 1.272e-11 17.57 1.163e-09 16.96
8000 7.867e-11 26.24 7.268e-11 25.72 5.347e-10 27.38

5.4 One-step HCPS with Constant Coefficient PDEs

In the Chapter 4, we employed two-step HCPS to solve various elliptic PDEs with constant
coefficients. On the other hand, one-step HCPS is employed to solve a large class of
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Figure 5.12: The computational domain of a bumpy-sphere and the distributions of the
boundary points on the surface of the bumpy-sphere.

PDEs including variable coefficients. The performance of one-step HCPS on constant
coefficients is also of particular interest. So, in this section, we explore the performance
of one-step HCPS on constant coefficient PDEs. First, we consider the Poisson equation
with Dirichlet boundary conditions (4.1) where f (x,y), and g(x,y) are generated from the
following analytical solution:

u(x,y) = cos(3x)− cos(3y).

Table 5.9 shows the numerical results for the amoeba-shaped, cassini-shaped, and star-
shaped domains. We used 250 boundary points and 120 test points for amoeba, star, and
cassini as usual. To avoid singularities when using the MFS, we distribute source points
on a circle of radius r outside the domain. By using the LOOCV method, the sub-optimal
source radii r for the cassini-shaped, star-shaped, and amoeba-shaped domains are 1.998,
1.502, and 1.492 respectively.

To demonstrate the applicability of one-step HCPS for solving PDEs with constant
coefficients, numerical experiment is performed in modified Helmholtz equation with the
same analytical solution as above in different irregular domains. Table 5.10 presents the
numerical result. For the MFS, the fictitious boundary where the source points are located
is chosen to have the same shape as that of the original boundary. The sub-optimal source
location is determined by the LOOCV which are 1.015, 1.023, and 1.034 for amoeba-shaped,
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Table 5.9: Maximum Absolute Error for Poisson Equation.
Nx=Ny Star Amoeba Cassini

10 4.252e-01 1.075e-01 2.029e-01
12 6.268e-03 1.767e-02 40118e-03
14 3.466e-04 2.507e-03 3.409e-04
16 5.138e-06 4.270e-04 1.162e-06
18 4.311e-07 1.006e-06 1.488e-08
20 6.482e-09 1.672e-08 3.607e-10
22 4.920e-10 3.536e-10 8.051e-11
24 5.902e-11 1.708e-11 2.363e-12
26 6.843e-12 4.298e-12 1.541e-12
28 1.722e-12 1.381e-12 7.308e-12
30 3.213e-111 5.269e-11 3.326e-11

Cassini-shaped and star-shaped domains respectively.

Table 5.10: Example 3: MAE for modified Helmholtz problem.
Nx=Ny Cassini Amoeba Star

10 4.711e-04 8.765e-02 3.179e-02
12 1.288e-05 1.396e-02 2.375e-03
14 2.546e-06 8.609e-03 1.249e-04
16 3.938e-08 3.742e-04 4.897e-05
18 4.311e-09 1.632e-05 1.488e-06
20 4.872e-10 7.067e-06 3.607e-07
22 4.920e-12 2.793e-07 8.051e-08
24 3.219e-13 1.008e-08 1.313e-09
26 1.548e-14 3.288e-09 5.151e-10
28 5.922e-15 1.801e-09 1.398e-11
30 3.103e-15 5.750e-10 2.386e-12

From the numerical results as shown in Tables 5.9, and 5.10, we conclude that one-step
HCPS is also applicable to PDEs with constant coefficients. The accuracy of one-step HCPS
for solving PDEs with constant coefficients is similar to the two-step HCPS.

5.5 Chebyshev Collocation Methods versus RBF Collocation Methods

The Kansa method [32, 33] is considered as an effective global RBF collocation method in
the meshless literature capable of solving various partial differential equations (PDEs). Chen
et al. [6, 7] proposed new globalized version of the method of particular solution (MPS).
After the notable development in this field for more than two decades, recently Monroe
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[50] employed one-stage MFS-MPS hybrid method to solve elliptic PDEs with variable
coefficients. All of these afore mentioned numerical scheme used radial basis functions
(Table 2.1) as a basis function. In this dissertation, we propose hybrid Chebyshev polynomial
scheme (HCPS) which utilize the Chebyshev collocation technique in which Chebyshev
polynomials are used as a basis function. In this section, we compare the performance of
our proposed numerical scheme HCPS with the RBF collocation methods such as the MPS
and one-stage MFS-MPS method. For the uniformity and consistency on the numerical
experiments, we have used 250 boundary points and 120 test points. Computational domain
is cassini-shaped domain with 374 interior points for the RBF collocation methods. While
using Chebyshev collocation method, the numerical accuracy is measured at different
Chebyshev nodes 14, 20, and 26. For the numerical experiment of one-step HCPS, MPS,
and MFS-MPS, we consider the boundary value problem (5.1) where f (x,y), and g(x,y) are
generated from the following analytical solution:

u(x,y) = ysin(πx)+ xcos(πy).

Table 5.11 shows the numerical results for the one-step HCPS and MPS. While im-
plementing MPS, we used Gaussian, MQ, and IMQ RBFs as a basis function. Next, we

Table 5.11: Comparison of HCPS and RBF Collocation Methods for Eq. (5.1).
One-step HCPS Cheby-nodes Max Abs Error

14 3.449e-05
20 1.343e-09
26 1.752e-13

MPS RBFs Max Abs Error
Gaussian 1.468e-06

MQ 2.740e-05
IMQ 4.456e-06

present the numerical result for the modified Helmholtz equation with Dirichlet boundary
condition for one-stage MFS-MPS scheme (Table 5.12). For this numerical experiment, 325
interior points, 250 boundary points and 120 test points are used for cassini-shaped domain
while utilizing one-stage MFS-MPS. Multiquadrics, inverse multiquadrics, and r7 radial
basis function are used in this case. The well-known LOOCV method is used to find the
sub-optimal shape parameter and source location.

In this last section, our goal is to compare the performance of hybrid Chebyshev polyno-
mial scheme (HCPS) over the radial basis function collocation methods. From the numerical
results of Table 5.11, we can easily observe that accuracy of three RBFs are almost same.
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Table 5.12: Comparison of HCPS and RBF Collocation Methods for modified Helmholtz
equation.

One-step HCPS Cheby-nodes Max Abs Error
14 2.546e-06
20 4.872e-10
26 1.548e-14

MFS-MPS RBFs Max Abs Error
r7 7.897e-07

MQ 3.260e-07
IMQ 2.272e-06

However, when compared to one-step HCPS, the highest numerical accuracy of RBFCM
is achieved in a less number of Chebyshev nodes. As the number of Chebyshev nodes in-
creases, HCPS is far superior than the RBF collocation methods. Similar kind of conclusion
can be drawn from the numerical result utilizing modified Helmholtz equation as shown
in Table 5.12. Similar results have been obtained for various differential equations. The
performance of one-step HCPS has proven to be superior than the MFS-MPS in term of
accuracy. However, one drawback of the one-step HCPS is that the Chebyshev interpolation
points need to extend to outside the domain which is not applicable for some problems.
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Chapter 6

SOLVING FOURTH ORDER PDES USING RADIAL BASIS
FUNCTION COLLOCATION METHOD

6.1 Introduction

Radial basis functions (RBFs) have played an important role for solving various partial
differential equations (PDEs) that arise in the field of science and engineering for more than
two decades. The main considerations for solving PDEs are accuracy, stability, efficiency
and simplicity. To fulfill these criteria, Edward Kansa [32, 33], developed the radial basis
function collocation method (RBFCM) which is known as the Kansa method. The Kansa
method has been successfully applied to solve many challenging problems in science and
engineering. Followed by several developments of meshless methods Chen et al. [6, 7]
proposed a new method called the method of approximate particular solutions (MAPS)
which uses the particular solution of RBFs to approximate the differential equation. The
main disadvantages of the RBF collocation method is related to the formation of full and
dense matrices that are very sensitive to the choice of the free shape parameter and the
difficulty in solving problems with a large number of unknowns. This is due to the use of
the radial basis function interpolation which increases the condition numbers of the related
matrices as the number of nodes increases. Many RBF collocation methods have been
developed to address the issues related to full, dense, and ill-conditioned matrices arising
from the global RBF collocation method. To mitigate the computational cost for large-scale
problems, Mai-Duy et al. [45] employed the domain decomposition method. In 2002,
Chen et al. [8] proposed a multi-grid approach using compactly supported RBFs. In recent
years, the localized version of RBF collocation methods such as the local Kansa method
(LKM) and the localized method of approximate particular solutions (LMAPS)[58, 66] have
been developed and widely used for solving large-scale problems. The main advantage of
the local version of the RBF collocation methods is the collocation on subdomains which
drastically reduces the collocation matrix size. These new methods are equally capable to
compete with the traditional mesh-based numerical methods, such as finite element and
finite difference methods.

Fourth order partial differential equations (PDEs) have a wide range of applications in
various fields of science and engineering. Some examples of physical flows and engineering
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problems modeled by fourth order PDEs are ice formation [52], fluids on lungs [29],
image processing for noise removal [44], etc. Yao et al. [67] compared three meshless
methods LMAPS, local direct RBF collocation method (LDRBFCM), and local indirect
RBF collocation method (LIRBFCM) for solving heat diffusion equations. In [67], authors
concluded that LMAPS and LIRBFCM had slightly better results. In this chapter, we focus
on RBF collocation methods for solving fourth-order PDEs in both global and local cases.
First, we use the Kansa method and the method of approximate particular solutions using
multiquadric (MQ) and inverse multiquadric (NMQ) radial basis functions. Here, we note
that the corresponding differentiations and integrations are required to obtain closed form
particular solutions of RBFs. Next, we employ the new approach for solving fourth-order
PDEs both locally and globally. Finally, direct RBFCMs and new RBFCMs are compared
for the approximation of functions.

6.2 Governing Equations

We consider a fourth-order PDE defined on a fixed domain Ω with boundary ∂Ω in 2D,

Lu(x,y) = f (x,y), (x,y) ∈Ω, (6.1)

Dirichlet boundary condition

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (6.2)

Neumann boundary condition

∂u(x,y)
∂n

= h(x,y), (x,y) ∈ ∂Ω, (6.3)

where
L= ∆

2 +α(x,y)
∂

∂x
+β (x,y)

∂

∂y
+ γ(x,y),

∆2 denotes the biharmonic operator, ∆ denotes the Laplace operator, ∂/∂n is the normal
derivatives on the boundary ∂Ω, and α , β , γ , f , g, h are given functions.

6.3 New Formulation for Fourth-order PDEs

In this approach, the formulation of the problem starts with the representation of ∆u = w,
then (6.1)–(6.3) will be reduced to the following system of equations:

∆w(x,y)+Lu(x,y) = f (x,y), (x,y) ∈Ω, (6.4)
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w−∆u = 0, (x,y) ∈Ω, (6.5)

where
L= α(x,y)

∂

∂x
+β (x,y)

∂

∂y
+ γ(x,y),

Dirichlet boundary condition

u(x,y) = g1(x,y), (x,y) ∈ ∂Ω, (6.6)

Neumann boundary condition

∂u(x,y)
∂n

= g2(x,y), (x,y) ∈ ∂Ω, (6.7)

where u(x,y), g1, and g2 are known. Let u = ψ(r) be a radial basis function, then ∆u = φ .
The important part of this formulation involves the approximation of the solutions u and

w with a linear combination of RBFs as shown below:

û(x) =
N

∑
i=1

aiψ(‖x− xi‖),

ŵ(x) =
N

∑
i=1

biψ(‖x− xi‖),

where {ai}N
i=1 and {bi}N

i=1 are coefficients to be determined. The above solutions u and w

can be written as û = [ψ][a] and ŵ = [ψ][b] which leads to [a] = [ψ]−1û and [b] = [ψ]−1ŵ.
So then, (6.4)-(6.7) reduce respectively to the following equations:[

α(x,y)
[

∂ψ

∂x

]
[ψ−1]+β (x,y)

[
∂ψ

∂y

]
[ψ−1]+ γ(x,y)

]
û+[φ ][ψ−1]ŵ = f , (6.8)

[φ ][ψ−1]û− ŵ = 0, (6.9)

û = g1, (6.10)[
∂ψ

∂x

]
[ψ−1]nx +

[
∂ψ

∂y

]
[ψ−1]ny = g2. (6.11)

Finally, we solve the above block matrix system to determine the unknown coefficients {ai}
and {bi}. Here, we observe that the size of this block matrix will be twice that of the direct
RBF collocation method.

6.3.1 RBFs and the Particular Solutions

In this work, the types of radial basis functions can be chosen as needed, but the correspond-
ing differentiations and integrations are required for the closed form particular solutions of
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RBFs in both global and local cases of Kansa method and MAPS. In this paper, we use the
normalized multiquadric (NMQ) RBF

ψ(r) =
√

ε2r2 +1

in 2D and the corresponding related functions listed below. For the Kansa method, the
derivation of the particular solution for the Laplacian is given by,

∆ψ(r) =
ε2(ε2r2 +2)

(ε2r2 +1)
3
2
.

For the direct RBF collocation method, by direct differentiation we have,

∆
2
ψ(r) =

ε4(ε4r4 +8ε2r2−8)

(ε2r2 +1)
7
2

.

For the Neumann B.C., we have

1
r

∂ψ

∂ r
=

ε2√
1+(εr)2

.

For the method of approximate particular solutions (MAPS), the derivation of particular
solutions for the Laplacian by inverse differentiation is given by [50],

φ =
1
9

r2
√

1+ ε2r2 +
4

9ε2

√
1+ ε2r2− 1

3ε2 log(
√

1+ ε2r2 +1).

For the Neumann B.C., we have

1
r

∂φ

∂ r
=

2
√

1+ ε2r2 + ε2r2(
√

1+ ε2r2 +1)+1
3(ε2r2 +

√
1+ ε2r2 +1)

.

For the Biharmonic operator [50],

φ =
4r2

75ε2

√
1+ ε2r2 +

r2

12ε2 −
61

900ε4

√
1+ ε2r2

− r2

12ε2 log(
√

1+ ε2r2 +1)+
r4

225

√
1+ ε2r2 +

log(
√

1+ ε2r2 +1)
30ε4 .

For the Neumann B.C., we have

1
r

∂φ

∂ r
=

11
90ε2

√
1+ ε2r2− 2log(

√
1+ ε2r2 +1)−1

12ε2

+
17r2

450
√

1+ ε2r2
+

10ε2r4 + 15
ε2(
√

1+ε2r2+1)
+8r2

450
√

1+ ε2r2
.
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6.4 Numerical Results

To verify the effectiveness of the new approach for solving fourth order PDEs, two numerical
examples are presented. We have compared the results in terms of accuracy implementing
the Kansa method directly and with the new formulation employed in this paper both
globally and locally. The multiquadric (MQ) is used as a basis function. The normalized
form of MQ, which is called normalized the multiquadric (NMQ) has also been used as a
basis function. We have also compared the errors of MQ and NMQ with the shape parameter
ε . We use the leave-one-out cross validation (LOOCV) algorithm [56] to find a suitable
shape parameter ε for MQ. Direct KANSA and New KANSA respectively represent the
results obtained by using the Kansa method directly and by the new formulation employed
in this paper in the global case. Direct LKANSA and New LKANSA respectively represent
the corresponding results for the local case. Direct MAPS, New MAPS, Direct LMAPS,
and New LMAPS are defined similarly for the method of approximate particular solutions
both in global and local cases.

To validate the numerical accuracy, we calculate the following root mean square error
(RMSE),

RMSE =

√√√√1
q

q

∑
j=1

(û j−u j),

where q is the number of testing nodes chosen randomly in the domain, u j and û j denote
the exact solution and approximate solution at the jth node, respectively. In the numerical
results, ni and nb respectively represent the number of interior and boundary points.

6.4.1 Example 1

We consider the following partial differential equation with mixed boundary conditions:

Lu(x,y) = f (x,y), (x,y) ∈Ω, (6.12)

u(x,y) = sin(πx)cosh(y)− cos(πx)sinh(y), (x,y) ∈ ∂Ω,

∂u(x,y)
∂n

= g(x,y)ṅnn, (x,y) ∈ ∂Ω,

where
L = ∆

2 + x2y3 + ycos(y)
∂

∂x
+ sinh(x)

∂

∂y
,

and ṅnn is the unit normal vector. f (x,y) and g(x,y) are generated from the analytical solution:

u(x,y) = sin(πx)cosh(y)− cos(πx)sinh(y).
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The computational domain Ω as shown in Figure 6.1 is bounded by the curve defined by the
parametric equation:

∂Ω = {(x,y)|x = ρ cosθ ,y = ρ sinθ , 0≤ θ ≤ 2π},

where
ρ = esinθ sin2(2θ)+ ecosθ cos2(2θ).

−1 0 1 2

−1

−0.5

0

0.5

1

1.5

2

X

Y

Figure 6.1: Amoeba-shaped Domain.

Table 6.1: RMSE for New LMAPS and Direct LMAPS.
New LMAPS Direct LMAPS

(ni,nb) RMSE CPU Time ε RMSE CPU Time ε

(3809,500) 2.330e-03 5.95 1.52 9.030e-03 4.19 1.62
(15254,500) 2.630e-05 25.29 1.87 4.950e-03 15.40 1.65
(23850,500) 9.510e-06 40.13 2.54 2.770e-02 23.82 3.10

We list in Table 6.1 the numerical results for the LMAPS with Ω being an amoeba-shape
domain. Numerical accuracy between New LMAPS and Direct LMAPS is almost the same
for a small number of interior nodes. However, as the number of interior nodes increases,
the New LMAPS is far superior than the direct one. Due to the large size of the matrix in the
new formulation, the computational cost is slightly higher than the Direct LMAPS, which
seems reasonable. The number of interior points is taken up to 23,850 with 500 boundary
points with an accuracy of 9.510×10−6 which is promising. We chose 21 nodes in the local
domain. The stability of the normalized MQ as depicted in Figure 6.2 enables us to find
the stable solution in the New LMAPS by LOOCV. We observe the same kind of stability
behavior in the Direct LMAPS as shown in Figure 6.3.
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Figure 6.2: MQ versus NMQ in New LMAPS.

Table 6.2: RMSE for New LKANSA and Direct LKANSA using NMQ.
New LKANSA Direct LKANSA

(ni,nb) RMSE ε RMSE ε

(3809,500) 3.673e-01 3.72 4.269e-02 2.36
(15254,500) 4.451e-04 4.67 1.227e-02 2.31
(23850,500) 6.311e-04 5.74 3.438e-02 3.11

We compare the numerical accuracy of the new local Kansa method and direct local
Kansa method in Table 6.2 with the same number of computational nodes as in Table 6.1.
From the numerical results, we can easily observe that the new approach performed better
than the direct one. Moreover, in this paper we wanted to compare the performance of NMQ
over MQ. From Figures 6.2 and 6.3, we can easily observe that NMQ seems to have more
stable results as compared to the results obtained from MQ.

Table 6.3: RMSE for New MAPS and Direct MAPS using NMQ.
New MAPS Direct MAPS

(ni,nb) ε RMSE ε RMSE
(60,30) 0.40 4.277e-04 0.35 1.361e-03

(126,60) 0.61 1.089e-04 0.71 5.600e-04
(208,90) 0.91 3.696e-05 1.41 1.665e-04

(507,180) 1.72 4.204e-05 2.47 1.056e-04
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Tables 6.3 and 6.4 show the numerical results for the global RBF collocation methods
such as Kansa method and MAPS. We compared the numerical accuracy between the new
formulation and direct ones. We tested 60,126,208, and 507 different interior points for
the amoeba-shape domain. When we increased the number of computational nodes, the
new formulation performed better than the direct ones in both cases. In this case, we
used 507 interior points, 180 boundary points, and 300 test points. The new MAPS has
accuracy of 4.204×10−5 at shape parameter 1.72 and the new Kansa method has accuracy
of 4.050× 10−5 at shape parameter 1.32 which is at least one order of accuracy better
than the corresponding direct ones for 507 interior nodes and 180 boundary nodes. From
this observation, we can easily say that this new approach is equally suitable for global
collocation methods also.
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Figure 6.3: MQ versus NMQ in Direct LMAPS.

Table 6.4: RMSE for New KANSA and Direct KANSA using NMQ.
New KANSA Direct KANSA

(ni,nb) ε RMSE ε RMSE
(60,30) 0.30 1.666e-04 0.71 2.304e-02
(126,60) 0.56 1.752e-04 0.91 1.583e-03
(208,90) 0.81 9.363e-05 1.01 2.411e-04

(507,180) 1.36 4.050e-05 1.01 1.474e-04
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6.4.2 Example 2

We consider the following convection-diffusion equation:

Lu(x,y) = f (x,y), (x,y) ∈Ω, (6.13)

u(x,y) = ysin(x)+ xcos(y), (x,y) ∈ ∂Ω,

∆u(x,y) = g(x,y), (x,y) ∈ ∂Ω,

where
L = ∆

2 + xy+2ysin(x)
∂

∂x
− ycos(x)

∂

∂y
,

f (x,y) and g(x,y) are generated from the analytical solution:

u(x,y) = ysin(x)+ xcos(y).

The computational domain is bounded by the following peanut-shaped parametric curve as
shown in Figure 6.4 :

∂Ω = {(x,y)|x = ρ cosθ ,y = ρ sinθ , 0≤ θ ≤ 2π},

where
ρ =

(
cos(2θ)+

√
(1.1− sin2(2θ))

)
.
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Figure 6.4: Peanut-shaped Domain.

In Tables 6.5 and 6.6, we compared the numerical results of global RBF collocation
methods. In this example, we tested fewer computational nodes as compared to the previous
example. For the Kansa method, just by using 293 interior points and 120 boundary points,
the accuracy for the new Kansa method is 3.059× 10−7. Similar accuracy is obtained
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for the new MAPS with the same number of computational nodes. Due to the smooth
boundary of the peanut-shape domain, the accuracy shows an improvement compared to the
amoeba-shape domain which we can observe from the numerical results. In this example
also, we observed that the new method performed at least one order of accuracy better than
the direct ones. Moreover, from the result, we see that the accuracy is improving quickly as
the number of interior and boundary nodes increases.

Table 6.5: RMSE for New KANSA and Direct KANSA using NMQ.
New KANSA Direct KANSA

(ni,nb) ε RMSE ε RMSE
(25,20) 0.20 2.204e-06 0.22 4.656e-04
(145,60) 0.07 2.552e-07 0.36 8.398e-06

(293,120) 0.12 3.059e-07 0.37 8.111e-06

Table 6.6: RMSE for New MAPS and Direct MAPS using NMQ.
New MAPS Direct MAPS

(ni,nb) ε RMSE ε RMSE
(25,20) 0.25 3.394e-06 0.20 5.315e-05

(145,60) 1.01 2.541e-07 0.43 7.622e-06
(293,120) 1.62 2.047e-07 0.86 6.248e-06

The numerical results of the fourth-order convection-diffusion equation for local Kansa
method and local MAPS are listed in Tables 6.7 and 6.8, respectively. In this example, we
used 15 points in the local subdomain. To solve this Dirichlet problem, we used different
numbers of interior and boundary nodes using the normalized MQ. Here we can observe that
for only 1602 interior points and 80 boundary points, the accuracy for the new local Kansa
method and direct local Kansa method are 1.761× 10−6 and 4.584× 10−4, respectively,
which are considerably good. As we increase the interior and boundary nodes the accuracy
reaches 2.144×10−7 for the new local Kansa method, which is even better than the new
LMAPS. From this numerical result we can assert that the new approach is equally applicable
for the convection-diffusion equation.

6.5 Conclusions

Solving fourth-order PDEs with high accuracy and efficiency is not an easy task. By using
an intermediate step to reduce fourth-order PDEs to second-order PDEs, we successfully im-
plemented the new approach to solve various PDEs including convection-diffusion equations.
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Table 6.7: RMSE for New LKANSA and Direct LKANSA using NMQ.
New LKANSA Direct LKANSA

(ni,nb) ε RMSE ε RMSE
(1602,80) 1.11 1.761e-06 0.51 4.584e-04

(2024,120) 0.91 1.010e-06 0.40 1.841e-04
(2508,180) 1.01 2.144e-07 0.35 1.039e-04

Table 6.8: RMSE for New LMAPS and Direct LMAPS using NMQ.
New LMAPS Direct LMAPS

(ni,nb) ε RMSE ε RMSE
(1602,80) 1.31 1.896e-06 0.66 1.088e-04

(2024,120) 1.62 1.059e-06 0.71 4.083e-05
(2508,180) 1.62 8.752e-07 0.10 5.458e-05

Numerical results show that the new formulation of RBF collocation methods outperformed
the direct RBF collocation methods both in global and local cases. Here, we would like
to emphasis the fact that the matrix size in the new formulation is twice that of the direct
formulation, however, it is still efficient and accurate. From the numerical results, we
observe that the new formulation has at least one order of accuracy better than the direct
ones. Moreover, the use of the normalized MQ seems to have very stable results compared
to the results obtained by MQ. LOOCV is able to catch the optimal shape parameter due to
the stability of the normalized MQ even in the local case.
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Chapter 7

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

It is well-known that Chebyshev polynomials are valuable tools in the numerical analysis
and approximation theory. In particular, they are widely used in the numerical solution of
boundary value problems for partial differential equations with spectral methods. In this
dissertation, hybrid Chebyshev polynomial scheme (HCPS) is proposed which is applied
in one-step approach and two-step approach to solve various types of partial differential
equations.

In two-step HCPS approach, first, Chebyshev polynomials are used to approximate a
particular solution of a PDE. Then, the resulting homogeneous equations are solved by
boundary type methods including the method of fundamental solution (MFS) and the collo-
cation Trefftz method (CTM). Although radial basis functions (RBF) such as multiquadrics
(MQ), inverse multiquadrics (IMQ), Gaussian have been used as candidates for approxi-
mating particular solutions in meshless methods, they often suffer from the ill-conditioned
problem. In general, the matrix we obtain while using the CTM is ill-conditioned. So, proper
care should be given while solving the system. Equilibrated collocation Trefftz method is
employed in this dissertation to address the ill-conditioning of the CTM. Due to the nature
of the Chebyshev polynomials, this numerical scheme can be easily extended to problems in
high-dimensional spaces. This method was successfully tested on second and fourth order
elliptic PDEs with constant coefficients in various irregular domains.

On the other hand, one-step hybrid Chebyshev polynomial scheme can be applied to
solve even more larger class of PDEs. In this method, two matrix systems in the two-step
HCPS is combined into a one-step only. The solution is approximated by the sum of
the particular solution and homogeneous solution. Chebyshev polynomials are used to
approximate a particular solution of a PDE. Various elliptic PDEs with variable coefficients
were successfully solved by this method. Numerical results show that both approaches are
highly accurate, stable, and efficient.

In spite of the simplicity and accuracy of the both proposed methods, they have their own
limitations like many other numerical techniques. To apply this method, it is assumed that
the forcing term f (x,y) can be smoothly extended to a rectangular domain which contains
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the given domain. Otherwise, the basis functions that work for scattered data is more
appropriate for finding particular solutions.

It is highly challenging task to develop a numerical method which is highly accurate,
stable, and efficient. The performance of this proposed method is far better than the
similar methods in the meshless literature such as two-stage MFS-MPS, one-stage MFS-
MPS and the Kansa method. We compared the numerical accuracy of the radial basis
function collocation methods and the Chebyshev collocation method in this dissertation.
The ill-conditioning of the matrix if it occurs is due to the MFS and the CTM. However,
proper care was given in this dissertation to alleviate that problem. There is no problem of
ill-conditioning while using Chebyshev polynomials.

The MFS and the CTM are highly accurate boundary alone meshless methods. In this
dissertation, the performance of the MFS and the CTM is compared in various elliptic
PDEs. Numerical examples showed that the performance of the CTM is slightly better
than the MFS. It is always a challenging task to implement a numerical scheme in higher
dimensions. Hybrid Chebyshev polynomial scheme is successfully employed in three
dimensional domains such as Stanford Bunny, unit sphere, double-sphere, and bumpy-
sphere. Our numerical scheme is also implemented to solve Cauchy-Navier equations of
elasticity in the unit square. The merits of using hybrid Chebyshev polynomial scheme in
this dissertation are summarized as follows:

• the convergence rate of MFS-MPS method is highly improved due to the use of
Chebyshev polynomials.

• the use of Chebyshev polynomials addressed the problem of ill-conditioning which
often occurs when RBFs are used.

• the numerical accuracy by this method is much higher than that by any other RBF
techniques.

• the proposed scheme can even handle a matrix size upto 27000×27000, with a good
accuracy which indeed is a big achievement.

7.2 Future Works

Hybrid Chebyshev polynomial scheme (HCPS), introduced in this dissertation can be used
for solving large class of problems in science and engineering. To verify the accuracy of the
proposed numerical method, various numerical examples were performed and compared
with the similar RBF methods in the literature. Standing on the sound theoretical background
of the Chebyshev polynomials, the following topics are of particular interest:
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• Time dependent partial differential equations (PDEs) are another large class of prob-
lems in science and engineering. One-stage MFS-MPS has already been applied to
solve various time dependent problems. So, two-step and one-step hybrid Chebyshev
polynomial scheme (HCPS) can also be extended to solve various time dependent
problems.

• Most recently, Nath et al. [53] used one-stage MFS-MPS for the steady Navier-Stokes
equations in a lid-driven cavity. We expect to implement our numerical scheme to
solve similar problems in fluid dynamics and other related fields.

• Many fluid dynamic problems and other real world physical phenomena are mostly
modeled by nonlinear PDEs. The collocation techniques employed in this proposed
method suggests that this method can be available for the solution of many nonlinear
PDEs, if the currently documented efficiency can be maintained.

• Many numerical schemes are developed to solve axisymmetric problems. Standing on
the well documented theory and spectral convergence of the Chebyshev polynomials,
we are very optimistic to implement our numerical scheme to solve axisymmetric
problems.

• In this dissertation, we successfully used Chebyshev polynomials as a basis function
to approximate the particular solution of a PDE. There are other othogonal polyno-
mials such as Jacobi polynomials, Laguerre polynomials, Hermite polynomials, and
Legendre polynomials which have been widely used in Mathematics for years. So, the
viability of using these orthogonal polynomials in this numerical work is our future
project.

• Finally, issues of convergence, efficiency, consistency, and stability remain to be
analyzed. However, HCPS is proven to be a highly accurate, stable, and very efficient
global method to solve various elliptic PDEs. So, to handle a large number of data
sets and a wide variety of PDEs, devising localized methods of our numerical scheme
is our future goal.
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