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ABSTRACT

FAST METHOD OF PARTICULAR SOLUTIONS

FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS

by Anup Raja Lamichhane

December 2016

Method of particular solutions (MPS) has been implemented in many science and

engineering problems but obtaining the closed-form particular solutions, the selection of the

good shape parameter for various radial basis functions (RBFs) and simulation of the large-

scale problems are some of the challenges which need to be overcome. In this dissertation,

we have used several techniques to overcome such challenges.

The closed-form particular solutions for the Matérn and Gaussian RBFs were not known

yet. With the help of the symbolic computational tools, we have derived the closed-form

particular solutions of the Matérn and Gaussian RBFs for the Laplace and biharmonic

operators in 2D and 3D. These derived particular solutions play an important role in solving

inhomogeneous problems using MPS and boundary methods such as boundary element

methods or boundary meshless methods.

In this dissertation, to select the good shape parameter, various existing variable shape

parameter strategies and some well-known global optimization algorithms have also been

applied. These good shape parameters provide high accurate solutions in many RBFs

collocation methods.

Fast method of particular solutions (FMPS) has been developed for the simulation of

the large-scale problems. FMPS is based on the global version of the MPS. In this method,

partial differential equations are discretized by the usual MPS and the determination of the

unknown coefficients is accelerated using a fast technique. Numerical results confirm the

efficiency of the proposed technique for the PDEs with a large number of computational

points in both two and three dimensions. We have also solved the time fractional diffusion

equations by using MPS and FMPS.
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Chapter 1

Introduction

Various partial differential equations (PDEs) are used to describe physical phenomena. It is
very difficult to obtain the analytical solution of most PDEs, so many numerical methods
have been developed to find the approximate solutions of PDEs [62]. Generally, all of these
methods can be categorized into two types, namely, mesh and meshless (meshfree) methods.
In the book, “MESHFREE METHODS-Moving Beyond the Finite Element Method [66]”,
the author G. R. Liu described mesh and meshless method as

“Any of the open spaces or interstices between the strands of a net that is formed by

connecting points in a predefined manner. In FDM, the meshes used are also often called

grids; in the FVM, the meshes are called volumes or cells; and in FEM, the meshes are

called elements [66].”

“The meshfree method is a method used to establish system of algebraic equations for

the whole problem domain without the use of a predefined mesh for the domain discretization

[66].”

The most popular and well-established numerical methods such as finite element method
(FEM) [66, 69, 114], finite difference method (FDM) [56, 66], and finite volume method
(FVM) [61, 66] are mesh based methods, while meshless methods, smooth particle hydro-
dynamics (SPH) [66, 68], element free Galerkin method (EFG) [10, 66], meshless local
Petrov-Galerkin method (MLPG) [8], reproducing kernel particle method (RKPM) [71],
and radial basis function (RBFs) collocation methods [6, 20–25, 33, 53, 58–60, 62] etc. are
still under rapid development. Most of the meshless methods including RBFs collocation
methods are easy to implement, efficient, and truly meshfree. For details of these and other
meshless methods, we refer to [26, 62, 66, 67].

There are several RBFs collocation methods including Kansa method [53, 62], method of
particular solutions (MPS) [23, 24, 60], and method of fundamental solutions (MFS) coupled
with RBFs method such as MFS-MPS [21, 22, 33, 62]. All of these RBFs collocation
methods use the radial basis functions (RBFs) to solve the PDEs. These RBFs can be
formally defined as following:

Definition 1.0.1 ([35]). A function ϕ : Rn → R is called radial provided there exists a
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univariate function φ : [0,∞)→ R such that

ϕ(x) = φ(r), where r = ‖x‖,

and ‖.‖ is some norm on Rn- usually the Euclidean norm.

In the Table 1.1, we can see the list of most commonly used RBFs.

Table 1.1: List of the most commonly used RBFs, where c > 0 is known as shape parameter,
n ∈ Z+ and Kn is the modified Bessel function of the second kind of order n.

RBFs φ(r)

Polyharmonic splines in 2D r2n log(r)

Polyharmonic splines in 2D and 3D r2n−1

Multiquadrics (MQ)
√

r2 + c2

Inverse multiquadrics (IMQ)
1√

r2 + c2

Gaussian exp(−cr2)

Matérn φ(r) = (cr)nKn(cr)

During the past two decades, RBFs have been widely applied for solving various PDEs.
In 1990, Kansa [53] proposed the so-called RBFs collocation method which is also known
as Kansa method for solving computational fluid dynamic problems. One of the attractions
of the Kansa method is its simplicity for solving problems in high dimensions and complex
geometries. Due to the popularity of the Kansa method, several other RBFs collocation
methods have been proposed in the RBFs literature. Among them, MPS [23, 24] is another
effective RBFs collocation method which uses the particular solutions of the given RBFs.

In recent years, the MPS [23, 24] has been developed as an alternative to the Kansa
method. Each method has its own limitations. A comparison of these two methods has been
given in [108]. In the next section, we present a brief review of the MPS.
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1.1 Method of particular solutions (MPS)

Let us consider the following boundary value problem

Lu(xxx) = f (xxx), xxx ∈Ω, (1.1)

Bu(xxx) = g(xxx), xxx ∈ ∂Ω, (1.2)

where L is a differential operator, B is a boundary differential operator, f (xxx) and g(xxx) are
known functions, Ω and ∂Ω are the interior and boundary of the computational domain,
respectively. Some of the computational domains that we have used for the numerical tests
are depicted in the Figures 2.3 and 3.4.

Suppose {xxxi}N
i=1 are the interpolation points containing ni interior points in Ω and nb

boundary points on ∂Ω; i.e., N = ni +nb. Let φ be a given radial basis function.

1.1.1 Global method

The method of particular solution (MPS) [24] is used for the discretization of the (1.1)
and (1.2). By MPS, instead of approximating the field variable u by a linear superposition
of the RBFs, we assume the solution to (1.1) and (1.2) can be approximated by a linear
superposition of the corresponding particular solutions of the given RBFs such as

u(x)≈ û(x) =
N

∑
j=1

α jΦ(‖xxx− xxx j‖), (1.3)

where ‖ · ‖ is the Euclidean norm, {α j} are the undetermined coefficients, and

LΦ = φ . (1.4)

Note that, if L is a more general differential operator such as

L= k∆+ l(xxx)
∂

∂x
+m(xxx)

∂

∂y
+n(xxx), (1.5)

where k is a constant, l(xxx), m(xxx) and n(xxx) are variable coefficients, then we approximate u

by a linear superposition of the particular solutions of the RBFs obtained from the Laplace
or biharmonic operator. i.e.,

∆Φ = φ .

By the collocation method, from (1.1) and (1.2), we have

N

∑
j=1

α jφ
(
‖xxxiii− xxx j‖

)
= f (xxxiii), 1≤ i≤ ni, (1.6)

N

∑
j=1

α jΦ
(
‖xxxiii− xxx j‖

)
= g(xxxiii), ni +1≤ i≤ N. (1.7)
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From (1.6) and (1.7), we can formulate a linear system of equations

Aααα = F, (1.8)

where
A =

[
φφφ

ΦΦΦ

]
,

φφφ =
[
φ
(
‖xxxiii− xxx j‖

)]
i j , 1≤ i≤ ni, 1≤ j ≤ N,

ΦΦΦ =
[
Φ
(
‖xxxkkk− xxx j‖

)]
k j , ni +1≤ k ≤ N, 1≤ j ≤ N,

ααα = [α1 α2 · · · αN ]
T ,

F = [ f (xxx1) · · · f (xxxni) g(xxxni+1) · · · g(xxxN)]
T .

For a more general form of the PDEs which involves a general differential operator L as
in (1.5), we have [23]

N

∑
j=1

α j(kφ
(
‖xxx− xxx j‖

)
+l(xxx)Φx

(
‖xxx− xxx j‖

)
+m(xxx)Φy

(
‖xxx− xxx j‖

)
+n(xxx)Φ

(
‖xxx− xxx j‖

)
)= f (xxx).

(1.9)
Once {α j} are known, the approximate solution û can be evaluated at any point in the
domain using (1.3).

1.1.2 Localized method

The localized version of the MPS is known as the localized method of particular solutions
(LMPS) [106, 107]. By LMPS, the solution to (1.1) and (1.2) can be approximated by a
localized formulation

u(xs)≈ û(xs) =
n

∑
k=1

α
[s]
k Φ

(
‖xxxs− xxx[s]k ‖

)
, (1.10)

where n is the number of nearest neighboring points {x[s]k }
n
k=1 of the corresponding collo-

cation points xs, {α [s]
k }

n
k=1 are the unknown coefficients to be determined, and Φ is as in

(1.4).
From equation (1.10), using the n neighboring collocation points, we obtain the following

linear system
û[s] = ΦΦΦααα

[s], (1.11)
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where

ααα
[s] =

[
α
[s]
1 ,α

[s]
2 , · · · ,α [s]

n

]T
,

û[s] =
[
û(x[s]1 ), û(x[s]2 ), · · · , û(x[s]n )

]T
,

ΦΦΦ =
[
Φ

(
‖x[s]j −x[s]k ‖

)]
jk
, 1≤ j ≤ n, 1≤ k ≤ n.

It can be proved that ΦΦΦ is non-singular such that the unknown coefficients in (1.11) can
be written as

ααα
[s] = ΦΦΦ

−1û[s].

So, the approximate solution û[s] in (1.10) can be rewritten in terms of the given nodal values
û[s] as

u(xs)≈ û(xs) =
n

∑
k=1

α
[s]
k Φ

(
‖xxxs− xxx[s]k ‖

)
= Φ̂ΦΦ

[s]
ααα

[s]

= Φ̂ΦΦ
[s]

ΦΦΦ
−1û[s]

= ΨΨΨ
[s]û[s],

(1.12)

where

Φ̂ΦΦ
[s]
=
[
Φ

(
‖xxxs− xxx[s]1 ‖

)
,Φ
(
‖xxxs− xxx[s]2 ‖

)
, · · · ,Φ

(
‖xxxs− xxx[s]n ‖

)]
,

and

ΨΨΨ
[s] = Φ̂ΦΦ

[s]
ΦΦΦ
−1.

Note that we have n << N. So if we reformulate (1.12) in terms of û(x j) at all collocation
points, it has

û[s] = ΨΨΨuuu, (1.13)

where ΨΨΨ is a N×N sparse matrix only having N×n nonzero elements. Substituting (1.13)
into (1.1) and (1.2) yields [

LΨΨΨ

BΨΨΨ

]
ûuu = FFF . (1.14)

Then solving the above linear system, we can determine the required approximate solution.
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For more information of numerical implementation using the MPS and LMPS, we refer
readers to [23, 24, 107].

MPS and LMPS have been successfully implemented in many science and engineering
problems such as Navier-Stokes equations [13, 14], Stokes flow problems [15], incom-
pressible viscous flow field problems [65], linear elasticity equations [12], time fractional
diffusion equations [40, 105], anisotropic elliptic problems [113], wave equations [57], in-
verse problem of nonhomogeneous convection-diffusion equations [51], diffusion equation
with non-classical boundary [2] and nonhomogeneous Cauchy problems of elliptic PDEs
[64] and so on. For details of these and other applications, we refer to [13, 14, 40, 51, 63–
65, 101, 102, 105, 113].

1.2 Synopsis

Although, MPS has been implemented for solving various PDEs, obtaining the closed-
form particular solutions, the selection of the good shape parameter for various RBFs, and
simulations of the problems which involve large number of interpolation points have been
always a daunting task. In this dissertation, several techniques have been proposed to address
these issues. A brief outline of the dissertation is as follows:

• Closed-form particular solutions: One of the key procedures in the implementation
of the MPS is to obtain the closed-form expression for the particular solutions of the
corresponding RBFs. Among various types of meshless methods using RBFs, MPS,
LMPS, and MFS-MPS are the meshless collocation methods which require the use of
closed-form particular solutions as the basis functions in the solution process. Hence,
the closed-form particular solutions become the core of these particular solutions
based meshless methods. The importance of the closed-form particular solutions to
the above mentioned RBF-based meshless methods is analogous to the fundamental
solutions to the boundary element methods. The derivation of the particular solutions
for the well-known RBFs has already been known [28, 43, 80, 97–99]. In the past,
among most commonly used RBFs, only MQ and IMQ were used in the MPS due to
availability of the particular solutions. Recently, the closed-form particular solutions
using the Gaussian [58] and Matérn [59] have been obtained for different operators
and implemented numerically to solve the boundary value problems using the MPS
and LMPS. In Chapter 2, we present the closed-form particular solutions for the
Laplace and biharmonic operators using the Matérn and Gaussian RBFs [58, 59]. The
derived particular solutions are implemented numerically to solve boundary value
problems using the MPS and LMPS in Sections 2.3 and 3.3.
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• Selection of the good shape parameter: The accuracy and stability of the solution
of the most of the RBFs collocation methods depend on the choice of the shape
parameter of the RBFs. In the RBFs literature, extensive research has been done
on choosing good shape parameter for better accuracy and stability of the solution.
Many researchers have proposed various strategies to select the shape parameter. In
this dissertation, we have used well-known Leave-one-out cross validation (LOOCV)
[36, 86] to find the good constant shape parameter for the Gaussian RBFs and its
corresponding closed form particular solutions in Section 3.3.

Previously, the research was only focused on the constant shape parameter but nowa-
days several research are focused on the variable shape parameter. In fact, it has
been shown in several works, including [16, 49, 52–54], that variable shape parameter
produces more accurate results than if a constant shape parameter is used for the RBFs
collocation methods like Kansa method.

As far as the knowledge of the authors, variable shape parameter has not been used
yet in the MPS, so in this research work we have implemented some popular variable
shape parameter strategies in the MPS. Also, we propose some new strategies to
obtain the good shape parameter and implement in the MPS. Although, the numerical
examples given in the Section 3.4 only validate the proposed strategies for the MPS,
it can be easily implemented in any other RBFs collocation methods. In Section 3.2,
we discuss about the well-known variable shape parameter strategies and also we
introduce some of the new strategies. Numerical examples to validate the existing and
new strategies for the MPS are presented in Section 3.4.

• Simulations of the large scale problems: As we have discussed earlier, MPS has
been applied for solving various science and engineering problems. These kind
of challenging problems involve a large number of interpolation points. The high
computational cost using traditional solvers has become an issue. In this research
work, we pay special attention on how to develop a fast algorithm to alleviate the issue
of high cost for solving large-scale problems using the MPS. Consequently, in Chapter
4, we present the fast method of particular solutions (FMPS) [60] where we propose to
couple the MPS with fast summation method (FSM) [38] to reduce the computational
time by multiplying a matrix and a vector in each step inside the iterative method.
This FSM is based on the Chebyshev interpolation [38]. To demonstrate the efficiency
of the proposed method, two numerical examples in 2D and 3D are given in Section
4.3.
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• Application of the FMPS: In Chapter 5, we implement FMPS [60] for solving
time fractional diffusion equations [19, 72, 81, 84, 110]. We use Laplace transform
techniques [41, 78] to transform the time dependent problem into the time independent
problem. Then, we implement MPS, FMPS to approximate the solution of the time
independent problem in the Laplace space. Finally, we use Talbot algorithm [1] which
is a numerical inverse Laplace transform (NILT) algorithm [1, 93] to retrieve the
numerical solutions of the time fractional diffusion equations from the Laplace space.
Section 5.1 introduces the numerical method for solving time fractional diffusion
equations and numerical results are presented in Section 5.2.
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Chapter 2

The closed-form particular solutions for Laplace and bi-harmonic
operators using radial basis functions

Particular solutions play a critical role in solving inhomogeneous problems using boundary
methods such as boundary element methods or boundary meshless methods. In the literature
of the boundary element method, the Dual Reciprocity Method (DRM) [83] has been
developed to avoid the domain integration. To successfully implement the DRM, a closed-
form particular solution is essential. A great deal of effort has been devoted to derive the
closed-form particular solution using RBFs [28, 80, 99]. In the RBFs literature, the closed-
form particular solutions using MQ, polyharmonic splines, and compactly supported RBFs
have been derived for the above mentioned particular solutions based meshless collocation
methods [28, 43, 80, 99]. The list of the particular solutions of the most commonly used
RBFs can be found in the Appendix A.

In this chapter, we present closed-form particular solutions of Matérn [59] and Gaussian
[58] RBFs for the Laplace and biharmonic operator in 2D and 3D. These derived particular
solutions are also essential for the implementation of the MPS, LMPS, MFS-MPS etc. for
solving various types of PDEs. The role of the particular solutions in these methods is
similar to that of the fundamental solutions in boundary element methods. The task of
obtaining closed-form particular solutions is often non-trivial. During the past two decades,
significant progress has been made in deriving closed-form particular solutions using RBFs
[28, 43, 58, 80, 99]. Once the particular solutions of the given linear elliptic PDEs are
available, these methods can be easily implemented. Numerical examples in 2D and 3D
are given to demonstrate the effectiveness of the derived particular solutions. All of the
derivations presented in this chapter are published in [58, 59].

2.1 Matérn radial basis functions

Matérn RBFs [11, 73, 94, 103] are a family of functions that are defined based on the
modified Bessel functions of the second kind of different orders. Consider the Matérn RBFs

φν(r) =
21−ν

Γ(ν)
(cr)νKν(cr), (2.1)
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where Kν is the modified Bessel function of the second kind (sometimes also called the
modified Bessel function of the third kind, or MacDonald’s function) of order ν > 0 and
c > 0. If ν is of the form n+1/2 where n is a nonnegative integer, then (2.1) reduces to the
product of a polynomial of degree n in (cr) and exp(−cr); i.e.,

φn+1/2(r) =
(cr)n exp(−cr)

(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!(2cr)k , (2.2)

where

n!! =


n · (n−2)...5 ·3 ·1, n : positive odd integer,
n · (n−2)...6 ·4 ·2, n : positive even integer,
1, n =−1,0.

A list of Matérn functions for various ν are given as follows:

ν = 1/2, φ(r) = exp(−cr),

ν = 1, φ(r) = crK1(cr),

ν = 3/2, φ(r) = (1+ cr)exp(−cr),

ν = 5/2, φ(r) = (1+ cr+ c2r2/3)exp(−cr).

In the early statistical literature [73, 94], these functions were used as correlation functions
and there are still many authors using them [46]. Lately, the Matérn correlation functions
have attracted attention in the machine learning community [85, 91]. It has been sometimes
called the Basset family, the Bessel model, the generalized Markov model, the Whittle-
Matérn class, the Whittle model and the von Karman class [46]. In RBFs literature [11,
35, 79], Matérn RBFs are described as positive definite RBFs which have been considered
as alternatives for other RBFs such as Gaussians, MQ, and IMQ due to the high condition
number of those basis functions. Matérn RBFs were first implemented as basis functions in
the context of the Kansa method [79]. Due to the unavailability of the closed-form particular
solutions of the Matérn RBFs, it was not implemented as a basis function in the MPS.

We now focus on the derivation of the particular solutions using Matérn RBFs for the
Laplace and biharmonic differential operators in 2D and the Laplace operator in 3D. Since
the particular solution is not unique, it is important to go through the de-singularization
process (e.g., Eq. (2.28)) to make sure the obtained particular solution is non-singular.

2.1.1 Particular Solutions in 2D

In this section we will derive particular solutions of the Matérn RBFs φ(r) = (cr)nKn(cr),
c > 0, n ∈ Z+ for different types of differential operators in 2D. The following identities [3]
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related to the modified Bessel function of the second kind are useful for the derivation of
particular solutions in the forthcoming sections:

Kn+1(cr) = Kn−1(cr)+
2n
cr

Kn(cr), (2.3)

d
dr

((cr)nKn(cr)) =−c(cr)nKn−1(cr), (2.4)

d
dr

K0(cr) =−cK1(cr). (2.5)

Note that (2.4) can be rewritten into integral form as follows∫
(cr)nKn−1(cr)dr =−(cr)nKn(cr)

c
. (2.6)

Similarly, (2.5) is equivalent to the form∫
K1(cr)dr =

−K0(cr)
c

. (2.7)

Before the derivation of particular solutions for various differential operators, we estab-
lish the following two lemmas.

Lemma 2.1.1. Let
Ip =

∫
(cr)n−pKn−(p−1)(cr)dr, (2.8)

and
Fs = (cr)n−sKn−s(cr), (2.9)

where p = 0,1,2, ...,n−1 and s = 0,1,2, ...,n. Then,

Ip =
−1
c

Fp +2(n− p)Ip+1. (2.10)

Proof. From (2.3), we have

Kn−(p−1)(cr) = K(n−p)−1(cr)+
2(n− p)

cr
Kn−p(cr). (2.11)

Then, from (2.11) and (2.6), we have

Ip =
∫
(cr)n−pKn−(p−1)(cr)dr

=
∫
(cr)n−pK(n−p)−1(cr)dr+2(n− p)

∫
(cr)n−(p+1)Kn−p(cr)dr

=
−1
c
(cr)n−pKn−p(cr)+2(n− p)

∫
(cr)n−(p+1)Kn−p(cr)dr

=
−1
c

Fp +2(n− p)Ip+1.
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Lemma 2.1.2. Let Ip and Fs be denoted as in (2.8) and (2.9), respectively. Then,

In−1 =
−1
c

(Fn−1−Fn) . (2.12)

Proof. Let p = n−1. From (2.8), we have

In−1 =
∫
(cr)K2(cr)dr. (2.13)

From (2.3), let n = 1, we have

K2(cr) = K0(cr)+
2
cr

K1(cr). (2.14)

Substituting (2.14) into (2.13) and then applying (2.4) and (2.5), we obtain

In−1 =
−1
c
(cr)K1(cr)− 2

c
K0(cr)

=
−1
c

(Fn−1−2Fn) .

Corollary 2.1.3. Let

In =
−1
c

∫
(cr)nKn+1(cr)dr, (2.15)

and Fj = (cr)n− jKn− j(cr), j = 0,1, · · · ,n. It can be shown that

In =
n!
c2

n

∑
j=0

2 j

(n− j)!
Fj. (2.16)

Proof. For n = 1, from the proof of the last Lemma, (2.16) is true. Next, we assume that
(2.16) is true for n = k, i.e.,

Ik =
k!
c2

k

∑
j=0

2 j

(k− j)!
Fk. (2.17)

Then, for n = k+1 and from (2.3), we have

Kk+2(cr) = Kk(cr)+
2(k+1)

cr
Kk+1(cr). (2.18)

Multiplying both sides of (2.18) by −(cr)k+1/c and then integrating, we obtain

−1
c

∫
(cr)k+1Kk+2(cr)dr =

−1
c

(∫
(cr)k+1Kk(cr)+2(k+1)

∫
(cr)kKk+1(cr)dr

)
.

(2.19)
From (2.4) and (2.15), we obtain

Ik+1 =
1
c2 (cr)k+1Kk+1(cr)− 2(k+1)

c

∫
(cr)kKk+1(cr)dr. (2.20)
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Since the above relation holds for n = k, from (2.15) and (2.17) we have

Ik =
−1
c

∫
(cr)kKk+1(cr)dr =

k!
c2

k

∑
j=0

2 j

(k− j)!
Fj. (2.21)

Substituting (2.21) into (2.20), we obtain

Ik+1 =
1
c2 F0 +

(k+1)!
c2

k+1

∑
j=1

2 j

(k+1− j)!
Fj

=
(k+1)!

c2

k+1

∑
j=0

2 j

(k+1− j)!
Fj.

This shows that the relation holds for n = k+1. By induction, the relation holds for all
n ∈ Z+.

Particular solution of the Laplacian

Theorem 2.1.4. Let φ(r) = (cr)nKn(cr), and ∆Φ(r) = φ(r) in 2D. Then,

Φ(r) =
n!
c2

(
n

∑
j=0

2 j

(n− j)!
(cr)n− jKn− j(cr)+2n ln(cr)

)
,r 6= 0, (2.22)

and

Φ(0) =
n!2n

c2

(
ln(2)− γ +

n−1

∑
j=0

1
2(n− j)

)
(2.23)

where γ ' 0.5772156649 is the Euler number.

Proof. Suppose
∆Φ = (cr)nKn(cr), (2.24)

where Kn is the modified Bessel function of the second kind of order n. By using the Laplace
operator in terms of radial distance, we can rewrite (2.24) as

1
r

d
dr

(
r

dΦ

dr

)
= (cr)nKn(cr). (2.25)

By direct integration and (2.6), we have

r
dΦ

dr
=
∫

cnrn+1Kn(cr)dr

=
1
c

∫
(cr)n+1Kn(cr)dr

=
−1
c2 (cr)n+1Kn+1(r)+ c1. (2.26)
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It follows that

Φ(r) =−
∫ (

cn−1rnKn+1(cr)+
c1

r

)
dr

=
−1
c

∫
(cr)nKn+1(cr)dr+ c1 ln(r)+ c2

= In + c1 ln(r)+ c2,

where In is defined in (2.15). From Corollary 2.1.3, we obtain

Φ(r) =
n!
c2

n

∑
j=0

2 j

(n− j)!
(cr)n− jKn− j(cr)+ c1 ln(r)+ c2

=
2nn!
c2 K0(cr)+

n!
c2

n−1

∑
j=0

2 j

(n− j)!
(cr)n− jKn− j(cr)+ c1 ln(r)+ c2. (2.27)

The first term in (2.27) contains the singular term K0(cr) at r = 0. The singularity of
Φ(r) at r = 0 can be removed by properly choosing the integration constant c1. Note that
the series expansion of K0(cr) is known as

K0(cr) =− ln
(c

2

)
− lnr− γ +O(r2).

Hence, the singularity of K0 can be canceled by setting

c1 =
2nn!
c2 . (2.28)

The integration constant c2 in (2.27) can be chosen arbitrary. For convenience, we set

c2 =
2nn!
c2 ln(c).

Hence, Φ(r) in (2.22) is proved.
Furthermore, it is known that [3]

lim
r→0

(cr)nKn(cr) = 2n−1(n−1)!.

It follows that

lim
r→0

Φ(r) = lim
r→0

n!
c2

(
n

∑
j=0

2 j

(n− j)!
(cr)n− jKn− j(cr)+2n ln(cr)

)

=
n!
c2

n−1

∑
j=0

2 j+n− j−1

(n− j)!
(n− j−1)!+

2nn!
c2 (ln(2)− γ)

=
n!2n

c2

(
n−1

∑
j=0

1
2(n− j)

+ ln(2)− γ

)
,

where γ is the Euler number.
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To solve the problem with Neumann boundary conditions, we need to find 1/r(dΦ/dr).
From (2.26), we have

r
dΦ

dr
=−cn−1rn+1Kn+1(cr)+ c1,

where c1 is given in (2.28). It follows that

1
r

dΦ

dr
=−(cr)n−1Kn+1(cr)+

2nn!
(cr)2 .

Furthermore,

lim
r→0

1
r

dΦ

dr
=

2n−2Γ(n+1)
n

= 2n−2(n−1)!.

Particular solution of the Biharmonic operator

Theorem 2.1.5. If φ(r) = (cr)nKn(cr), and ∆2Φ(r) = φ(r) in 2D, then

Φ(r) =
n!
c4

(
n

∑
j=0

2 j( j+1)
(n− j)!

(cr)n− jKn− j(cr)+2n−2(cr)2(ln(cr)−1)+2n(n+1) ln(cr)

)
,

(2.29)
for r 6= 0, and

Φ(0) =
n!2n

c4

(
n−1

∑
j=0

j+1
2(n− j)

+(n+1)(ln(2)− γ)

)
. (2.30)

Proof. Let
∆

2
Φ = ∆(∆Φ) = (cr)nKn(cr).

Similar to the derivation shown in the last theorem, we obtain

Φ =
1
c4

n

∑
j=0

n− j

∑
i=0

2 j+i n!
(n− j− i)!

(cr)n− j−iKn− j−i(cr)+
2nn!
4c2 r2(ln(cr)−1)+ c1 ln(r)+ c2.

Choosing s = i+ j, we obtain

1
c4

n

∑
j=0

n

∑
s= j

2s n!
(n− s)!

(cr)n−sKn−s(cr)+
2nn!
4c2 r2(ln(cr)−1)+ c1 ln(r)+ c2.

We note that
n

∑
j=0

n

∑
s= j

as =
n

∑
k=0

(k+1)ak.

The above double sum can be reduced into a single sum which gives

Φ =
1
c4

n

∑
k=0

(k+1)2k n!
(n− k)!

(cr)n−kKn−k(cr)+
2nn!
4c2 r2(ln(cr)−1)+ c1 ln(r)+ c2.
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Changing the dummy index k into j and selecting the integration constants as

c1 =
2n(n+1)!

c4 , c2 =
2n(n+1)!

c4 ln(c),

the required particular solution Φ(r) for r 6= 0 is

Φ(r) =
n!
c4

(
n

∑
j=0

2 j( j+1)
(n− j)!

(cr)n− jKn− j(cr)+2n−2(cr)2(ln(cr)−1)+2n(n+1) ln(cr)

)
.

(2.31)
To find the particular solution Φ(0), we can take the limit of Φ(r) at r = 0. After some
algebraic manipulation, we obtain the required (2.30).

Now, we will find 1/r(dΦ/dr) for the Neumann boundary condition, which can be
obtained by the relation (2.31), i.e.,

dΦ

dr
=

1
c3

n

∑
j=0

n!2 j

(n− j)!
(−1)(cr)n− jKn− j+1(cr)+

2nn!
4c2 r(2ln(cr)−1)+

2n(n+1)!
c4r

,

1
r

dΦ

dr
=

1
c2

n

∑
j=0

n!2 j

(n− j)!
(−1)(cr)n− j−1Kn− j+1(cr)+

2nn!
4c2 (2ln(cr)−1)+

2n(n+1)!
c4r2 .

It follows that

lim
r→0

1
r

dΦ

dr
=

2n−2n!
c2

(
−2γ +2ln(2)+

n−1

∑
j=0

1
(n− j)

)
.

2.1.2 Particular Solution for Laplacian in 3D

For the 3D case, a closed-form particular solution using the Matérn functions of integer
order cannot be obtained. As a result, we consider the fractional order of Matérn function as
shown in (2.2) as a basis function for the 3D case.

Theorem 2.1.6. Let

φn+1/2(r) =
exp(−cr)(cr)n

(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!(2cr)k .

Let ∆ be the Laplacian in 3D. The particular solution Φ in the following expression

∆Φ(r) = φn+1/2(r),

is given by

Φ(r) =
1

c2(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!2k

(
Γ(n+3− k,cr)

cr
− e−cr(cr)n+1−k

−(n+1− k)Γ(n+1− k,cr)− Γ(n+3− k)
cr

)
, r 6= 0, (2.32)
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where n ∈ Z+ and Γ(a,cr) is an upper incomplete Gamma function [3, 7]

Γ(a,cr) =
∫

∞

cr
ta−1e−tdt,

and

Φ(0) =
−1

c2(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!2k (n+1− k)Γ(n+1− k), (2.33)

where Γ is the Gamma function [3].

Proof. Suppose

∆Φ(r) =
exp(−cr)(cr)n

(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!(2cr)k .

Then, it follows that

1
r2

d
dr

r2 d
dr

Φ(r) =
exp(−cr)(cr)n

(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!(2cr)k . (2.34)

By integrating (2.34), we have

r2 d
dr

Φ(r) =
1
c2

∫ exp(−cr)(cr)n+2

(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!(2cr)k

=
1

c2(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!2k

∫
exp(−cr)(cr)n+2−kdr

=
1

c2(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!2k

−Γ(n+3− k,cr)
c

+ c1,

where c1 is an integration constant.
Repeating the above procedure and using MATHEMATICA, we have

Φ(r) =
1

c(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!2k

∫ −Γ(n+3− k,cr)
(cr)2 dr+

∫ c1

r2 dr,

=
1

c(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!2k

(
Γ(n+3− k,cr)

c2r
− e−cr(cr)n+1−k

c

−(n+1− k)
Γ(n+1− k,cr)

c
− c1

r
+ c2

)
, (2.35)

where c2 is another arbitrary integration constant. Note that [3, 7]

Γ(n+3− k,cr) = Γ(n+3− k)+(cr)n−k
(

(cr)3

k−n−3
+

(cr)4

−k+n+4
+O(r6)

)
.

To cancel the singularity in (2.35), we can choose the integration constants c1 and c2 as
follows

c1 =
1

c(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!2k

Γ(n+3− k)
c2 , c2 = 0.
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Then the required particular solution for 3D for r 6= 0 is

Φ(r) =
1

c2(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!2k

(
Γ(n+3− k,cr)

cr
− e−cr(cr)n+1−k

−(n+1− k)Γ(n+1− k,cr)− Γ(n+3− k)
cr

)
. (2.36)

To find the particular solution Φ(0), we can take the limit of Φ(r) at r = 0. After some
algebraic manipulation, we obtain the required (2.33).

Now, we can derive 1/r(dΦ/dr) which is needed in the numerical implementation of
the Neumann boundary condition as follows:

r2 dΦ

dr
=

1
c3

1
(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!2k (−Γ(n+3− k,cr)+Γ(n+3− k)) ,

1
r

dΦ

dr
=

1
(2n−1)!!

n

∑
k=0

(n+ k)!
k!(n− k)!2k

(
−Γ(n+3− k,cr)

(cr)3 +
Γ(n+3− k)

(cr)3

)
.

We know that [7]

−Γ(n+3− k,cr)
(cr)3

=

(
−Γ(n+3− k)

(cr)3 +O(cr)5
)
+(cr)n+3−k

(
1

(n+3− k)(cr)3 −
1

(n+4− k)(cr)2

+
1

(2(n+3− k)+4)(cr)
− 1

6(n+3− k)
+

cr
24(n+3− k)+96

+O(cr)2
)
,

and
(2n−1)!! =

(2n)!
2nn!

.

Therefore
lim
r→0

1
r

dΦ

dr
=

1
(2n−1)!!

2n!
n!2n

1
3
=

1
3
.

2.2 Gaussian radial basis functions

The Gaussian RBFs have been widely used in the area of neural networks [109]. However,
the Gaussian RBFs are rarely being used for solving PDEs [74]. In the past, the closed-
form particular solutions for the Laplace operator using the Gaussian as a basis function
was not available due to the difficulty of the integration involving the Gaussian RBFs. In
recent years, the symbolic computational tools such as MATHEMATICA and MAPLE
have made the difficult integration task possible. Furthermore, the evaluations of special
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functions such as Bessel functions, error functions, and exponential integral functions are
available as library functions or built-in functions in many computational platforms such as
MATLAB, FORTRAN and C++. These special functions which often involve infinite series
have been considered as the closed-form functions and can be evaluated efficiently and
accurately. Motivated by the availability of these new computational tools, we re-investigate
the possibility of deriving the particular solutions for various differential operators using the
Gaussian RBFs.

The main goal of this study is to focus on the derivation of the closed-form particular
solutions using the Gaussian RBFs [58] which are presented in Section 2.2.1. We apply the
MPS for some boundary value problems in Section 2.3 and LMPS for a 3D problem in the
Section 3.3 to validate the derived particular solutions. Note that the MPS is a global RBFs
meshless method and LMPS is a localized meshless method which is capable of handling a
large number of collocation points.

2.2.1 Particular Solutions

In this section, we will present the solution to the inhomogeneous Laplace and biharmonic
operators with a Gaussian RBFs on the right hand side.

Particular Solutions for Laplace operator

Theorem 2.2.1. Let φ(r) = exp(−cr2), c > 0, and ∆Φ(r) = φ(r) in 2D. Then,

Φ(r) =


1
4c

Ei(cr2)+
1
2c

log(r), r 6= 0,

−1
4c

(γ + log(c)), r = 0,
(2.37)

where
Ei(x) =

∫
∞

x

e−u

u
du, (2.38)

and γ ' 0.5772156649015328 is the Euler-Mascheroni constant [7]. Note that Ei(x) is the
special function known as the exponential integral function [7].

Proof. Suppose
∆Φ = exp(−cr2). (2.39)

In polar co-ordinates in 2D, for radial invariant functions we have

∆ =
1
r

d
dr

(
r

d
dr

)
. (2.40)
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By direct integration on both sides of (2.39), we have

r
dΦ

dr
=
∫

r exp(−cr2)dr

=− 1
2c

exp(−cr2)+C0. (2.41)

It follows that
Φ(r) =

1
4c

Ei(cr2)+C0 log(r)+C1, (2.42)

where C0 and C1 are integration constants. Note that [7]

Ei(cr2) =−γ− log(cr2)+ cr2 +
c2r4

4
+O(r5), (2.43)

which contains a singular term at r = 0. By choosing the integration constant C0 = 1/2c, we
can de-singularize Φ(r) in (2.42). Another integration constant C1 in (2.42) can be chosen
arbitrarily. For convenience, we set C1 = 0. Hence, Φ(r) in (2.37) is proved. Furthermore,

lim
r→0

Φ(r) = lim
r→0

(
1
4c

Ei(cr2)+
1
2c

log(r)
)

=− 1
4c

(γ + log(c)) .

To solve the problem with Neumann boundary condition, we need to find 1/r(dΦ/dr).
From (2.41), we have

r
dΦ

dr
=
−1
2c

exp(−cr2)+
1
2c

. (2.44)

After multiplying 1/r2 on both sides of (2.44), we have

1
r

dΦ

dr
=
−exp(−cr2)+1

2r2c
, r 6= 0.

Furthermore,

lim
r→0

1
r

dΦ

dr
=

1
2
.

Theorem 2.2.2. Let φ(r) = exp(−cr2), and ∆Φ(r) = φ(r) in 3D. Then,

Φ(r) =


−
√

π

4c3/2r
erf(
√

cr), r 6= 0,

−1
2c

, r = 0,
(2.45)

where erf(x) is the special function defined as follows [7]

erf(x) =
2√
π

∫ x

0
e−u2

du. (2.46)
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Proof. In the 3D case, we can use the following definition of the Laplace operator and
follow a similar derivation as shown in Theorem 2.2.1. Note that in 3D

∆ =
1
r2

d
dr

(
r2 d

dr

)
. (2.47)

By direct integration, we have

Φ(r) =
−
√

π

4rc3/2 erf(
√

cr)−C0

r
+C1. (2.48)

The error function erf(
√

cr) can be expanded in series as follows [7]

erf(
√

cr) =
2√
π

∞

∑
n=0

(−1)n(
√

cr)2n+1

(2n+1)n!
. (2.49)

From (2.48) and (2.49), we have

Φ(r) =
−1

2c3/2

∞

∑
n=0

(−1)nc(2n+1)/2r2n

(2n+1)n!
−C0

r
+C1. (2.50)

The first term of (2.50) does not contain any singularity. Hence, C0 and C1 in (2.48) can be
set to equal zero. Hence, (2.45) is proved. Furthermore, from (2.50),

lim
r→0

Φ(r) = lim
r→0

−1
2c3/2

∞

∑
n=0

(−1)nc(2n+1)/2r2n

(2n+1)n!

=
−1
2c

.

To solve the problem with Neumann boundary condition, after the differentiation of
(2.45) and multiplying by 1/r, we get

1
r

dΦ

dr
=−

√
π

4c3/2r

(
2
√

cexp(−cr2)√
π

− erf(
√

cr)
r2

)
, (2.51)

and

lim
r→0

1
r

dΦ

dr
=−

√
π

4c3/2 lim
r→0

(
2
√

c√
πr

exp(−cr2)− erf(
√

cr)
r3

)
=−

√
π

4c3/2 lim
r→0

(
−4c3/2

3
√

π
+

4c5/2r2

5
√

π
− 2c7/2r4

7
√

π
+O(r6)

)
=

1
3
.
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Particular Solutions for biharmonic operator

For the derivation of the particular solutions of the biharmonic operator in 2D, we first
decompose the biharmonic operator into two Laplace operators. We then follow a similar
derivation as shown in Theorem 2.2.1 to obtain the following theorem.

Theorem 2.2.3. Let φ(r) = exp(−cr2),c > 0, and ∆2Φ(r) = φ(r) in 2D. Then

Φ(r) =



1
8c

(
r2 log(r)− r2)− 1

16c2

(
exp(−cr2)+Ei(cr2)

)
+

1
16c

r2 Ei(cr2)+
1

8c2 log(r), r 6= 0,

1
16c2 (−γ− log(c)−1), r = 0,

(2.52)

where γ is the Euler-Mascheroni constant.

To solve the problem with Neumann boundary condition, we use

1
r

dΦ

dr
=
−1
8c

+
1
4c

log(r)+
1
8c

Ei(cr2)− 1
8c2r2 (exp(−cr2)−1), r 6= 0,

and
lim
r→0

1
r

dΦ

dr
=
−1
8c

(γ + log(c)).

Similarly, we follow the proof of Theorem 2.2.2 to derive the particular solutions for
biharmonic operator in 3D.

Theorem 2.2.4. Let φ(r) = exp(−cr2), and ∆2Φ(r) = φ(r) in 3D. Then

Φ(r) =


−
√

π

4c3/2

(
erf(
√

cr)
(

r
2
+

1
4cr

)
+

1
2
√

cπ
exp(−cr2)

)
, r 6= 0,

−1
4c2 , r = 0.

(2.53)

We can use

1
r

dΦ

dr
=
−
√

π

4c3/2

(
erf(
√

cr)
(

1
2r
− 1

4cr3

)
+

1
2
√

cπr2 exp(−cr2)

)
,

and
lim
r→0

1
r

dΦ

dr
=
−1
6c

,

for the Neumann boundary condition.
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2.3 Numerical results

Numerical examples are solved using MATLAB in a 16 GB memory with Intel(R) Core(TM)
i7-5500U CPU @ 2.40GHz processor. In this section, we present some numerical examples
in 2D and 3D to validate the derived particular solutions for Matérn and Gaussian RBFs
using MPS. To validate the derived particular solutions for the Matérn RBFs in Sections 2.1
and 2.2, four numerical examples in 2D and 3D are given. We examine the effectiveness of
Matérn and Gaussian RBFs in the context of the MPS and compare the results with those
obtained when using the traditional normalized MQ (

√
1+ c2r2).

The Root Mean Square Error (RMSE) and the Maximum Absolute Error (MAE) are
used to measure the accuracy. They are defined as follows:

RMSE =

√√√√ 1
nt

nt

∑
j=1

(û j−u j)2, (2.54)

MAE = max
1≤ j≤nt

|û j−u j|, (2.55)

where nt is the number of test points located randomly within the domain, and u j and û j are
the exact and numerical solutions at the jth node respectively.

Example 2.3.1. We consider the following Poisson equation with Dirichlet boundary condi-
tion in 2D

∆u(x,y) = f (x,y), (x,y) ∈Ω, (2.56)

u(x,y) = g(x,y), (x,y) ∈ ∂Ω, (2.57)

where f and g are chosen according to the following exact solutions:

u1(x,y) = ex+y, (x,y) ∈ Ω̄, (2.58)

u2(x,y) = sin(πx)cos(
πy
2
), (x,y) ∈ Ω̄. (2.59)

The computational domain Ω̄ = Ω∪∂Ω as shown in Figure 2.1 is bounded by the curve
defined by the following parametric equation:

∂Ω = {(x,y)| x = ρ(θ)cos(θ), y = ρ(θ)sin(θ), 0≤ θ < 2π},

where
ρ(θ) = esin(θ) sin2(2θ)+ ecos(θ)cos2(2θ).
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Figure 2.1: The profiles of interpolation points and boundary points of the amoeba-shaped
domain

For the implementation of the MPS, we choose 414 uniformly distributed interior points,
100 boundary points and 200 randomly distributed interior points as the test points. The
profile of RMSE for u2(x,y) using various orders of Matérn, Gaussian and normalized MQ
RBFs versus the shape parameter is shown in Figure 2.2. We observe that the lower order
Matérn RBFs are more stable but less accurate and vice versa. Matérn RBFs are more stable
than normalized MQ when shape parameter becomes larger. As we see in Figure 2.2, there
is no significant difference among the Matérn RBFs of various orders and the normalized
MQ in terms of accuracy. Gaussian RBFs is more accurate than normalized MQ and Matérn
RBFs of order 4 to 8.

The MAE in Table 2.1 for the numerical solutions of the Poisson equation with the
analytical solutions u1(x,y) and u2(x,y) are obtained using Matérn RBFs of various order,
Gaussian and the normalized MQ RBFs. These results show that as Matérn order increases
the optimum shape parameter becomes larger which is consistent with the results shown
in Figure 2.2. For the Poisson equation with the analytical solution u1(x,y), we obtained
no significant difference among the Matérn RBFs of various orders, Gaussian and the
normalized MQ RBFs in terms of accuracy. For u2(x,y), Table 2.1 shows that more accurate
result is obtained by Gaussian RBFs compare with the other RBFs.

Example 2.3.2. In this example, we consider Poisson equation with Dirichlet boundary
condition in 3D

∆u(x,y,z) = f (x,y,z), (x,y,z) ∈Ω, (2.60)

u(x,y,z) = g(x,y,z), (x,y,z) ∈ ∂Ω, , (2.61)
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Figure 2.2: Errors versus shape parameters for u2(x,y) using various orders of Matérn,
Gaussian and normalized MQ RBFs.

Table 2.1: Example 2.3.1: The optimal shape parameters and the corresponding MAE for
various orders of Matérn, Gaussian and normalized MQ RBFs.

u1(x,y) u2(x,y)

RBFs order shape parameter MAE shape parameter MAE

2 0.26 3.349E-04 1.87 3.819E-04

3 0.58 6.604E-05 0.58 4.967E-05

4 1.07 2.485E-05 1.39 1.608E-05

Matérn 5 1.87 1.657E-05 2.03 5.762E-06

6 2.84 1.708E-05 2.84 2.571E-06

7 3.49 1.681E-05 3.81 2.872E-06

8 4.29 1.359E-05 4.45 1.967E-06

Gaussian 2.68 1.802E-05 2.84 5.784E-07

MQ 1.07 1.120E-05 1.07 7.759E-06

where f (x,y,z) and g(x,y,z) are given according to the following exact solutions:

u1(x,y,z) = ex+y+z, (x,y,z) ∈ Ω̄, (2.62)

u2(x,y,z) = cos(x)cos(y)cos(z), (x,y,z) ∈ Ω̄. (2.63)
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The computational domain Ω̄ = Ω∪∂Ω is a bumpy sphere with the boundary ∂Ω which
is defined by the following parametric equation

∂Ω =
{
(x,y,z)

∣∣ x = r sinθ cosφ , y = r sinθ sinφ , z = r cosφ , 0≤ θ ≤ 2π, 0≤ φ ≤ π
}

where
r = 1+

1
6

sin(7θ)sin(6φ) .

The profiles of the bumpy sphere (left) and its boundary condition for u1(x,y,z)(right)
are shown in Figure 2.3. In the numerical implementation, we choose 1092 uniformly
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Figure 2.3: The profiles of bumpy sphere (left) and the boundary condition for u1(x,y,z) on
its surface (right).

distributed interior points, 400 uniformly distributed surface points and 120 uniformly
distributed interior points as the test points.

In Table 2.2, we present the MAE for the numerical solutions of the Poisson equation
in 3D with two different analytical solutions u1(x,y,z) and u2(x,y,z) using Matérn RBFs
of different orders, Gaussian and the normalized MQ RBFs. Figure 2.4 depicts the profile
of the RMSE for u2(x,y,z) using Matérn RBFs for orders 9/2 to 17/2, Gaussian and the
normalized MQ RBFs.

Example 2.3.3. We consider the following convection-diffusion equation:(
∆

2 +2ysin(x)
∂

∂x
− ycos(x)

∂

∂y
+ xy

)
u(x,y) = f (x,y), (x,y) ∈Ω, (2.64)

u(x,y) = g1(x,y), (x,y) ∈ ∂Ω, (2.65)

∆u(x,y) = g2(x,y), (x,y) ∈ ∂Ω, (2.66)



27

Table 2.2: Example 2.3.2: MAE for different orders of Matérn, Gaussian, normalized MQ
RBFs and optimal shape parameters

u1(x,y,z) u2(x,y,z)

RBFs order shape parameter MAE shape parameter MAE

5/2 0.26 2.295E-03 0.34 6.238E-05

7/2 0.90 4.610E-04 0.74 3.669E-05

9/2 1.30 2.350E-04 1.30 7.877E-06

Matérn 11/2 1.78 1.753E-04 1.54 3.453E-06

13/2 2.81 3.490E-05 2.73 2.116E-06

15/2 3.77 4.261E-05 2.97 8.485E-07

17/2 3.69 3.012E-05 3.69 7.088E-07

Gaussian 2.15 4.481E-05 1.87 4.585E-07

MQ 0.65 8.263E-05 0.73 1.625E-07
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Figure 2.4: Errors versus shape parameters for u2(x,y,z) using various orders of Matérn,
Gaussian and normalized MQ RBFs.
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where f (x,y),g1(x,y), and g2(x,y) are given functions according to the following analytical
solution:

u(x,y) = ysin(x)+ xcos(y) (x,y) ∈ Ω̄. (2.67)

The boundary ∂Ω is defined by the following parametric equation:

∂Ω = {(x,y)| x = ρ(t)cos(t +
1
2

sin(4t)), y = ρ(t)sin(t +
1
2

sin(4t)), 0≤ t < 2π}

where
ρ(t) =

1
2

(
2+

1
2

sin(4t)
)
.

The computational domain Ω is a gear-shaped domain as shown in Figure 2.5.
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2

Figure 2.5: The profiles of interpolation points and boundary points of the gear-shaped
domain.

In the numerical implementation, we choose 417 uniformly spaced interior points, 250
uniformly spaced boundary points and 231 randomly distributed test points. The numerical
results presented in Table 2.3 are obtained using Matérn RBFs of orders 4 to 10 and Gaussian
RBFs. The MAE and RMSE are consistent for various orders of Matérn RBFs. We observed
that the numerical result obtained using Gaussian RBFs is more accurate than the Matérn
RBFs of order 4 to 10.

Example 2.3.4. Finally, we consider the fourth order boundary value problem:(
∆

2 + ycos(y)
∂

∂x
+ sinh(x)

∂

∂y
+ x2y3

)
u(x,y) = f (x,y), (x,y) ∈Ω, (2.68)

u(x,y) = g1(x,y), (x,y) ∈ ∂Ω, (2.69)
∂u
∂n

(x,y) = g2(x,y) ·n, (x,y) ∈ ∂Ω, (2.70)
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Table 2.3: Example 2.3.3: Accuracy and optimum shape parameters obtained by using
various Matérn orders and Gaussian RBFs.

RBFs order shape parameter MAE shape parameter RMSE

4 2.32 2.813E-04 2.32 6.131E-05

5 3.53 2.478E-04 3.13 5.838E-05

6 3.74 1.962E-04 3.74 4.364E-05

Matérn 7 4.75 2.312E-04 4.75 6.047E-05

8 5.96 2.568E-04 5.15 5.298E-05

9 6.36 1.667E-04 5.76 4.085E-05

10 4.54 1.706E-04 3.94 3.568E-05

Gaussian 1.72 3.486E-05 1.11 1.188E-05

where f (x,y),g1(x,y), and g2(x,y) are known functions according to the following analytical
solution:

u(x,y) = sin(πx)cosh(y)− cos(πx)sinh(y), (x,y) ∈ Ω̄. (2.71)

The computational domain Ω̄ = Ω∪∂Ω is bounded by the following peanut-shaped para-
metric curve as shown in Figure 2.6:

∂Ω = {(x,y)| x = ρ(θ)cos(θ), y = ρ(θ)sin(θ), 0≤ θ ≤ 2π},

where
ρ(θ) = cos(2θ)+

√
1.1− sin2(2θ).

In the numerical implementation, we choose different numbers of interior and boundary
points. We denote by ni the number of interior points and by nb the number of boundary
points. We choose 200 randomly distributed test points. In this example, we use the Matérn
RBFs of order 6 and Gaussian RBFs. In Table 2.4, we test two sets of interior points and
three sets of boundary points for each RBFs.
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Figure 2.6: The profiles of interpolation points and boundary points of the peanut-shaped
domain

Table 2.4: Example 2.3.4: Optimal shape parameter and MAE for Matérn order 6 and
Gaussian RBFs.

(ni,nb) shape parameter MAE shape parameter RMSE

(493,150) 7.88 6.276E-04 8.18 1.489E-04

(493,200) 8.18 6.266E-04 8.18 1.447E-04

Matérn order 6 (493,250) 8.03 7.257E-04 8.79 1.755E-04

(614,150) 9.39 4.053E-04 10.15 8.433E-05

(614,200) 10.00 3.999E-04 10.30 9.315E-05

(614,250) 9.39 4.022E-04 10.45 8.949E-05

(493,150) 1.21 1.006E-03 0.91 2.907E-04

(493,200) 1.06 8.044E-04 1.06 3.028E-04

Gaussian (493,250) 1.21 8.992E-04 2.73 2.881E-04

(614,150) 2.12 9.999E-04 1.97 3.238E-04

(614,200) 0.91 8.155E-04 0.91 2.704E-04

(614,250) 0.91 6.225E-04 0.91 2.536E-04
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Chapter 3

Selection of the good shape parameter

Many RBFs (Table 1.1) which are used in RBFs collocation methods [6, 20–25, 33, 53, 58–
60, 62], contain a shape parameter c. As we have seen in (1.3), the solution of the given
PDEs is approximated by the linear superposition of the corresponding particular solutions
of the given RBFs. So, if we use one of the RBFs, such as MQ, IMQ, Gaussian, or Matérn,
then these RBFs contain the shape parameter c. This shape parameter c plays an important
role in obtaining high accurate solution. So, MPS with these RBFs require some strategies
to obtain the good shape parameter. In this Chapter, we present some of these strategies.

In RBFs literature, many strategies have been proposed to obtain a good shape parameter.
Most of these strategies can be categorized into two types: constant and variable shape
parameter.

3.1 Constant shape parameter

We note that, if we consider Gaussian RBFs and its closed-form particular solutions in MPS,
then φ(r) is given by

φ(r) = exp(−cr2), c > 0. (3.1)

Now, the solution to (1.1) and (1.2) is approximated by

u(x)≈ û(x) =
n

∑
j=1

α jΦ(r j), (3.2)

where
Φ(r j) = Φ(‖xxx− xxx j‖),

are obtained depending on the differential operator in the PDEs as described in the Section
2.2.

As we can see in Figure 2.2, the accuracy of the solution (3.2) depends on the shape
parameter c. Note that in (3.1), from each c, we obtain a new φ(r). So, if we fix a constant
shape parameter c, then in (3.2), we obtain the basis functions which depend only on
radial distance. To find the good shape parameter, many strategies have been proposed by
several researchers. Since, many constant shape parameter strategies have been already
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implemented in MPS, we will not review here. The list of some of the strategies to obtain
the good constant shape parameter is given in the Appendix B.

Among many strategies, Leave-one-out cross validation (LOOCV) is one of the strategies
which has been implemented in RBFs collocation methods in [36, 58, 86]. In recent years,
LOOCV has been implemented as one of the alternatives for obtaining the good shape
parameter. We have briefly described LOOCV in the Appendix B. By using the derived
closed-form particular solutions of Gaussian RBFs from the Chapter 2, we present the
numerical results obtained by LOOCV strategy for MPS and LMPS in the Section 3.3. The
numerical results presented in the Section 3.3 are published in [58].

In most of the previous MPS literature, the RBFs has always been chosen with a constant
shape parameter c but in some other RBFs collocation literature such as RBFs interpolation
and Kansa method, variable shape parameter has been successfully implemented. Research
shows that even in many cases variable shape parameter produces more accurate results than
if a constant shape parameter is used.

In this research work, we propose to use the variable shape parameter in the MPS. First
of all, we implement most of the existing variable shape parameter strategies in the MPS to
obtain the good variable shape parameter. In [5], Afiatdoust has used a global optimization
algorithm known as genetic algorithm (GA) to obtain the variable shape parameter. Including
GA, we use other well-known global optimization algorithms such as pattern search (PS)
[4, 9] and simulated annealing (SA) [17, 55] to obtain the variable shape parameter. PS is a
direct search method for solving optimization problems which do not need any information
about the gradient of the objective function. SA is another global optimization algorithm
which is motivated by an analogy to the statistical mechanics of annealing in solids. These
optimization algorithms are very popular methods in optimization problems and which can
be easily implemented in any other RBFs collocation methods as well.

3.2 Variable shape parameter

As we have discussed earlier, for each c in (3.1), we obtain new φ(r). So, instead of fixing a
constant shape parameter c, let us obtain N different φ j(r), j = 1, ...,N corresponding to
N different shape parameter c j, j = 1, ...,N. Then, we can modify the linear superposition
of the particular solutions for the field variable u, by taking a variable shape parameter
ccc = {c1,c2, ...,cN} instead of using the constant shape parameter c. For example, the
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computational formulation of the MPS using Gaussian RBFs in (1.2) is given by

N

∑
j=1

α jφ j(||xxxiii− yyy jjj||2) = f (xxxiii), xxxiii ∈Ω, (3.3)

N

∑
j=1

α jΦ(||xxxiii− yyy jjj||2) = g(xxxiii), xxxiii ∈ ∂Ω,

where
φ j(||xxxiii− yyy jjj||2) = exp(−c j||xxxiii− yyy jjj||22) = exp(−c jr2

j ),

and Φ(||xxxiii− yyy jjj||2) = Φ(r j) are the corresponding particular solutions obtained in the
Section 2.2.

The discretization in (3.3) is written in the matrix form as AAAααα = bbb, where AAA is the matrix
obtained from the evaluation of the RBFs and its corresponding particular solutions, ααα is the
column vector containing the unknown coefficients and bbb is the column vector containing
the right hand side terms.

Hence, in the matrix form of the computational formulation of the MPS by using the
variable shape parameter, we have a different c j in each column of the matrix. These c j’s
are obtained by several previously developed strategies, which are given as follows:

All of the strategies given below, user most provide cmin and cmax, where

cmin = min{c1,c2, ...,cN} and cmax = max{c1,c2, ...,cN}.

In [52], the formula

• S1:

c j =

c2
min

(
c2

max

c2
min

) j−1
N−1


1/2

, j = 1,2, ...,N,

has been derived which gives an exponentially varying shape parameter (See Figure
3.1 (a)).

The linearly varying shape parameter formula (See Figure 3.1 (b))

• S2:
c j = cmin +

(
cmax− cmin

N−1

)
j, j = 0,1, ...,N−1,

and randomly varying shape parameter formula (See Figure 3.2 (a))
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• S3:
c j = cmin +(cmax− cmin)× rand(1,N),

has been introduced in [89].

In [104], a trigonometric varying shape parameter selection formula has been also
introduced as

• S4:
c j = cmin +(cmax− cmin)× sin( j), j = 1,2, ...,N.

• S5: Genetic algorithm (GA) has been used as a strategy in [5].

Instead of using the S4 in the original format, we use it in the following way:

• S6:
c j = cmin +(cmax− cmin)× sin2( j), j = 1,2, ...,N.

Keeping in this format will avoid the negative real numbers for the selection of each
c j’s in variable shape parameter (See Figure 3.2 (b)). Since Sara et. al [89] has
proposed the random varying shape parameter by using the uniformly distributed
random numbers as in S3, we now use the Halton quasi-random numbers to find the
variable shape parameter which is done by using the MATLAB haltonset and the net

built in function. This is done in the similar fashion as in S3; i.e.,

• S7:
c j = cmin +(cmax− cmin)×net(p,N), p = haltonset(1),

where p = haltonset(1) constructs an one-dimensional point set p of the haltonset
class and net(p,N) returns the first N points from the point set p of the sequence of
the multi-dimensional quasi-random numbers (See Figure 3.3).

In the Figures 3.1 - 3.3, each c j’s of the variable shape parameter for each column coln
of the matrix A for different strategies has been plotted. We have used 36 RBFs centers to
produce these plots with cmin = 0.5 and cmax = 10. Among the strategies, exponential and
linearly varying shape parameter strategies S1 and S2, produce a monotonically increasing
c j’s for the increasing numbers of the RBFs centers but the strategy obtained from the
random numbers such as S3 and S7 produce randomly distributed c j.

By numerical experiments, we observe that choosing a right cmin and cmax is also another
issue to be addressed in the above mentioned strategies. So, to address the above mentioned
issue, we propose to couple with some global optimizations tools. Among the global
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Figure 3.1: (a),(b) are the figures obtained by S1 and S2 respectively for the c j’s and the
column coln of the collocation matrix A with 36 RBFs centers.
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Figure 3.2: (a),(b) are the figures obtained by S3 and S6 respectively for the c j’s and the
column coln of the collocation matrix A with 36 RBFs centers.

optimization tools, GA has been already proposed for the variable shape parameter selection
in RBFs interpolation and Kansa method. In this work, we experiment the effectiveness of
the GA in MPS for different search interval. Then, we also use other well-known global
optimization tools such as Pattern search (PS) and Simulated annealing (SA). PS and SA
need an initial guess of the variable shape parameter as an extra user input. So, we implement
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Figure 3.3: c j’s for the column coln of the collocation matrix A produced by S7.

the variable shape parameter obtained from above strategies S1-S3, S6, S7 as an initial guess
to these global optimization tools.

Numerical experiments in the Section 3.4 validate that the latter proposed idea boost the
accuracy of the MPS for exponentially varying strategy for a search interval which has a
very large length.

3.2.1 Pattern Search (PS)

PS is a very popular direct search method for solving optimization problems which does not
need any information about the gradient of the objective function. At each iterative step,
PS searches a set of points around the point which has been computed in the previous step
[4, 9]. In this way this algorithm generates a sequence of points which eventually approach
to an optimal point. In MATLAB, we can find the patternsearch built in function in the
global optimization toolbox. A lot of parameters can be easily adjusted with the psoptimset

function, which enable us to create the pattern search options structure. For details about
PS, we refer reader to the direct search optimization literature [4, 9].

3.2.2 Simulated Annealing (SA)

SA is a probabilistic global optimization method which is inspired by an analogy between
the physical annealing process of solids and the problem of solving optimization problems
[17, 55]. In MATLAB, simulannealbnd function can be found in the global optimization
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toolbox. Similarly, we can adjust the SA parameters by saoptimset function which can
create simulated annealing options structure.

3.2.3 Objective function

All of these optimization tools need an objective function to be minimized. We have
constructed the objective function for the global optimizations by adopting the similar
structure that has been used in [5], which is actually the residual error measured at couple of
test points. Let us represent the objective function by the following function:

F1 =

√
∑

nit
i=1(∆û(xi)− f (xi))

2

nit
,

where nit is the number of the interior test points {xi}nit
i=1 in the computational domain Ω

and û is the approximate solution. Once this objective function is set up, PS and SA find
an optimal shape parameter which minimizes the objective function F1. In our numerical
examples in the Section 3.4, we have calculated residual error for 100 randomly distributed
test points.

3.3 Numerical results for good constant shape parameter using LOOCV

In the numerical implementation, we use the MATLAB c© built-in functions ‘expint’ ,
‘erf’ to compute the special functions Ei and erf respectively. To select the good constant
shape parameter, the LOOCV [36, 86] strategy has been adopted. In the search algorithm
using LOOCV, we have used ‘fminbnd’ to find the minimum of a function of one variable
within a fixed interval. We denote [min, max] as the initial search interval for ‘fminbnd’.

Example 3.3.1. Consider the fourth order convection-diffusion equation (2.3.3) with the
analytical solution

u(x,y) = ysinx+ xcosy, (x,y) ∈Ω. (3.4)

The computational domain Ω̄ is bounded by the following parametric equation:

{(x,y)|x = ρ(t)cos(t +
1
2

sin(7t)),y = ρ(t)sin(t +
1
2

sin(7t)), 0≤ θ < 2π},

where
ρ(t) =

1
2

(
2+

1
2

sin(7t)
)
.

The computational domain Ω̄ is a gear-shaped domain as shown in Figure 3.4. Note that Ω̄

is not only irregular but also contains sharp edges which presents a challenge in obtaining
good numerical accuracy.
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Figure 3.4: Interior points (•) and boundary points (◦) of the gear-shaped domain.
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Figure 3.5: RMSE errors for different shape parameters.

In the numerical implementation, we choose 273 randomly distributed test points inside
the gear-shaped domain. In Figure 3.5 we show the results of RMSE versus shape parameter
using 635 interior and 250 boundary points. Notice that the good shape parameter range is
between 1.5 and 4. In Table 3.1, ni and nb denote the number of interior and boundary points,
respectively, and cloocv is the shape parameter obtained by LOOCV. Using the LOOCV
algorithm, the selected shape parameter is 1.792 as shown in Table 3.1. For all the results in
Table 3.1, the initial search interval for LOOCV is set to [0, 5]. The number of iterations
using LOOCV is 12. In this table we also show the results using various interior and
boundary points. Despite the difficulty of a complicated domain with sharp edges, the
numerical accuracy we obtained seems reasonable.
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Table 3.1: RMSE using the Gaussian RBFs with various interior and boundary points.

ni nb cloocv RMSE

459 150 3.701 3.1687E-05

530 200 4.271 1.4274E-05

635 250 1.792 1.8478E-06

Example 3.3.2. Consider the Poisson problem (2.60) with Dirichlet boundary condition
(2.61). The functions f and g are given according to the analytic solution (2.62). The
computational domain is the so-called bumpy sphere (see Figure 3.6) which has been used
as models for tumors. The surface of the considered domain is highly complicated. The
spherical parametrization of the bumpy sphere is as follows:

{(x,y,z) : x = ρ sinφ cosθ ,y = ρ sinφ sinθ ,z = ρ cosφ , 0≤ θ ≤ 2π, 0≤ φ ≤ π},

where
ρ(φ ,θ) = 1+

1
6

sin(6θ)sin(7φ).

Figure 3.6: The profile of computational domain (bumpy sphere) and the uniformly dis-
tributed boundary points.
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For the 3D problems, more interior and boundary points are needed. In this example,
we apply the localized method of particular solutions (LMPS) [107] which is a localized
meshless method to handle a large number of interpolation points. In the numerical im-
plementation, we choose 21,672 uniformly distributed interior points and 3,000 uniformly
distributed boundary points. For each local influence domain, we choose 35 nearest neigh-
boring points for each RBFS center. The LOOCV algorithm is used for the selection of a
good shape parameter. In Table 3.2, [min, max] denotes the initial search interval using
MATLAB function ‘fminbnd’. As shown in this table, the good shape parameters are
located between 0 and 1 using various initial search intervals. Despite the inconsistency in
the selected shape parameters, we obtain reasonable numerical results.

Table 3.2: RMSE and the near-optimal shape parameter using the LMPS with Gaussian
RBFs.

[min, max] cloocv RMSE [min, max] Cloocv RMSE

[0,1] 0.361 4.725E-04 [0, 6] 0.918 1.091E-04

[0,2] 0.278 1.515E-04 [0, 7] 0.354 1.040E-03

[0,3] 0.846 1.048E-04 [0, 8] 0.351 5.553E-05

[0,4] 0.913 1.411E-04 [0, 9] 0.852 4.532E-05

[0,5] 0.915 1.312E-04 [0,10] 0.915 2.099E-04

3.4 Numerical results for good variable shape parameter using various strategies

Numerical examples in this section are solved using the MATLAB in a desktop computer
which has a 64-bit operating system and 16 GB memory with Intel(R) Core(TM) i7-4770K
CPU @ 3.50GHz processor. We use 784 interior and 116 boundary points which are uni-
formly distributed computational points on a regular square domain [0,1]× [0,1]. Gaussian
RBFs and its particular solutions have been used to solve the given PDEs by the MPS as
discretized in Eq. (3.3). After the computation of the unknown coefficients α j, all error
plots are plotted for 200 randomly distributed test points. All error plots display the MAE
which is defined as in (2.55).

Example 3.4.1. Consider the two dimensional linear elliptic boundary value problem (2.56)
and (2.57). The f (x,y) and g(x,y) in (2.56) and (2.57) are obtained by the given analytical
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solution. We choose three different analytical solutions such as a trigonometric function

u1(x,y) = sinπxsinπy,

an exponential function
u2(x,y) = exp(x+2y),

and a relatively flat function

u3(x,y) =
65

65+(x−0.2)2 +(y+0.1)2 .
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Figure 3.7: MAE obtained for u1(x,y) by different strategies at cmin = 0.5 and cmax varies.

Figures 3.7 - 3.9 are plotted by using a fixed cmin as 0.5 and varies cmax. Figure 3.7
shows the MAE for u1(x,y) at different cmax. We observed that the most accurate solution
which is about 1E − 10, is obtained with cmin = 0.5 and cmax = 16. If we compare the
results obtained from these strategies for the three different analytical functions u1, u2, u3,
we observe that S3 and S6 have better accurate results than S1 and S2. These accuracies
depend on the choice of the search interval, as we can see in Figure 3.8 for u2(x,y), S3 and
S6 have accuracy about 1E−10 with cmin = 0.5 and cmax = 18 and for u3(x,y) in Figure
3.9 has more accurate results with cmax = 19.
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Figure 3.8: MAE obtained for u2(x,y) by different strategies at cmin = 0.5 and cmax varies.

Table 3.3: MAE for different strategies for different analytical functions for cmin = 0.5 and
cmax = 20.

Strategies u1(x,y) u2(x,y) u3(x,y)
S1 4.534E-06 2.052E-06 9.632E-10
S2 7.383E-08 7.932E-07 3.008E-11
S3 1.219E-10 1.861E-09 5.768E-13
S6 2.236E-10 4.342E-10 1.266E-13
S7 2.504E-10 1.161E-10 3.184E-13

Table 3.3 shows that the newly proposed strategy S7 which is based on the quasi-random
halton numbers, is also an effective way to compute the variable shape parameter as other
strategies. It is better than the S1 and S2, so we can conclude that we do not have to stick on
the uniformly random numbers such as in S3 but we can use other random number points
such as the quasi-random points in S7. Also, the modified strategy S6, shows the similar
accuracy along with others [104]. This concludes that if we do not want to use the negative
c j’s, then we can use the modified trigonometric varying strategy as in S6. Among these
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Figure 3.9: MAE obtained for u3(x,y) by different strategies at cmin = 0.5 and cmax varies.

three analytical functions, almost all of the strategies show less accurate results for the
u1(x,y). So, we now use u1(x,y) as our test function.

Now, we will see the effectiveness of the strategy S5 for the MPS along with the other
newly proposed strategies which are based on the global optimization tools such as GA, PS,
and SA. Since all of these methods can be modified for efficiency and accuracy with the
help of their corresponding parameters, we have chosen the following parameters for the
evaluation of the required variable shape parameter in MPS:

• GA:

PopulationSize = 5,

EliteCount = 1,

Generations = 10,

• PS:

MaxIter = 5,

MaxFunEvals = 10,
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SearchMethod = @MADSPositiveBasisN p1,

Initialguess = (1,1, ...,1),

• SA:

MaxIter = 10,

Initialguess = (1,1, ...,1),

and all other parameters are chosen as MATLAB default parameters. These parameters
are chosen to stop the searching algorithm within similar amount of time without
losing its effectiveness.
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Figure 3.10: MAE obtained for u1(x,y) by different strategies at cmin = 0.01 and cmax varies.

Figure 3.10 has been generated by the similar structure as above; i.e., we have fixed
cmin = 0.01 and let cmax varies. Though GA, PS and SA have less accurate results than S6
and S7, Figure 3.10 depicts that the newly proposed strategy based on SA outperformed
GA. Now, instead of using the initial guess (1,1, ...,1), we use c j’s obtained from the
above strategies S1-S7 as an initial guess in PS and SA. We use [0.01,1000] as the search
interval. An interval of large length is chosen to address the difficulties of choosing good
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search intervals in previous strategies. If we obtain stable accurate solution within this
size of interval, then finding initial search interval will be an easy task. The variable shape
parameters chosen by S1 and SA with S1 as an initial guess are shown in the Figure 3.11. It
depicts that the variables chosen by SA slightly vary from the S1 but we can see its positive
effect on the Table 3.4.
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Figure 3.11: Variable shape parameters obtained for u1(x,y) by S1 and SA with S1 as an
initial guess at cmin = 0.01 and cmax = 1000.

Table 3.4 shows that the combining idea does not effectively work for other strategies
such as S2-S7, but it works very well for S1. In the RBFs literature, S1 is considered to be
the less accurate strategy among others but if we use the c j’s obtained from S1 as an initial
guess in the PS and SA, we can obtain more accurate results.

By comparing the results among the optimization tools, SA itself seems to be an effective
method for the variable selection but how to guess the initial variable is a daunting task.
However, if we use the S1 as an initial guess for the SA, we obtain better results as shown in
the Table 3.4 and Figure 3.12. Figure 3.12 shows the error profile for S1 and SA with S1
as an initial guess for cmin = 0 and cmax varies up to 1000. Figure 3.13 shows the profile of
the error using the S2 as an initial guess does not seem to be a good idea for higher search
intervals.



46

Table 3.4: Maximum Absolute errors for different strategies for the u1(x,y) with cmin = 0.01
and cmax = 1000

Strategies Alone PS SA
S1 9.591E-05 3.203E-07 5.532E-09
S2 5.280E-02 9.31E-02 1.427E-02
S3 1.596E-03 3.47E-03 9.747E-04
S6 5.618E-05 1.214E-05 2.096E-06
S7 1.643E-02 3.753E-03 1.406E-03
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Figure 3.12: MAE obtained for u1(x,y) by S1 and SA with S1 as an initial guess at cmin = 0
and cmax varies up to 1000.
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Figure 3.13: MAE obtained for u1(x,y) by S2 and SA with S2 as an initial guess at cmin = 0
and cmax varies up to 1000.
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Chapter 4

Fast method of particular solutions using Chebyshev interpolation

The formulation of the MPS produces a full and dense matrix system which is often very ill-
conditioned. Traditionally, this matrix system is solved by using direct or iterative methods.
Direct methods such as Gaussian elimination require O(N3) operations for an N×N system
of equations. For iterative methods, we may obtain the approximate solution in k steps with
each step needing a matrix vector multiplication O(N2). In this chapter, we present the
fast method of particular solutions (FMPS) [60] by coupling the FSM and the MPS as a
fast algorithm for solving PDEs which require a large number of collocation points. As we
shall see in the numerical results section, we have successfully solved a 2D problem using
694,541 collocation points with only 77.15 seconds of computer running time and 343,000
collocation points with 105.15 seconds for a 3D problem. Moreover, we do not compromise
the accuracy for our proposed fast computation.

The structure of the chapter is as follows. In Section 4.1, we review the algorithm
of fast summation method (FSM). In Section 4.2, specific algorithm has been given. To
demonstrate the efficiency of the proposed method, two numerical examples in 2D and 3D
are given in the Section 4.3. The research work presented in this chapter is published in
[60]. In the next section, we briefly introduce a fast summation method for the matrix vector
multiplication.

4.1 Fast summation method (FSM)

Consider the evaluation of the sum of the form

s(xxx) =
N

∑
j=1

b jκ
(
||xxx− xxx j||

)
, (4.1)

where κ is either the RBFs or the particular solutions of the corresponding RBFs. We can
evaluate the sum (4.1) in an efficient way by using the Chebyshev interpolation technique as
described in [38].

From [38], let

PM(ξ ,η) =
1
M

+
2
M

M−1

∑
i=1

Ti(ξ )Ti(η), (4.2)
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where ξ , η ∈ [−1,1], Ti is the first kind Chebyshev polynomial of order i.
Let H be a hypercube in D dimension which contains all the given collocation points

{xxxi}N
i=1. Consider {ξξξ l}MD

l=1, {ηηη l}MD

l=1 be two identical sets of Chebyshev points in [−1,1]D.
Then by using linear transformations, we can map xxxi, xxx j into ξξξ i, ηηη j, and ξξξ l, ηηηm in [−1,1]D

into xxxl, xxxm in H, respectively.
Instead of directly evaluating (4.1), we approximate it by using the following functional

approximation

κ (||xxx− yyy||) = ∑
l

∑
m

k (||xxxl− yyym||)QM(ξξξ l,ξξξ )QM(ηηηm,ηηη), (4.3)

where ξξξ , ηηη are the linear transformations of xxx,yyy, respectively, and in 2D,

QM(ξξξ ,ηηη) = PM(ξ1,η1)PM(ξ2,η2), ξξξ = (ξ1,ξ2), ηηη = (η1,η2),

and in 3D,

QM(ξξξ ,ηηη) = PM(ξ1,η1)PM(ξ2,η2)PM(ξ3,η3), ξξξ = (ξ1,ξ2,ξ3), ηηη = (η1,η2,η3).

Note that the functional approximation (4.3) is obtained from approximating κ (||xxx− yyy||)
by first fixing the variable y and assuming κ (||xxx− yyy||) as a function of x; i.e.,

κ (||xxx− yyy||) = ∑
l

k (||xxxl− yyy||)QM(ξξξ l,ξξξ ), (4.4)

and noting that κ (||xxx− yyy||) is a function of y, the interpolation formula is applied again to
get Eq. (4.3).

Using (4.3), (4.1) can be separated into the product of the different sums as follows:

s(xxxi) =
N

∑
j=1

b jκ
(
||xxxi− xxx j||

)
≈

N

∑
j=1

b j

(
MD

∑
l=1

MD

∑
m=1

κ (||xxxl− xxxm||)QM(ξξξ l,ξξξ i)QM(ηηηm,ηηη j)

)

=
MD

∑
l=1

QM(ξξξ l,ξξξ i)
MD

∑
m=1

κ (||xxxl− xxxm||)
N

∑
j=1

b jQM(ηηηm,ηηη j). (4.5)

If we choose those MD Chebyshev points such that MD << N, then the summation can
be computed efficiently. To evaluate (4.1) approximately, let us first evaluate the last term of
(4.5) which gives us the weights at the Chebyshev points xxxm

Wm =
N

∑
j=1

b jQM(ηηηm,ηηη j), m = 1, ...,MD,
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and the computational cost for these Chebyshev weights is O(MDn). Then, we compute the
s(xxx) at the Chebyshev points xxxl as

s(xxxl) =
MD

∑
m=1

Wmκ (||xxxl− xxxm||) , l = 1, ...,MD,

with computational cost O(M2D). Eventually, we compute the s(xxx) at the collocation points
xxxi as

s(xxxi) =
MD

∑
l=1

s(xxxl)QM(ξξξ l,ξξξ i), i = 1, ...,N,

at the computational cost of O(MDN). Overall, this algorithm scales like O((2∗MD)N +

(M2D)). If we choose M << (N/(1+
√

2))1/D, then the above mentioned algorithm is faster
than O(N2).

In the next section, we give a description to accelerate the MPS using this fast summation
technique.

4.2 Fast method of particular solutions (FMPS)

The matrix A of the linear system Aααα = F, arising from the MPS discretization in (1.6) –
(1.7), can be viewed as the formulation of two block matrices; i.e.,

A =

[
PA
QA

]
,

where

PA =
[
φ(||xxxi− xxx j||)

]
1≤i≤ni,1≤ j≤N , QA =

[
Φ(||xxxi− xxx j||)

]
ni+1≤i≤N,1≤ j≤N .

Hence, if we want to multiply A by any N-dimensional column vector B = [b1,b2, ...,bN ]
T ,

then this can be done by

A ·B =

[
PA ·B
QA ·B

]
, (4.6)

and each row of those individual products PA ·B, QA ·B can be considered like the summa-
tion defined in (4.1) which can be computed in an efficient way by using the FSM described
in the previous section.

If we use some iterative methods to solve the linear system instead of using the direct
solvers like Gaussian elimination, then these fast products help us to solve the linear system
faster. For this, we can use any iterative method which includes the vector multiplication
with matrix A. In this paper, we have used GMRES iterative method to find out the unknown
coefficients. As we know that, in the GMRES, at each iteration, we have to multiply a
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matrix and an updated vector. This matrix and vector multiplication is obtained faster
by the technique that we have described earlier. This kind of approach which is called
FMPS, actually solves the PDEs by using MPS without explicitly computing matrix A
which requires a minimum storage. The computational procedure for the FMPS is described
as follows.

4.2.1 Algorithm

Input:

Collocation points {xxxi}N
i=1, Chebyshev points ξξξ l,ηηηm, dimension of the domain D.

Step 1: Pre-computational step

• find a hypercube H in D dimension which contains {xxxi}n
i=1.

• by using linear transformations,

find ξξξ i,ηηη j in [−1,1]D corresponding to xxxi,xxx jjj, respectively,

find xxxl,xxxm in H corresponding to ξξξ l,ηηηm, respectively.

• compute the following matrices

R = (R)m, j = QM(ηηηm,ηηη j), m = 1,2, ...,MD, j = 1,2, ...,N,

IR = (IR)l,i = QM(ξξξ l,ξξξ i), l = 1,2, ...,MD, i = 1,2, ...,ni,

BR = (BR)l,i = QM(ξξξ l,ξξξ i), l = 1,2, ...,MD, i = ni +1,ni +2, ...,N,

IK = (IK)l,m = φ(||xxxl− xxxm||), l = 1,2, ...,MD, m = 1,2, ...,MD,

BK = (BK)l,m = Φ(||xxxl− xxxm||), l = 1,2, ...,MD, m = 1,2, ...,MD.

Step 2: Iterative step

Iterative methods converge in k steps with each step needing a matrix vector multiplication
O(N2). At each iterative step k, we follow the iterative algorithm as it is except the matrix
vector multiplication of the matrix A and the N-dimensional updated column vector B,
which is computed by using the FSM procedure in the vectorized form as follows:

First, compute
R ·B = M ∈ RMD×1,
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and then compute

IM = IR
′
· (IK ·M) ,

BM = BR
′
· (BK ·M) ,

which approximates (4.6) as

PA ·B≈ IM and QA ·B≈ BM,

i.e.,

A ·B≈
[

IM
BM

]
.

The undetermined coefficient ααα in (5.10) can be obtained by the iterative method.

Step 3: Evaluation step

Once we determine the unknown coefficient vector ααα from step 2, we use the given nt test
points and RBFs centers to evaluate the desired solution at the test points. This is also done
by multiplying the corresponding evaluation matrix with the coefficient vector ααα using the
similar FSM technique.

As we can see, in this procedure we are not computing matrix A explicitly. The only
matrix evaluation we have to do is for the matrices described in the pre-computational step.
Now, in the next section, we give some numerical examples, which validate our proposed
method.

4.3 Numerical results

Numerical experiments have been done by using MATLAB c© on a desktop computer which
has a 64-bit operating system and 16 GB memory with Intel(R) Core(TM) i7-4770K CPU
@ 3.50GHz processor. The RMSE as defined in Eq. (2.54) is used to measure the accuracy
of the numerical results.

We adopt the Gaussian, φ , as the RBFs and the corresponding particular solutions, Φ, as
the basis functions for the approximation of the partial differential equation. The particular
solutions of the Gaussian RBFs in (2.37) and (2.45) contain the special functions, Ei(x) and
erf(x), which are costly in terms of numerical evaluation. The efficiency can be significantly
improved using compiled MATLAB MEX functions. The special function exponential
integral in the particular solutions of the Gaussian RBFs [58] are evaluated using the rational
approximation techniques [29] with the help of the boost library [96].
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Example 4.3.1. Consider the convection-diffusion-reaction equation in 2D

∆u(xxx)+ f (xxx)
∂u
∂x

+g(xxx)
∂u
∂y

+h(xxx)u(xxx) = l(x,y), xxx = (x,y) ∈Ω,

u(xxx) = m(x,y), xxx = (x,y) ∈ ∂Ω,

where f (x,y) = ycos(y), g(x,y) = sinh(x), h(x,y) = x2+y2, and l(x,y), m(x,y) are obtained
by the analytic solution

u(x,y) = sin(πx)cosh(y)− cos(πx)sinh(y).

The above differential equation has been considered in Reference [23]. For the computational
domain, we consider the standard unit square Ω̄ = Ω∪∂Ω = [0,1]2. To perform the test,
we choose various numbers of collocation points and 1000 randomly distributed test points
inside the domain to evaluate the RMSE errors. For the FSM, we employ 12×12 Chebyshev
points and the shape parameter for the Gaussian RBFs is chosen as 1. To show the efficiency
of the proposed method, we test the MPS using standard Gaussian elimination (GE), iterative
method (GMRES), and the proposed FSM with GMRES. In Table 5.2, we show the proposed
method is far more efficient than the direct Gaussian elimination and iterative method. As
far as the accuracy is concerned, they all produce a similar accuracy. When the number of
collocation points is increased, the computational cost using the two traditional linear solvers
become too expensive. To illustrate the efficiency of the proposed method, we choose a
huge number of collocation points up to one million as shown in Table 4.2. As we can see
in the table, for the case of one million collocation points, the required CPU time is only
56.90 seconds which is considered to be extremely fast. Note that the tolerance of GMRES
is set as 1E-05 in the above computation.

Table 4.1: RMSE and CPU time using various numbers of the collocation points and solvers
in the square domain.

N RMSE GE GMRES FSM + GMRES
402 6.163E-05 0.32 0.34 0.05
602 6.637E-05 1.79 1.50 0.13
802 3.740E-05 6.28 4.70 0.20

1002 2.751E-04 18.25 11.36 0.35
1202 1.813E-04 42.86 23.29 0.40
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Table 4.2: RMSE and CPU time for a large number of collocation points in the square
domain using the FMPS.

N RMSE CPU time
2502 1.124E-04 1.65
5002 8.197E-05 11.04
7502 1.709E-04 35.00

10002 2.964E-04 56.90
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Figure 4.1: The profile of gear-shaped domain.

Next, we consider the gear-shape domain as shown in Figure 4.1. The parametric
equation of the gear-shape curve can be written as

{(x,y) : x = r(t)cos t,y = r(t)sin t, 0≤ t ≤ 2π},

where
r(t) = 1+

1
10

tanh(10sin(12t)).

In this case, we choose 969 randomly distributed test points inside the domain for
the evaluation of the RMSE. Table 4.3 shows the RMSE and the CPU time for various
combinations of interior and boundary points using the FMPS. In this case, the tolerance of
GMRES is again set as 1E-05. Table 4.3 validates the efficiency of the FMPS. Despite a
large number of collocation points are used in this example, the numerical results are two
orders less accurate than the results obtained in Reference [23]. Note that the large number
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of collocation does not necessary produce more accurate results due to the ill-conditioning
of the resultant matrix and round-off errors. Furthermore, to increase the efficiency, the
iterate method GMRES has been adopted in our algorithm. To increase the accuracy, we
need to reduce the tolerance of stopping criteria of GMRES which will inevitably slow
the computation. There is a trade-off between accuracy and efficiency in the proposed fast
algorithm.

Table 4.3: RMSE and CPU time using various numbers of the collocation points for the
gear-shaped domain.

(ni,nb) RMSE CPU (sec)
(5195,1000) 8.860E-05 0.52
(14552,3000) 8.382E-05 1.23
(25953,5000) 8.851E-05 1.97
(58623,10000) 9.371E-05 3.29
(104405,20000) 8.907E-05 6.01
(163297,25000) 9.833E-05 17.81
(654541,40000) 1.591E-04 77.15

Example 4.3.2. Consider the boundary value problem (2.60)-(2.61) in 3D, where f and g

are defined according to the exact solution

u(x,y,z) = sin(πx)sin(πy)sin(πz).

Table 4.4: RMSE and CPU time for different sizes of the computational points in the unit
cube.

N RMSE GE GMRES FSM+GMRES
133 1.804E-05 0.31 0.64 1.09
153 3.156E-05 0.76 1.20 1.44
173 6.025E-05 1.77 1.57 1.47
193 3.898E-05 4.18 3.08 1.66
213 1.217E-04 8.40 4.05 1.52
233 1.494E-04 17.42 6.88 1.97
253 3.118E-04 33.46 11.08 2.41
273 2.204E-04 64.39 17.64 3.04

Table 4.4 shows the accuracy and CPU time using the three techniques including the
FMPS for the Poisson equation with Dirichlet boundary condition. The tolerance for the
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Table 4.5: RMSE and CPU time for various numbers of the collocation points in the unit
cube by FMPS.

N RMSE CPU (sec)
303 3.514E-05 7.04
403 5.253E-05 14.92
503 3.717E-05 29.96
603 5.219E-05 62.035
703 6.037E-05 105.15

GMRES is set as in the two dimensional case and 123 Chebyshev points in the 3D have
been used for the FSM. As shown in Table 4.4, the FMPS is far more efficient than the other
two traditional approaches. It is noteworthy that in Table 4.5, the FMPS needs only 105.15
seconds to solve the given problem with 703 = 343,000 collocation points.



57

Chapter 5

Solving time fractional diffusion equations by the FMPS

In this chapter, FMPS [60] is implemented for the numerical simulation of the time fractional
diffusion equations. We use the Laplace transform technique to obtain the corresponding
time-independent inhomogeneous equation in Laplace space and then implement FMPS
[60] to solve this Laplace transformed problem. Finally, Talbot algorithm [1, 93] which
is a numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical
solutions of the time fractional diffusion equations from the Laplace space. Fractional order
differential equations [84] have been recently proved to be valuable tools for the modeling
of many phenomena in engineering, physics, fluid mechanics, viscoelasticity, mathematical
biology, electrochemistry and others [48, 84]. Various fractional order differential equations
have been solved recently including space-time fractional partial differential equations
[19, 72, 81, 110], fractional order two-point boundary value problem [37], the fractional
Kdv equation [30], and fractional partial differential equations fluid mechanics [82].

Fractional kinetic equations such as fractional diffusion equation, fractional advection-
diffusion equation, fractional Fokker-Plank equation, fractional cable equation etc., are
recognized as useful approaches for the description of transport dynamics in complex
systems including systems exhibiting Hamiltonian chaos, disordered medium, plasma, and
fluid turbulence, underground water pollution, dynamics of protein molecules, motions under
the influence of optical tweezers, reactions in complex systems and more [18, 75, 76, 111].

Fractional diffusion equation [84] is considered as a recent alternative model to describe
anomalous diffusion phenomena [75] in a wide range of engineering and physics fields [48]
such as electron transportation [90], seepage [45], magnetic plasma [31], dissipation [95],
and turbulence [92]. Compared with normal diffusion phenomena, anomalous diffusion
exhibits the striking characteristics of the long-range interaction and history dependency
[44].

In most of the meshless numerical schemes that have been used to solve the fractional
diffusion equations, FDM is used for temporal discretization and different meshless tech-
niques are applied to find the numerical solution of the time fractional diffusion equations.
Wen Chen et. al [27] makes the first attempt to apply the Kansa method in the solution
of the time fractional diffusion equations in which the MQ and thin plate splines serve
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as the RBFs. In [27], FDM scheme is used to discretize time fractional derivative and
Kansa method is used for spatial derivatives. In [70], Q. Liu et al, presented an implicit
meshless approach based on RBFs for the numerical simulation of time fractional diffusion
equations in which locally supported MQ are used to construct the meshless shape function
based on the local interpolation domains. Another implicit meshless approach based on
the moving least squares (MLS) approximation is also used for numerical simulation of
fractional advection-diffusion equations in [112]. Recently, along with the FDM scheme,
MPS has also been used to solve the constant and variable order fractional diffusion models
[40] and time-fractional diffusion equations with a non-local boundary condition [105]. All
of these researchers used FDM as temporal discretization and used different shape functions
and meshless strong-forms to obtain the discrete system of equations. Ge Hong-Xia et. al
[50] use EFG method based on the MLS approximation. They used Galerkin Weak form
to obtain the discrete equations, and the essential boundary conditions are enforced by the
penalty method.

In order to overcome the drawback of FDM for temporal discretization, Zhuo-Jia Fu et.
al [42] use a boundary meshless method which does not use the FDM scheme to discretize
the time. Instead of discretizing the time, they used Laplace transform technique known
as Laplace transformed boundary particle method (LTBPM) to obtain the corresponding
time independent inhomogeneous equation in the Laplace space. After transforming the
time dependent problems into time-independent problems, a truly boundary-only meshless
boundary particle method (BPM) is used to solve Laplace-transformed problem. Finally,
numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical
solutions of time fractional diffusion equations from the corresponding BPM solutions. In
comparison with finite difference discretization, the LTBPM introduces Laplace transform
and NILT algorithm to deal with time fractional derivation term.

We note that LTBPM does not use temporal discretization but it requires boundary-only
meshless discretization of inhomogeneous problem. In this dissertation, we try to overcome
this drawback by using truly meshless method, MPS and its fast version FMPS [60] which
is useful for the large number of collocation points. We use similar approach in LTBPM but
instead of using BPM which is a boundary-only meshless method, we use MPS and FMPS
[60]. Numerical results suggest that MPS has comparable accuracy with LTBPM but FMPS
[60] with large number of collocation points produces more accurate solutions.

The rest of the chapter is organized as follows. Section 5.1 introduces the numerical
method for solving time fractional diffusion equations followed by numerical results and
discussion in Section 5.2.
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5.1 Methodology

5.1.1 Time fractional diffusion equation

In the current work, we have considered the following time fractional diffusion equations in
a bounded domain Ω with the boundary ∂Ω,

∂ αu(x, t)
∂ tα

= ∆u(x, t)+ f (x, t), 0 < α < 1,x ∈Ω, t ∈ (0,T ), (5.1)

with boundary condition

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ (0,T ), (5.2)

and initial condition
u(x,0) = u0(x), x ∈Ω, (5.3)

where ∆ is the Laplace operator, f (x, t), g(x, t), and u0(x) are known functions, x = (x,y)

for 2D problem and x = (x,y,z) for 3D problem, T the total time to be considered, and ∂ α

∂ tα

the Caputo fractional derivative of order α with respect to t defined by [84]

∂ αu(x, t)
∂ tα

=
1

Γ(1−α)

∫ t

0

∂u(x,η)

∂η

dη

(t−η)α
, 0 < α < 1. (5.4)

5.1.2 Numerical method

In this section, we describe the numerical procedure for solving the time fractional diffusion
equations by using Laplace transform and MPS/FMPS [60]. As we mentioned earlier, there
are three steps to follow:

Step 1: convert the time fractional diffusion problems from time domain to Laplace domain,

Step 2: use MPS/FMPS to obtain the solution in Laplace domain,

Step 3: invert the solution into original domain by numerical inverse Laplace transform.

Step 1:

Applying the Laplace transform to (5.1) - (5.3) produces

Rũ(x,s) = F̃(x,s), 0 < α < 1, x ∈Ω, (5.5)

ũ(x,s) = g̃(x,s), x ∈ ∂Ω,

where R= ∆−sα , F̃(x,s) =− f̃ (x,s)−sα−1u0(x). This is the Laplace transformed problem
of the time fractional diffusion equations.
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Step 2

Once the problem is transformed into the Laplace domain, we use MPS/FMPS to solve the
Laplace transformed time-independent inhomogeneous problems obtained from Step 1.

Method of particular solutions (MPS): Let us consider the Laplace transformed prob-
lem from (5.5). By the MPS as in (1.3) for each s, we assume the solution to (5.5) is
approximated by

ũ(x,s)≈ û(x) =
N

∑
j=1

α jΦ(‖xxx− xxx j‖), (5.6)

where ‖ · ‖ is the Euclidean norm, {α j} are the undetermined coefficients, and

∆Φ = φ . (5.7)

By the collocation method, from (5.5), we have

N

∑
j=1

α jφ
(
‖xxxi− xxx j‖

)
− sα

N

∑
j=1

α jΦ
(
‖xxxi− xxx j‖

)
= F̃(xxxi,s), 1≤ i≤ ni, (5.8)

N

∑
j=1

α jΦ
(
‖xxxi− xxx j‖

)
= g̃(xxxi,s), ni +1≤ i≤ N. (5.9)

From (5.8) – (5.9), we can formulate a linear system of equations

Aααα = F, (5.10)

where
A =

[
A11
A21

]
,

A11 =
[
φ
(
‖xxxiii− xxx j‖

)
− sα

Φ
(
‖xxxi− xxx j‖

)]
i j , 1≤ i≤ ni,1≤ j ≤ N,

A21 =
[
Φ
(
‖xxxk− xxx j‖

)]
k j , ni +1≤ k ≤ N,1≤ j ≤ N,

ααα = [α1 α2 · · · αN ]
T ,

F = [F̃(xxx1,s) · · · F̃(xxxni,s) g̃(xxxni+1,s) · · · g̃(xxxN ,s)]T .

Once we solved the system of equations (5.10), we can determine the unknown coeffi-
cients {α j}N

j=1 and then using (5.6) we can approximate the solution in the Laplace domain
for each s.

If we implement the MPS using conditionally positive definite polyharmonic splines
radial basis functions (PS-RBFs) for solving the Laplace transformed problem (5.5), then
we assume that the solution to (5.5) is approximated by the following formulation:

ũ(x,s)≈ û(x) =
N

∑
j=1

α jΦ(‖xxx− xxx j‖)+
q

∑
d=1

αN+d pd(xxx), xxx ∈Ω, (5.11)
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where pd(xxx) = xdyq−d, 1≤ d ≤ q, q is the number of additional polynomial basis func-
tions, ∆Φ(r) = φ(r) (see Appendix A.1), and φ(r) = r2m ln(r), m ∈ N.

By the collocation method, for 1≤ i≤ ni, from (5.5) we have,[
N

∑
j=1

α jφ(‖xxxi− xxx j‖)+
q

∑
d=1

αN+dqd(xxxi)

]
− sα

[
N

∑
j=1

α jΦ(‖xxxi− xxx j‖)+
q

∑
d=1

αN+dPd(xxxi)

]
= F̃(xxxi,s),

N

∑
j=1

α j
[
φ(‖xxxi− xxx j‖− sα

Φ(‖xxxi− xxx j‖)
]
+

q

∑
d=1

αN+d [qd(xxxi)− sαPd(xxxi)] = F̃(xxxi,s),

(5.12)

where ∆pd(xxx) = qd(xxx), 1≤ d ≤ q. Also, for ni +1≤ i≤ N in (5.5) we have,

N

∑
j=1

α jΦ(‖xxxi− xxx j‖)+
q

∑
d=1

αN+dPd(xxxi) = g̃(xxxi,s). (5.13)

Since there are ‘q’ additional degrees of freedoms, the standard polynomial insolvency
constraints must be applied. Thus, for 1≤ d ≤ q, we have,

ni

∑
j=1

α jqd(xxx j) = 0, (5.14)

∑
j=ni+1

α j pd(xxx j) = 0.

Then (5.12) – (5.14) produce the linear system

Aααα = F, (5.15)

where

A =

 A11 A12
A21 A22
A31 0

 , (5.16)

F =

 F1
F2
0

 , (5.17)

A11 =
[
φ(‖xxxi− xxx j‖)− sα

Φ(‖xxxi− xxx j‖)
]

i j ,1≤ i≤ ni, 1≤ j ≤ N,

A21 =
[
Φ(‖xxxi− xxx j‖)

]
i j ,ni +1≤ i≤ N, 1≤ j ≤ N,

A12 = qd(xxxi)− sα pd(xxxi),1≤ i≤ Ni, 1≤ d ≤ q,

A22 = pd(xxxi),ni +1≤ i≤ N, 1≤ d ≤ q,

A31 =

[
A12
A22

]T

.
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Once we solve the system (5.10) or (5.15) depending on which RBFs we choose, we
determine the unknown coefficients {α j}N

j=1 and then using the corresponding equation
(5.6) or (5.11) we approximate the solution in the Laplace domain for each s.

Fast method of particular solutions (FMPS): If we implement the FMPS using PS-
RBFs, then we note that from the Chapter 4, we need to multiply the matrix A in (5.16) with
an updated vector B by using FSM inside each iteration of any iterative method. This can be
done in the following way:

Suppose A is a block matrix with the following block structure

A =

 A11 A12
A21 A22
A31 0

 . (5.18)

The matrix multiplication of the matrix A, with a vector

B =

[
b1
b2

]
,

can be obtained in each row by
A11b1 +A12b2,

A21b1 +A22b2,

A31b1.

The product of the upper left side of the block matrix with b1 is obtained by using the FSM
technique in each iteration of the iterative method. Remaining products are computed in a
usual way.

In fact, we can adopt a different approach which is described as follows:
For the polynomial function, we can use similar functional approximation as in (4.3) by

applying the similar interpolation formula as in (4.4); i.e.,

pd(xxx) =
n

∑
d=1

pd(xxxl)QM(ξξξ l,ξξξ ). (5.19)

If we implement functional approximation (4.3), (5.19), to find the product of the forms

s(xxxi) =
N

∑
j=1

κ
(
||xxxi− xxx j||

)
b j +

q

∑
d=1

pd(xxx)bN+d, (5.20)
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then as in (4.5),

s(xxxi) =
N

∑
j=1

κ
(
||xxxi− xxx j||

)
b j +

q

∑
d=1

pd(xxxi)bN+d,

≈
N

∑
j=1

b j

(
MD

∑
l=1

MD

∑
m=1

κ (||xxxl− xxxm||)QM(ξξξ l,ξξξ i)QM(ηηηm,ηηη j)

)
+

q

∑
d=1

bN+d

(
q

∑
d=1

pd(xxxi)QM(ξξξ l,ξξξ i)

)
,

=

[
MD

∑
l=1

QM(ξξξ l,ξξξ i)
MD

∑
m=1

κ (||xxxl− xxxm||)
N

∑
j=1

b jQM(ηηηm,ηηη j)

]
+

q

∑
d=1

bN+d

[
q

∑
d=1

pd(xxxi)QM(ξξξ l,ξξξ i)

]
.

(5.21)

The first sum in (5.21) is computed efficiently by following the Algorithm 4.2.1. The
second sum in 5.21 is computed by using direct multiplication but we note that during
the computation of the first sum, the matrices IR, BR for QM(ξξξ l,ξξξ i) had already been
computed.

In this way, we obtain the product in an efficient way and this product will be used
in each iteration of the iteration method which results the solution efficiently. If we need
accurate solution, then we must iterate the algorithm with larger tolerance.

This Step replaces the BPM in [42] which uses the domain-only meshless discretization.

5.1.3 Step 3:

Once the approximate solution of ũ(x,s) is found in the Laplace domain from the Step 2,
we need to invert back to the original time domain which is achieved by applying numerical
inverse Laplace transform schemes. There are many schemes in the literature such as
Gaver-Stehfest, Euler, and Talbot algorithm [1, 93].

All of these algorithms can be combined into a single inversion procedure with different
scaling constants as

u(x, t) =
1
t

ns

∑
ν=1

Re(Wνu(x,sν/t)) , (5.22)

where ns is the number of terms in each algorithm, Wν and sν are exterior and interior scaling
constants respectively. The list of these parameters on each algorithm is given below:

• Gaver-Stehfest Algorithm

ns = 2M, M ∈ Z+,

sν = ν ln(2),

Wν = (−1)M+ν ln(2)
min(ν ,M)

∑
k=[(ν+1)/2]

kM+1

M!

(
M
k

)(
2k
k

)(
k

ν− k

)
,



64

where [x] is the greatest integer less than or equal to x.

• Euler Algorithm

ns = 2M, M ∈ Z+,

sν =
M ln(10)

3
+πiν ,

Wν = (−1)ν10M/3
ξν ,

where,

ξν =



1
2
, ν = 0,

1, 1≤ ν ≤M,

1
2M , ν = 2M,

ξ2M−ν = ξ2M−ν+1 +2−M(M
ν

)
, 0 < ν < M.

• Talbot Algorithm

ns = M−1, M ∈ Z+,

sν =


2M
5

, ν = 0,

2νπ

5
(cot(νπ/M)+ i) , 0 < ν < M,

Wν =


2

10
es0, ν = 0,

2
5
[
1+ i(νπ/M)

(
1+[cot(νπ/M)]2

)
− icot(νπ/M)

]
esν , 0 < ν < M.

The accuracy of these algorithm depends on the choice of the number ns of the terms in (5.22).
As ns increases, the accuracy improves first, but then round-off errors become dominant and
finally the accuracy declines. This is a rather common phenomenon in practical numerical
computation. The optimal ns has a significant impact on the quality of the final solution of
our proposed method. According to [1], j− significant digits of accuracy can be obtained by
setting M = [1.1 j] in Gaver-Stehfest and M = [1.7 j] in Euler and Talbot algorithms. In this
dissertation, we have used Talbot algorithm to invert the solution from the Laplace space.

5.2 Numerical results

First, we numerically solve a time fractional advection-diffusion equation using MPS and
compare the result with some of the well-known methods. After figuring out the supremacy
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of our proposed method compared with the others, we use the fast version of the MPS,
FMPS to deal with problem with large number of collocation points. We compare the results
by using RMSE, MAE, Relative Average Error (RAE). RMSE and MAE are defined as in
(2.54), (2.55) respectively and RAE is defined follows:

RAE =

√√√√∑
nt
j=1(û j−u j)

2

∑
nt
j=1(u( j))2 , (5.23)

where nt , û j and u j are the number of test points, approximate solution, and exact solution,
respectively.

Example 5.2.1. Let us consider the time fractional diffusion equation with the Dirichlet
boundary conditions in a unit square domain Ω = [0,1]× [0,1]. This problem has been
solved with LTBPM in [42] and compared with other well-known techniques. So, let us
introduce the similar problem,

∂ αu(xxx, t)
∂ tα

= ∆u(xxx, t)+
[

2t2−α

Γ(3−α)
−2t2

]
exp(x+ y), xxx ∈ (0,1)× (0,1), (5.24)

with boundary condition
u(xxx, t) = t2 exp(x+ y),

and initial condition
u(xxx,0) = 0.

We choose the fractional parameter α = 0.85 as in example [42]. The analytical solution
is u(xxx, t) = t2ex+y. The Laplace transform problem for (5.24) is given in the Appendix C.

In the table 5.1, we have compared the accuracy obtained by MPS with other methods
for T = 1 with ∆h = 0.2, where ∆h is the length of the discretization of the collocation
points in the square domain. We use the similar computational points as in [42], just to
compare with LTBPM and other methods. Table 5.1 and Figure 5.1 are obtained by using
Talbot inversion algorithm with M = 64 in MPS at T = 1. The Matérn RBFs with order 3 at
the shape parameter 1.81 has been used as a basis for MPS to obtain the result in Table 5.1.

Table 5.1: Comparison of the RAE and MAE of MPS with LTBPM and DRBF

RAE MAE
MPS (Matérn 3) 8.228e-07 3.358e-04

LTBPM 5.596E-05 4.135E-04
DRBF (∆t = 0.1) 2.073E-03 1.234E-02

DRBF (∆t = 0.004) 5.116E-5 3.046E-04
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In [42], LTBPM has RAE around 1E − 06 and 1E − 07 for ∆h = 0.1 and ∆h = 0.05
respectively. Figure 5.1 shows the RAE for different shape parameters by the MPS. As we
see in the Figure 5.1, for each size of the domains, MPS has better accuracy than LTBPM.
All of the RAE for different computational points, Matérn RBFs has similar results. As
we increase the computational points, the optimal shape parameter shifted to the right and
accuracy improved more. Also near the optimal shape parameter, Matérn has sudden jump.
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Figure 5.1: RAE obtained by Matérn RBFs with order 3 at different shape parameters with
different computational points.

The RMSE, RAE, and MAE obtained by several RBFs including MQ, IMQ, Gaussian,
Matérn RBFs with order 2 and 3 are shown in the Table 5.2. The Talbot inversion algorithm
has been used at T = 1, for the number of computational points obtained from ∆h = 0.05.
The optimal RMSE and RAE are obtained at the similar shape parameter for each RBFs
but the optimal MAE is obtained at different shape parameter. Among all of these RBFs,
Matérn RBFs with order 3 has better accuracy.
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Table 5.2: RMSE, RAE, and MAE obtained by different RBFs at ∆h = 0.05

RBFs RMSE (ep) RAE (ep) MAE(ep)
MQ 4.661E-08 (3.535) 1.427E-08 (3.535) 7.453E-06 (1.876)
IMQ 1.056E-06 (1.699) 3.232E-07 (1.699) 1.364E-05 (1.701)

Gaussian 1.289E-06 (1.045) 3.947E-07 (1.045) 2.350E-04 (4.739)
Matérn (2) 4.391E-08 (1.654) 1.344E-08 (1.654) 1.332E-05 (0.985)
Matérn (3) 9.656E-09 (2.02) 2.956E-09 (2.02) 2.034E-06 (1.326)

Now, we show the numerical results for the higher number of computational points. To
solve the problem with higher number of points, we use the FMPS with PS as a RBFs. We
have used ∆h = 0.01 for the discretization of the collocation points in the square domain.
Figures 5.2 - 5.4 depict the RAE, MAE and RMSE errors for 5,9,13 orders of the PS-RBFs
at each iteration. Figure 5.5 shows the computational time used by various orders of the
PS-RBFs at each iteration. In FMPS, we have chosen 144 Chebyshev points. Table 5.3
illustrates the RMSE, RAE, MAE and the computational time used by MPS using various
orders of the PS-RBFs. As we see from the Table 5.3 and Figures 5.2 - 5.4 that to achieve
the similar accuracy FMPS is highly efficient as compared to MPS. Now, we increase the
number of computational points and observe more numerical results using FMPS.
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Figure 5.2: RAE obtained by different polynomial order at each iteration
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Figure 5.5: Computational time taken by different polynomial order at each iteration.

Iteration
50 100 150 200 250 300

M
A

E

10-15

10-10

10-5

100

105

5
9
13

Figure 5.3: MAE obtained by different polynomial order at each iteration
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Figure 5.4: RMSE obtained by different polynomial order at each iteration
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Table 5.3: RMSE, RAE, MAE, and the computational time obtained by MPS using different
polyharmonic orders

Order RMSE RAE MAE time (sec)
5 2.645407E-06 8.254937E-07 6.413589E-06 2713
9 1.598312E-09 4.987499E-10 6.976534E-09 2782

13 5.768313E-10 1.799990E-10 5.281207E-09 2827
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Chapter 6

Conclusion and Future works

As we have discussed in our introductory Chapter 1, the three different issues in MPS: a)
obtaining the closed-form particular solutions, b) the selection of the good shape parameter
for various RBFs, and c) simulations of the problems which involve large number of
interpolation points, have been thoroughly investigated. These proposed techniques for
resolving each issues have been validated by the numerical results sections. Now, we draw a
conclusion on each issues in the next section.

6.1 Conclusion

• Obtaining the closed-form particular solutions: In this study, we focus on the
derivation of the closed-form particular solutions of the Laplace and biharmonic
differential operators using Matérn and Gaussian RBFs in the context of the MPS and
LMPS. Numerical examples presented in each chapters of this dissertation demon-
strate the effectiveness of the derived particular solutions. The obtained closed-form
particular solutions using the Gaussian RBFs are particularly useful for the LMPS.
Since the LMPS is a localized method in which only a small number of neighboring
points is required in the solution process, we need to use the RBFs with high conver-
gence rate. To our knowledge, only MQ and inverse MQ are effective for the LMPS.
The derived particular solutions using the Gaussian RBFs will allow the practitioners
to have one more choice for the implementation of the LMPS. One drawback of our
derived particular solutions is the use of the special functions erf and Ei which is
more computational intensive than the standard functions such as sine, exponential
and polynomial. With the increasing computing power of a modern computer, the
above mentioned issue is less of a problem. These derived particular solutions have
also been implemented to solve time fractional differential equations.

• Selection of the good shape parameter for various RBFs: To select a good con-
stant shape parameter of the Gaussian RBFs, we apply the LOOCV algorithm. The
numerical results in Section 3.3 show that derived particular solutions are effective
for solving boundary value problems in irregular domains with sharp edges. Existing
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variable shape parameter strategies work well for the MPS such as other RBFs colloca-
tion methods. The modified and newly proposed techniques produce the comparable
results with the existing one. The proposed idea of modifying the trigonometric vary-
ing shape parameter to avoid the negative c j’s does not lose its effectiveness in terms
of accuracy. We conclude that, we do not have to stick on the uniformly distributed
random numbers but we can use other random numbers like quasi-random numbers.
The global optimization tool SA works well than PS and GA. The idea of using the
existing shape parameter strategies as an initial guess for PS and SA works very well
for the exponentially varying shape parameter strategy but it does not perform better
for other strategies for a large size of the search interval.

• Simulations of the problems which involve large number of interpolation points:
In this dissertation, we propose to couple the FSM with GMRES to speed up the
computational efficiency of the MPS. FMPS has been proven to be a very effective
alternative for solving the PDEs when a large number of computational points is
required for both two and three dimensional problems. The numerical results in
Section 4.3 show the proposed method is highly efficient. The difficulty of global
RBFs collocation methods such as the MPS for solving large-scale elliptic PDEs
has been alleviated. Also, time fractional diffusion equations have been solved with
large number of collocation points by using the Laplace transform techniques. To our
knowledge, the proposed algorithm is the first MPS fast method which is a RBFs-based
method for solving PDEs.

6.2 Future works

Our main focus in this dissertation is on the derivation of some techniques to improve the
MPS for solving more challenging science and engineering problems. In this section, we
list some of the other extensions of this work.

• In this dissertation, the derivation of the closed-form particular solutions of the Matérn
and Gaussian RBFs have been implemented in MPS, LMPS, and FMPS for solving
various PDEs. These derived closed-form particular solutions can be applied in other
numerical methods including MFS-MPS and DRM for solving challenging science
and engineering problems. These proposed methods can be extended to axisymmetric
problems [87, 88]. Also, the derivation of the closed-form particular solutions of the
higher order differential operator can be another subject of future research project.
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• In Chapter 3, we observed that, the global optimization tools SA, PS, and GA are
coupled with the existing variable shape parameter strategies which help us to obtain
the good shape parameter. Since the work in Chapter 3 is an introduction for newly
proposed ideas, we have not thoroughly investigated PS and SA and left it as a
future work. There are still other global optimization tools including particle swarm
optimization which can also be applied to obtain the good constant and variable shape
parameter.

• Solving large-scale problem using global MPS was a difficult task. The development
of the FMPS has shown an alternative way to simulate the large-scale problems. In
FMPS, we have used Chebyshev polynomials to approximate the given RBFs or its
corresponding particular solutions. Instead of using the Chebyshev polynomials, we
can try other effective interpolation scheme to develop the similar fast method. It
would be interesting to compare the performance of the proposed approach which
is a global method to localized RBFs collocation methods for solving large-scale
problems. Further improvement in the accuracy of FMPS will be the subject of our
another future research.

• In Chapter 4, we have only coupled the FSM with MPS but these approach can be
implemented at any RBFs collocation methods including MFS, and MFS-MPS.

• Although we have successfully solved the time fractional diffusion equations by FMPS,
there are still more challenging real-life problems which need to solve efficiently. In
future, we will continue our research to solve other science and engineering problems
using FMPS.
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Appendix A

List of the closed-form particular solutions for various RBFs

A.1 Closed-form particular solutions for polyharmonic splines:

A.1.1 In 2D [28]

∆Φ = r2n−1 =⇒Φ =
1

(2n+1)2 r2n+1,

∆
2
Φ = r2n−1 =⇒Φ =

1
(2n+1)2(2n+3)2 r2n+3,

∆Φ = r2n lnr =⇒Φ =
r2n+2

4(n+1)2

(
lnr− 1

n+1

)
,

∆
2
Φ = r2n lnr =⇒Φ =

r2n+4

16(n+1)2(n+2)2

[
lnr− 2n+3

(n+1)(n+2)

]
.

A.1.2 In 3D [28]

∆Φ = r2n−1 =⇒Φ =
r2n+1

(2n+1)(2n+2)
,

∆
2
Φ = r2n−1 =⇒Φ =

r2n+3

(2n+1)(2n+2)(2n+3)(2n+4)
.
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A.2 Closed-form particular solutions for multiquadrics:

A.2.1 In 2D [77, 106]

∆Φ =
√

r2 + c2 =⇒Φ =
4c2 + r2

9

√
r2 + c2− c3

3
ln
(

c+
√

r2 + c2
)
,

∆
2
Φ =

√
r2 + c2 =⇒Φ =

2c2

45
(r2 + c2)3/2− 7c4

60

√
r2 + c2 +

2c2−5r2

60
c3 ln

(
c+
√

r2 + c2
)

+
1

225
(r2 + c2)5/2 +

c3r2

12
,

∆Φ =
√

1+ c2r2 =⇒Φ =
1

9c2

[
(4+ c2r2)

√
1+ c2r2−3ln

(
1+
√

1+ c2r2
)]

,

∆
2
Φ =

√
1+ c2r2 =⇒Φ =

2−5c2r2

60c4 ln
(

1+
√

1+ c2r2
)
+

√
1+ c2r2

900c4 (4c4r4 +48c2r2−61)

+
2c2r2 +1

24c4 .
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A.2.2 In 3D [77, 106]

∆Φ =
√

r2 + c2 =⇒Φ =


2r2 +5c2

24

√
r2 + c2 +

c4

8r
ln

(
r+
√

r2 + c2

c

)
, r > 0,

c3

3
, r = 0,

∆
2
Φ =

√
r2 + c2 =⇒Φ =



c4(6r2− c2)

96r
ln

(
r+
√

r2 + c2

c

)

+

√
r2 + c2

1440
(4r4 +28c2r2−81c4), r > 0,

−c5

15
, r = 0,

∆Φ =
√

1+ c2r2 =⇒Φ =


5+2c2r2

24c2

√
1+ c2r2 +

sinh−1(cr)
8c3r

, r > 0,

1
3c2 , r = 0,

∆
2
Φ =

√
1+ c2r2 =⇒Φ =



1+
√

c2r2

1440c4 (4c4r4 +28c2r2−81)

+
sinh−1(cr)

96c5r
(6c2r2−1), r > 0,

−1
15c4 , r = 0.
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A.3 Closed-form particular solutions for inverse multiquadrics:

A.3.1 In 2D [77, 106]

∆Φ =
1√

r2 + c2
=⇒Φ =

√
r2 + c2− c ln

(
c+
√

r2 + c2
)
,

∆
2
Φ =

1√
r2 + c2

=⇒Φ =
4r2−11c2

36

√
r2 + c2 +

c(2c2−3r2)

12
ln
(

c+
√

r2 + c2
)

+
c3 ln(2c)

6
+

r2c
4
,

∆Φ =
1√

1+ c2r2
=⇒Φ =

1
c2

[√
1+ c2r2− ln

(
1+
√

1+ c2r2
)]

,

∆
2
Φ =

1√
1+ c2r2

=⇒Φ =

√
1+ c2r2

36c4 (4c2r2−11)+
2−3c2r2

12c4 ln
(

1+
√

1+ c2r2
)

+
r2

4c2 .
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A.3.2 In 3D [77, 106]

∆Φ =
1√

r2 + c2
=⇒Φ =


1
2

√
r2 + c2 +

c2

2r
ln

(
r+
√

r2 + c2

c

)
, r > 0,

c
2

r = 0,

∆
2
Φ =

1√
r2 + c2

=⇒Φ =



c2(4r2− c2)

16r
ln

(
r+
√

r2 + c2

c

)

+
2r2−13c2

48

√
r2 + c2, r > 0,

−c3

3
, r = 0,

∆Φ =
1√

1+ c2r2
=⇒Φ =


1+ c2r2

2c2 +
sinh−1(cr)

2c3r
, r > 0,

1
c2 r = 0,

∆
2
Φ =

1√
1+ c2r2

=⇒Φ =



√
1+ c2r2

48c4 (2c2r2−13)

+
sinh−1(cr)

16c5r
(4c2r2−1), r > 0,

−1
3c4 , r = 0.
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Appendix B

Shape parameter strategies

B.1 List of some of the constant shape parameter strategies

• R. Hardy [47]

c = 0.815d, where d =
1
N

N

∑
i=1

di,

di is the distance from the ith center to its nearest neighbor and N is the number of
collocation points,

• R. Franke [39]
c = (1.25D)/

√
N,

where D is the diameter of the smallest circle containing all data points,

• G. E. Fasshauer [34]
c = 2/

√
N,

• Leave one out cross validation (LOOCV) [36, 86],

• Golden section search algorithm [100],

• Genetic Algorithm [32].

B.2 Leave-one-out cross validation (LOOCV)

We briefly define the LOOCV method for finding the shape parameter as in [36].
Suppose,

xxx[k] = [xxx1, ...,xxxk−1,xxxk+1, ...,xxxN ]
T

is the vector containing all of the given points except xxxk. Similarly, we can define f [k],P[k]
f ,α [k]

as the vectors containing functional values, approximation and undetermined coefficients
removing the kth term respectively. Then, the following pseudo code for LOOCV given in
[36] computes the good shape parameter for RBFs approximation:
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Algorithm
Fix c

For k = 1, ...,N
Let

P[k]
f (xxx) =

N−1

∑
j=1

ααα
[k]
j φ

(
‖xxx− xxx[k]j ‖

)
Compute the error estimator at the kth data point

ek = | f (xxxk)−P[k]
f (xxxk)|

end
Form the cost vector e = [e1, ...,eN ]

T

The optimal c is given by minimizing ||e||
Similar procedure works for the MPS except the interpolation matrix will be obtained

from the MPS discretization. The implementation of the LOOCV algorithm presented above
is very expensive. In [86], Rippa has shown that the algorithm can be simplified to a single
formula by using the following formula for the cost vector:

ek =
αk

B−1
kk

,

where αk is the kth coefficient in the expansion of the interpolant Pf based on the full data
set, and B−1

kk is the kth diagonal element of the inverse of the corresponding interpolation
matrix. In [36], Fasshauer has given a MATLAB implementation of the LOOCV which is
presented as follows:

• Construction of the cost function:

% CostEps(.) is a cost function which computes the norm of the cost

vector

%c-shape parameter

%rbf-radial basis function

%DM-Distance Matrix between all given data points

%rhs-functional values at given data points

%

function ceps=CostEps(c,rbf,DM,rhs)

A=rbf(c,DM);% Constructs the interpolation matrix

invA=pinv(A);% Find the pseudoinverse of the interpolation matrix
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errorvector=(invA*rhs)./diag(invA);%Computes the cost vector by using

Rippa’s formula

ceps=norm(errorvector);% Norm of the cost vector

• Minimization of the cost function
% The output of this function is the good shape parameter

c=fminbnd((c) CostEps(c,rbf,DM,rhs),minc,maxc);

where minc and maxc define the end points of the search interval for the good shape
parameter.
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Appendix C

LAPLACE TRANSFORMED PROBLEM

C.1 Laplace transforms

Definition C.1.1 (Laplace transform [42]). Let f (t) be a casual time domain function as an
independent variable t ≥ 0 and f̃ (s) denotes its image in Laplace space domain. Laplace
transform is defined by

f̃ (s) = L( f (t)) =
∫

∞

0
f (t)e−stdt, (C.1)

where s is Laplace transform parameter, and unless otherwise specified the quantities in
Laplace space domain are denoted by an over tilde.

Note that
L(t p) =

Γp+1
sp+1 , p >−1.

Definition C.1.2. Laplace transform of the Caputo fractional derivative [84] can be written
as

L
(

∂ α f (t)
∂ tα

)
= sα f̃ (s)− sα−1 f (0), 0 < α < 1, t ≥ 0. (C.2)

C.2 Laplace transform of the time fractional diffusion equation

C.2.1 Laplace transform of the Eq. (5.24)

Suppose
Lu(xxx, t) = ũ(xxx,s),

L

(
∂ αu(xxx, t)

∂ tα

)
= L

(
∆u(xxx, t)+

[
2t2−α

Γ(3−α)
−2t2

]
exp(x+ y)

)
,

sα ũ(xxx,s)− sα−1ũ(xxx,0) = ∆ũ(xxx,s)+
[

2
Γ(3−α)

· Γ(3−α)

s(3−α)
−2

Γ(3)
s3

]
exp(x+ y),

(∆− sα)ũ(xxx,s) = −
[

2
s3−α

− 4
s3

]
exp(x+ y).
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