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A KANSA-RADIAL BASIS FUNCTION METHOD FOR ELLIPTIC BOUNDARY VALUE
PROBLEMS IN ANNULAR DOMAINS

XIAO-YAN LIU, ANDREAS KARAGEORGHIS, AND C. S. CHEN

Abstract. We employ a Kansa-radial basis function (RBF) method for the numerical solution of elliptic boundary
value problems in annular domains. This discretization leads, with an appropriate selection of collocation points
and for any choice of RBF, to linear systems in which the matrices possess block circulant structures. These linear
systems can be solved efficiently using matrix decomposition algorithms (MDAs) and fast Fourier transforms (FFTs).
A suitable value for the shape parameter in the various RBFs used is found using the leave-one-out cross validation
(LOOCV) algorithm. In particular, we consider problems governed by the Poisson equation, the inhomogeneous
biharmonic equation and the inhomogeneous Cauchy-Navier equations of elasticity. In addition to its simplicity, the
proposed method can both achieve high accuracy and solve large-scale problems. The feasibility of the proposed
techniques is illustrated by several numerical examples.

1. Introduction

During the past decade, radial basis function (RBF) collocation methods have attracted great attention in scientific
computing and have been widely applied to solve a large class of problems in science and engineering. Among the
various types of RBF collocation methods, the Kansa method [14], proposed in early 1990s is the most known.
One of the main attractions of this method is its simplicity, since in it neither a boundary nor a domain discretiza-
tion are required. This feature is especially useful for solving high dimensional problems in complex geometries.
Furthermore, we have the freedom of choosing an RBF as the basis function which does not necessary satisfy the
governing equation. Hence, the Kansa method is especially attractive for solving nonhomogeneous equations. In
general, the multiquadric (MQ) function is the most commonly used RBF in the implementation of the Kansa
method. Using the MQ, an exponential convergence rate has been observed and thus high accuracy beyond the
reach of the traditional numerical methods such as finite element and finite difference methods can be achieved.
Despite all the advantages mentioned above, the Kansa method has a number of unfavorable features. It is known
that the determination of the optimal shape parameter of various RBFs is still a challenge. Currently, there are
a variety of techniques [5, 11, 15, 25, 32] available for the determination of a suitable shape parameter. In this
paper, we will use the so called leave-one-out cross validation (LOOCV) proposed by Rippa [32] to find a sub-
optimal shape parameter. Another potential problem of the RBF collocation methods is the ill-conditioning of the
resultant matrix. On the one hand, when the number of interpolation points is increased, the accuracy improves,
while, on the other hand, the condition number becomes larger. This phenomenon is referred to as the principle
of uncertainty by Schaback [33, 34]. Eventually, when the number of interpolation points becomes too large, the
condition number becomes enormous and the solution breaks down. When using globally supported RBFs such as
the MQ, the resultant matrix of the Kansa method is dense and ill-conditioned. Not only do we have a stability
problem, but also the computational cost becomes very high. The Kansa method is thus not suitable for the
solution of large-scale problems which require the use of a large number of interpolation points. In recent years,
the localized Kansa method [26] has been developed for handling large-scale problems. In this approach, a local
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influence domain is established for each interpolation point and only a small number of neighbouring points is
used to approximate the solution. The resultant matrix is thus sparse allowing for the use of a large number of
collocation points. However, the accuracy of the localized Kansa method is rather low because the local influence
domain only contains a small number of interpolation points.

In this paper, we couple the Kansa method and a matrix decomposition technique for solving problems using a large
number of interpolation points. Since global RBFs are used as basis functions, we can also achieve high accuracy in
numerical results. To be more specific, we consider the discretization of elliptic boundary value problems in annular
domains using the Kansa method. For any choice of RBF, such appropriate discretizations lead to linear systems
in which the coefficient matrices possess block circulant structures and which are solved efficiently using matrix
decomposition algorithms (MDAs). An MDA [1] is a direct method which reduces the solution of an algebraic
problem to the solution of a set of independent systems of lower dimension with, often, the use of fast Fourier
Transforms (FFTs). MDAs lead to considerable savings in computational cost and storage. This decomposition
technique not only allows us to handle large-scale matrices but also makes it possible to implement the LOOCV
technique to find the sub-optimal shape parameter of the RBFs used. It should be noted that the LOOCV
technique is not suitable when the size of the matrix is too large. Such MDAs have been used in the past in various
applications of the method of fundamental solutions (MFS) to boundary value problems in geometries possessing
radial symmetry, see e.g., [16, 17]. A similar MDA was also applied for the approximation of functions and their
derivatives using RBFs in circular domains in [20], see also, [13]. Some preliminary results for the Dirichlet Poisson
problem have recently been presented in [19].

The paper is organized as follows. In Section 2 we present the Kansa method and the proposed MDA for both
the Dirichlet and the mixed Dirichlet-Neumann Poisson problem. The Kansa-RBF discretization for the first and
second biharmonic problems is given in Section 3. The corresponding discretization and MDA for the Dirichlet
and the mixed Dirichlet-Neumann boundary value problems for the more challenging Cauchy-Navier equations of
elasticity is described in Section 4. In Section 5 we present the results of three numerical experiments. In the first
example various RBFs are tested and the normalized MQ turns out to be the most effective one. As a result, in the
other examples, we focus on using the normalized MQ. We also show that the LOOCV technique is very effective
for finding a good shape parameter of the RBFs. All three examples show that we can solve large-scale problems
with high accuracy. Finally, in Section 6 some conclusions and ideas for future work are outlined.

2. The Poisson equation

2.1. The problem. We first consider the Poisson equation

∆u = f in Ω, (2.1a)

subject to the Dirichlet boundary conditions

u = g1 on ∂Ω1, (2.1b)

u = g2 on ∂Ω2, (2.1c)

in the annulus

Ω = {x ∈ R : ϱ1 < |x| < ϱ2} . (2.2)

The boundary ∂Ω = ∂Ω1 ∪ ∂Ω2, ∂Ω1 ∩ ∂Ω2 = ∅ where ∂Ω1 =
{
x ∈ R2 : |x| = ϱ1

}
and ∂Ω2 =

{
x ∈ R2 : |x| = ϱ2

}
.
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2.2. Kansa’s method. In Kansa’s method [14] we approximate the solution u of boundary value problem (2.1)
by a linear combination of RBFs [3, 7]

uN(x, y) =

N∑
n=1

anϕn(x, y), (x, y) ∈ Ω̄. (2.3)

The RBFs ϕn(x, y), n = 1, . . . ,N can be expressed in the form

ϕn(x, y) = Φ(rn), where r2n = (x− xn)
2 + (y − yn)

2. (2.4)

Thus each RBF ϕn is associated with a point (xn, yn). These points {(xn, yn)}Nn=1 are usually referred to as centers.
The coefficients {an}Nn=1 in equation (2.3) are determined from the collocation equations

∆u(xm, ym) = f(xm, ym), m = 1, . . .Mint, (2.5a)

u(xm, ym) = g1(xm, ym), m = Mint + 1, . . . ,Mint +Mbry1
, (2.5b)

u(xm, ym) = g2(xm, ym), m = Mint +Mbry1
+ 1, . . . ,Mint +Mbry, (2.5c)

where Mint + Mbry = M and the points {(xm, ym)}Mm=1 ∈ Ω̄ are the collocation points. Note that, in general, the
collocation points are not the same as the centers and M ≥ N.

In this work, however, we shall assume that M = N and that the centres are the same as the collocation points. In
particular, we define the M angles

ϑm =
2π(m− 1)

M
, m = 1, . . . ,M, (2.6)

and the N radii
rn = ϱ1 + (ϱ2 − ϱ1)

n− 1

N − 1
, n = 1, . . . , N. (2.7)

The collocation points {(xmn, ymn)}M,N
m=1,n=1 are defined as follows:

xmn = rn cos(ϑm +
2παn

N
), ymn = rn sin(ϑm +

2παn

N
), m = 1, . . . ,M, n = 1, . . . , N. (2.8)

In (2.8) the parameters {αn}Nn=1 ∈ [−1/2, 1/2] correspond to rotations of the collocation points and may be used
to produce more uniform distributions. Typical distributions of collocation points without rotation (αn = 0, n =
1, . . . , n) and with rotation are given in Figure 1. In the current application of Kansa’s method, we take

uMN (x, y) =
M∑

m=1

N∑
n=1

amnϕmn(x, y), (x, y) ∈ Ω̄, (2.9)

where the M = MN coefficients {(amn)}M,N
m=1,n=1 are unknown. These coefficients are determined by collocating

the differential equation (2.1a) and the boundary conditions (2.1b)-(2.1c) in the following way:

∆uMN (xmn, ymn) = f(xmn, ymn), m = 1, . . . ,M, n = 2, . . . , N − 1,

uMN (xm1, ym1) = g1(xm1, ym1), uMN (xmN , ymN ) = g2(xmN , ymN ), m = 1, . . . ,M, (2.10)

yielding a total of M = MN equations.
By vectorizing the arrays of unknown coefficients and collocation points from

a(n−1)M+m = amn, x(n−1)M+m = xmn, y(n−1)M+m = ymn, m = 1, . . . ,M, n = 1, . . . , N, (2.11)

equations (2.10) yield a linear system of the form

Aa =


A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N

...
...

. . .
...

AN,1 AN,2 . . . AN,N




a1

a2

...
aN

 =


b1
b2
...

bN

 = b . (2.12)
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The M ×M submatrices An1,n2 , n1, n2 = 1, . . . , N are defined as follows:

(An1,n2)m1,m2
= ∆ϕm2,n2(xm1,n1 , ym1,n1), m1,m2 = 1, . . . ,M, n1 = 2, . . . , N − 1, n2 = 1, . . . , N, (2.13a)

(A1,n)m1,m2
= ϕm2,n(xm1,1, ym1,1), (2.13b)

m1,m2 = 1, . . . ,M, n = 1, . . . , N,

(AN,n)m1,m2
= ϕm2,n(xm1,N , ym1,N ), (2.13c)

while the M × 1 vectors an, bn, n = 1, . . . , N are defined as

(an)m = amn, m = 1, . . . ,M, N = 1, . . . , N,

(bn)m = f(xmn, ymn), m = 1, . . . ,M, n = 2, . . . , N − 1,

(b1)m = g1(xm1, ym1), (bN )m = g2(xmN , ymN ), m = 1, . . . ,M.

2.2.1. Neumann boundary conditions. Suppose that instead of boundary condition (2.1b) we had the Neumann
boundary condition

∂u

∂n
= g1 on ∂Ω1, (2.14)

where n(x, y) = (nx,ny) denotes the outward normal vector to the boundary at the point (x, y). The corresponding
submatrices (A1,n) , n = 1, . . . , N , in (2.13b) are now defined by

(A1,n)m1,m2
=

∂ϕm2,n

∂n
(xm1,1, ym1,1), m1,m2 = 1, . . . ,M. (2.15)

As proved in the Appendix (Lemma 1) each of the M ×M submatrices An1,n2 , n1, n2 = 1, . . . , N , in the coefficient
matrix in (2.12) is circulant [6]. Hence matrix A in system (2.12) is block circulant.

(a) (b)

Figure 1. Typical discretization of the domain with (a) no rotation of the collocation points and
(b) with rotation of the collocation points. The crosses (+) denote the collocation points.
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2.3. Matrix decomposition algorithm. First, we define the unitary M ×M Fourier matrix

UM =
1√
M


1 1 1 · · · 1
1 ω̄ ω̄2 · · · ω̄M−1

1 ω̄2 ω̄4 · · · ω̄2(M−1)

...
...

...
...

1 ω̄M−1 ω̄2(M−1) · · · ω̄(M−1)(M−1)

 , where ω = e2πi/M , i2 = −1. (2.16)

If IN is the N ×N identity matrix, pre–multiplication of system (2.12) by IN ⊗ UM yields

(IN ⊗ UM )A (IN ⊗ U∗
M ) (IN ⊗ UM )a = (IN ⊗ UM ) b or Ãã = b̃, (2.17)

where
Ã = (IN ⊗ UM )A (IN ⊗ U∗

M )

=


UMA1,1U

∗
M UMA1,2U

∗
M · · · UMA1,NU∗

M

UMA2,1U
∗
M UMA2,2U

∗
M · · · UMA2,NU∗

M
...

...
...

UMAN,1U
∗
M UMAN,2U

∗
M · · · UMAN,NU∗

M

 =


D1,1 D1,2 · · · D1,N

D2,1 D2,2 · · · D2,N

...
...

...
DN,1 DN,2 · · · DN,N

 , (2.18)

and

ã=(IN ⊗ UM )a=


UMa1

UMa2

...
UMaN

=


ã1

ã2

...
ãN

 , f̃=(IN ⊗ UM ) b=


UMb1
UMb2

...
UMbN

=


b̃1
b̃2
...

b̃N

 . (2.19)

From the properties of circulant matrices [6], each of the M ×M matrices Dn1,n2 , n1, n2 = 1, · · · , N , is diagonal.
If, in particular

Dn1,n2 = diag
(
Dn1,n21

, Dn1,n22
, . . . , Dn1,n2M

)
and An1,n2 = circ

(
An1,n21

, An1,n22
. . . , An1,n2M

)
,

we have, for n1, n2 = 1, · · · , N ,

Dn1,n2m
=

M∑
k=1

An1,n2k
ω(k−1)(m−1), m = 1, · · · ,M. (2.20)

Since the matrix Ã consists of N2 blocks of order M , each of which is diagonal, the solution of system (2.17) can
be decomposed into solving the M independent systems of order N

Em xm = ym, m = 1, · · · ,M, (2.21)

where
(Em)n1,n2

= Dn1,n2m
, n1, n2 = 1, · · · , N,

and
(xm)n = (ãn)m , (ym)n =

(
b̃n

)
m
, n = 1, · · · , N. (2.22)

Having obtained the vectors xm, m = 1, · · · ,M , we can recover the vectors ãn, n = 1, · · · , N and, subsequently,
the vector a from (2.19), i.e.

a=


a1

a2

...
aN

 =(IN ⊗ U∗
M ) ã=


U∗
M ã1

U∗
M ã2

...
U∗
M ãN

 . (2.23)

In conclusion, the MDA can be summarized as follows:
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Algorithm 1
Step 1: Compute b̃n b̃n = UMbn, n = 1, · · · , N.

Step 2: Construct the diagonal matrices Dn1,n2 from (2.20).
Step 3: Solve the M, N ×N systems (2.21) to obtain the {xm}Mm=1,

and subsequently the {ãm}Nm=1 from (2.22).
Step 4: Recover the vector of coefficients a from (2.23).

In Steps 1, 2 and 4 FFTs are used while the most expensive part of the algorithm is the solution of M linear
systems, each of order N . The FFTs are carried out using the MATLAB c⃝ [31] commands fft and ifft. In
addition to the savings in computational cost, considerable savings in storage are achieved since only one row of
the circulant matrices involved needs to be stored.

3. The Biharmonic equation

3.1. The problem. We next consider the biharmonic equation

∆2u = f in Ω, (3.1a)

subject to the boundary conditions

u = g1 and
∂u

∂n
= h1 on ∂Ω1, (3.1b)

u = g2 and
∂u

∂n
= h2 on ∂Ω2, (3.1c)

where Ω is the annulus (2.2). This problem is known as the first biharmonic problem.

3.2. Kansa’s method. We approximate the solution u of boundary value problem (3.1) by (2.9).
The coefficients are determined by collocating the differential equation (3.1a) and the boundary conditions (3.1b)-
(3.1c) in the following way:

∆2uMN (xmn, ymn) = f(xmn, ymn), m = 1, . . . ,M, n = 3, . . . , N − 2,

uMN (xm1, ym1) = g1(xm1, ym1) and
∂u

∂n
(xm1, ym1) = h1(xm1, ym1), m = 1, . . . ,M,

uMN (xmN , ymN ) = g2(xmN , ymN ) and
∂u

∂n
uMN (xmN , ymN ) = h2(xmN , ymN ), m = 1, . . . ,M, (3.2)

yielding a total of MN equations.
By vectorizing the arrays of unknown coefficients and collocation points via (2.11), equations (3.2) yield a system
of the form (2.12). In this case, the M ×M submatrices An1,n2 , n1, n2 = 1, . . . , N are defined as follows:

(An1,n2)m1,m2
= ∆2ϕm2,n2(xm1,n1 , ym1,n1), m1,m2 = 1, . . . ,M, n1 = 3, . . . , N − 2, n2 = 1, . . . , N,

(A1,n)m1,m2
= ϕm2,n(xm1,1, ym1,1), (A2,n)m1,m2

=
∂ϕm2,n

∂n
(xm1,1, ym1,1),

m1,m2 = 1, . . . ,M, n = 1, . . . , N, (3.3)

(AN,n)m1,m2
= ϕm2,n(xm1,N , ym1,N ), (AN−1,n)m1,m2

=
∂ϕm2,n

∂n
(xm1,N , ym1,N ),

while the M × 1 vectors an, bn, n = 1, . . . , N are defined as

(an)m = amn, m = 1, . . . ,M, N = 1, . . . , N,

(bn)m = f(xmn, ymn), m = 1, . . . ,M, n = 3, . . . , N − 2,

(b1)m = g1(xm1, ym1), (b2)m = h1(xm1, ym1), m = 1, . . . ,M,

(bN )m = g2(xmN , ymN ), (bN−1)m = h2(xmN , ymN ), m = 1, . . . ,M.
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3.2.1. Second biharmonic problem. Suppose that instead of boundary conditions (3.1b)-(3.1c) we had the boundary
conditions

u = g1 and ∆u = h1 on ∂Ω1, (3.4)
u = g2 and ∆u = h2 on ∂Ω2. (3.5)

This problem is known as the second biharmonic problem.
The corresponding submatrices (A2,n) , (AN−1,n) , n = 1, . . . , N , in (3.3) are now defined by

(A2,n)m1,m2
= ∆ϕm2,n(xm1,1, ym1,1), (AN−1,n)m1,m2

= ∆ϕm2,n(xm1,N , ym1,N ), m1,m2 = 1, . . . ,M. (3.6)

As shown in the Appendix (Lemma 2), as in the case of the Poisson equation in Section 2.2, each of the M ×M
submatrices An1,n2 , n1, n2 = 1, . . . , N , is circulant and hence the matrix A is block circulant. The resulting system
can therefore be solved efficiently using the MDA described in Section 2.3.

4. The Cauchy-Navier equations of elasticity

4.1. The problem. We finally consider the Cauchy–Navier system for the displacements (u1, u2) in the form (see,
e.g. [12]) 

L1(u1, u2) ≡ µ∆u1 +
µ

1− 2ν

(
∂2u1

∂x2
+

∂2u2

∂x∂y

)
= f1,

in Ω,

L2(u1, u2) ≡
µ

1− 2ν

(
∂2u1

∂x∂y
+

∂2u2

∂y2

)
+ µ∆u2 = f2,

(4.1a)

subject to the Dirichlet boundary conditions

u1 = g1 and u2 = h1 on ∂Ω1, (4.1b)

u1 = g2 and u2 = h2 on ∂Ω2, (4.1c)
where Ω in the annulus (2.2). In (4.1a) the constant ν ∈ [0, 1/2) is Poisson’s ratio and µ > 0 is the shear modulus.

4.2. Kansa’s method. We approximate the solution (u1, u2) of boundary value problem (3.1) by (u
(1)
MN , u

(2)
MN )

where

u
(ℓ)
MN (x, y) =

M∑
m=1

N∑
n=1

a(ℓ)mnϕmn(x, y), ℓ = 1, 2, (x, y) ∈ Ω̄, (4.2)

and the 2MN coefficients
{
(a

(ℓ)
mn)

}M,N

m=1,n=1
, ℓ = 1, 2, are unknown.

The unknown coefficients are determined by collocating the differential equations (4.1a) and the boundary condi-
tions (4.1b)-(4.1c) in the following way:

Lℓ(u
(1)
MN , u

(2)
MN )(xmn, ymn) = fℓ(xmn, ymn), ℓ = 1, 2, m = 1, . . . ,M, n = 2, . . . , N − 1,

u
(1)
MN (xm1, ym1) = g1(xm1, ym1) and u

(2)
MN (xm1, ym1) = h1(xm1, ym1), m = 1, . . . ,M,

u
(1)
MN (xmN , ymN ) = g2(xmN , ymN ) and u

(2)
MN (xmN , ymN ) = h2(xmN , ymN ), m = 1, . . . ,M, (4.3)

yielding a total of 2MN equations.
By vectorizing the arrays of unknown coefficients and collocation points as in (2.11), equations (4.3) yield a
2MN × 2MN system of the form (2.12). The 2M × 2M submatrices An1,n2 , n1, n2 = 1, . . . , N are now defined
as follows: (Note that we are now defining the matrix and vector elements in (2.12) as 2 × 2 and 2 × 1 arrays,
respectively.)

(An1,n2
)m1,m2

=
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µ

1 − 2ν

∂2ϕm2,n2

∂x2
(xm1,n1 , ym1,n1 )

µ

1 − 2ν

∂2ϕm2,n2

∂x∂y
(xm1,n1 , ym1,n1 )

µ

1 − 2ν

∂2ϕm2,n2

∂x∂y
(xm1,n1 , ym1,n1 ) µ∆ϕm2,n2 (xm1,n1 , ym1,n1 ) +

µ

1 − 2ν

∂2ϕm2,n2

∂y2
(xm1,n1 , ym1,n1 )

 ,

m1,m2 = 1, . . . ,M, n1 = 2, . . . , N − 1, n2 = 1, . . . , N, (4.4a)

(A1,n)m1,m2
=

(
ϕm2,n(xm1,1, ym1,1) 0

0 ϕm2,n(xm1,1, ym1,1)

)
, (4.4b)

m1,m2 = 1, . . . ,M, n = 1, . . . , N,

(AN,n)m1,m2
=

(
ϕm2,n(xm1,N , ym1,N ) 0

0 ϕm2,n(xm1,N , ym1,N )

)
, (4.4c)

while the 2M × 1 vectors an, bn, n = 1, . . . , N are defined as

(an)m =

(
a
(1)
mn

a
(2)
mn

)
, m = 1, . . . ,M, n = 1, . . . , N,

(bn)m =

(
f1(xmn, ymn)
f2(xmn, ymn)

)
, m = 1, . . . ,M, n = 2, . . . , N − 1,

(b1)m =

(
g1(xm1, ym1)
h1(xm1, ym1)

)
, (bN )m =

(
g2(xmN , ymN )
h2(xmN , ymN )

)
, m = 1, . . . ,M.

4.2.1. Neumann boundary conditions. Suppose that instead of the Dirichlet boundary conditions (4.1b) we had the
Neumann boundary conditions

t1 = g1 and t2 = h1 on ∂Ω1, (4.5)

where (t1, t2) are the tractions defined by ([12])

t1 = 2µ

[(
1− ν

1− 2ν

)
∂u1

∂x
+

(
ν

1− 2ν

)
∂u2

∂y

]
nx + µ

[
∂u1

∂y
+

∂u2

∂x

]
ny,

t2 = µ

[
∂u1

∂y
+

∂u2

∂x

]
nx + 2µ

[(
ν

1− 2ν

)
∂u1

∂x
+

(
1− ν

1− 2ν

)
∂u2

∂y

]
ny.

In this case, we have, instead of (4.4b), that the submatrices (A1,n)m1,m2
,m1,m2 = 1, . . . ,M, n = 1, . . . , N, are

defined by

(A1,n)m1,m2
= µ

 2

(
1− ν

1− 2ν

)
∂ϕm2,n

∂x
nx +

∂ϕm2,n

∂y
ny

(
2ν

1− 2ν

)
∂ϕm2,n

∂y
nx +

∂ϕm2,n

∂x
ny

∂ϕm2,n

∂y
nx +

(
2ν

1− 2ν

)
∂ϕm2,n

∂x
ny

∂ϕm2,n

∂x
nx + 2

(
1− ν

1− 2ν

)
∂ϕm2,n

∂y
ny

 (4.6)

= µ

(
∂ϕm2,n

∂x
nx +

∂ϕm2,n

∂y
ny

)
I2+

µ

1− 2ν


∂ϕm2,n

∂x
nx 2ν

∂ϕm2,n

∂y
nx + (1− 2ν)

∂ϕm2,n

∂x
ny

(1− 2ν)
∂ϕm2,n

∂y
nx + 2ν

∂ϕm2,n

∂x
ny

∂ϕm2,n

∂y
ny

 ,

with all the quantities in (4.6) evaluated at the boundary point (xm1,1, ym1,1).

In contrast to the Poisson and biharmonic cases, matrix A in (2.12) does not possess a block circulant structure.
However, as described in the context of the MFS, in e.g., [22, 23, 24] a block circulant structure can be obtained
by means of a simple transformation.
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4.3. Matrix decomposition algorithm. We introduce the 2M × 2M matrix

R =


Rϑ1 0 0 · · · 0 0
0 Rϑ2 0 · · · 0 0
...

...
. . .

...
...

...
0 0 0 · · · RϑM−1

0
0 0 0 · · · 0 RϑM

, (4.7)

where

Rϑk
=

(
cosϑk sinϑk

sinϑk −cosϑk

)
, ϑk =

2π(k − 1)

M
.

Since clearly R2
ϑk

= I2 then R2 = I2N .
We premultiply the 2MN × 2MN system (2.12) (Aa = b) by the 2MN × 2MN matrix IN ⊗R to get

(IN ⊗R)Aa = (IN ⊗R) b or Ãã = b̃, (4.8)

where
Ã = (IN ⊗R)A (IN ⊗R) , ã = (IN ⊗R)a, b̃ = (IN ⊗R) b.

The 2MN × 2MN matrix Ã can be written as

Ã =


Ã1,1 Ã1,2 . . . Ã1,N

Ã2,1 Ã2,2 . . . Ã2,N

...
...

. . .
...

ÃN,1 ÃN,2 . . . ÃN,N

 , (4.9)

where each of the 2M × 2M submatrices Ãm,ℓ = RAm,ℓR.

Moreover, keeping in mind that the elements
(
Ãn1,n2

)
m1,m2

=

((
Ãn1,n2

)
m1,m2

)2

i,j=1

are 2× 2 arrays, we have

(
Ãn1,n2

)
m1,m2

= Rϑm1
(An1,n2)m1,m2

Rϑm2
, m1,m2 = 1, . . . ,M, n1, n2 = 1, . . . , N. (4.10)

Further, as proved in the Appendix (Lemma 3), each submatrix Ãn1,n2 , n1, n2 = 1, . . . , N , has a block 2× 2 block
circulant structure. The 2MN × 1 vectors ã, b̃ are written as

ã =


ã1

ã2

...
ãN

 , b̃ =


b̃1
b̃2
...

b̃N

 ,

where the 2M × 1 subvectors ãn, b̃n, n = 1, . . . N , are defined by ãn = Ran, b̃n = Rbn and the 2 × 1 subvectors

((ãn)m)
2
i=1

,
((

b̃n

)
m

)2
i=1

, m = 1, . . . ,M , are defined by

(ãn)m = Rϑm (an)m ,
(
b̃n

)
m

= Rϑm (bn)m .

We next rewrite system (4.8) in the form(
B11 B12

B21 B22

)(
c1
c2

)
=

(
d1

d2

)
, (4.11)
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where the MN ×MN matrices Bij , i, j = 1, 2, are expressed in the form

Bij =


B̃ij

1,1 B̃ij
1,2 . . . B̃ij

1,N

B̃ij
2,1 B̃ij

2,2 . . . B̃ij
2,N

...
...

. . .
...

B̃ij
N,1 B̃ij

N,2 . . . B̃ij
N,N

 .

Each M ×M submatrix B̃ij
n1,n2

, i, j = 1, 2, n1, n2 = 1, . . . , N, is circulant and defined from(
B̃ij

n1,n2

)
m1,m2

=

((
Ãn1,n2

)
m1,m2

)
i,j

, m1,m2 = 1, . . . ,M. (4.12)

Also, the MN × 1 vectors ci,di, i = 1, 2, are defined from

ci =


c̃i1
c̃i2
...
c̃iN

 , di =


d̃
i

1

d̃
i

2
...

d̃
i

N

 ,

where (
c̃in
)
m

= ((ãn)m)
i
,
(
d̃in

)
m

=
((

b̃n

)
m

)
i
, m = 1, . . . ,M. (4.13)

We premultiply system (4.11) by the matrix I2 ⊗ IN ⊗ UM to get

(I2 ⊗ IN ⊗ UM )

(
B11 B12

B21 B22

)
(I2 ⊗ IN ⊗ U∗

M ) (I2 ⊗ IN ⊗ UM )

(
c1
c2

)
= (I2 ⊗ IN ⊗ UM )

(
d1

d2

)
, (4.14)

or (
B̃11 B̃12

B̃21 B̃22

)(
p1

p2

)
=

(
q1

q2

)
, (4.15)

where (
p1

p2

)
= (I2 ⊗ IN ⊗ UM )

(
c1
c2

)
,

(
q1

q2

)
= (I2 ⊗ IN ⊗ UM )

(
d1

d2

)
,

where for i = 1, 2

pi =


p̃i
1

p̃i
2
...

p̃i
N

 , qi =


q̃i
1

q̃i
2
...

q̃i
N

 , with p̃i
n = UM c̃in, q̃

i
n = UM d̃

i

n, n = 1, . . . , N.

The matrices B̃ij , i, j = 1, 2 are given from

B̃ij = (IN ⊗ UM )Bij (IN ⊗ U∗
M ) ,

and since each of the matrices Bij , i, j = 1, 2 is block circulant, from (2.18) it follows that

B̃ij =


Dij

1,1 Dij
1,2 · · · Dij

1,N

D2,1 Dij
2,2 · · · Dij

2,N
...

...
...

Dij
N,1 Dij

N,2 · · · Dij
N,N

 , (4.16)

where each M ×M matrix Dij
n1,n2

, n1, n2 = 1, . . . , N, is diagonal.
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More specifically, if

Dij
n1,n2

= diag
(
Dij

n1,n21
, Dij

n1,n22
, . . . , Dij

n1,n2M

)
and B̃ij

n1,n2
= circ

(
B̃ij

n1,n21
, B̃ij

n1,n2M
. . . , B̃ij

n1,n2M

)
,

we have, for n1, n2 = 1, · · · , N ,

Dij
n1,n2m

=
M∑
k=1

B̃ij
n1,n2k

ω(k−1)(m−1), m = 1, · · · ,M. (4.17)

Since each matrix B̃ij , i, j = 1, 2, consists of N2 blocks of order M each of which is diagonal, the solution of system
(4.15) can be decomposed into solving the M systems of order 2N(

Em
11 Em

12

Em
21 Em

22

)(
xm
1

xm
2

)
=

(
ym
1

ym
2

)
, m = 1, · · · ,M, (4.18)

where (
Em

ij

)
n1,n2

= Dij
n1,n2m

, n1, n2 = 1, · · · , N
and

(xm
i )n =

(
p̃i
n

)
m
, (ym

i )n =
(
q̃i
n

)
m
, n = 1, · · · , N. (4.19)

From the vectors xm
i , i = 1, 2;m = 1, . . . ,M we can obtain the vectors p1, p2 and the vectors c1, c2, and subsequently

the vector ã, before finally obtaining the vector a.
The MDA, in this case, can be summarized as follows:

Algorithm 2
Step 1: Compute b̃ = (IN ⊗R)b.

Step 2: Calculate the 2× 2 arrays

(
Ãn1,n2

)
1,m2

.

Step 3: Compute q̃i
n = UM d̃

i

n, n = 1, . . . , N and hence ym
i , m = 1, . . . , N from (4.19).

Step 4: Construct the diagonal matrices Dij
n1,n2

from (4.17) and hence matrices Em
ij in (4.18).

Step 5: Solve the M, 2N × 2N systems (4.18) to obtain the xm
i , i = 1, 2;m = 1, . . . ,M,

and subsequently the vectors pi, i = 1, 2.

Step 6: Recover the vectors ci, i = 1, 2 from c̃in = U∗
M p̃i

n, n = 1, . . . , N.

Step 7: Reorder vectors ci, i = 1, 2 to obtain vector ã.
Step 8: Compute a = (IN ⊗R)ã.

In Steps 3, 4 and 6 FFTs are used while the most expensive part of the algorithm is the solution of M linear
systems, each of order 2N . Again, substantial savings in storage are obtained as only the first line of the circulant
matrices involved needs to be constructed and stored.

5. Numerical examples

In all numerical examples considered, we took collocation points described by αn = (−1)n/4, n = 1, . . . , N (cf.
(2.8)). The inner and outer radii of the annular domain Ω are ϱ1 = 0.3, ϱ2 = 1, respectively. We calculated the
maximum relative error E over MN test points in Ω defined by

rn (cosϑm, sinϑm) , where ϑm =
2π(m− 1)

M
, m = 1, . . . ,M, rn = ϱ1 + (ϱ2 − ϱ1)

n− 1

N − 1
, n = 1, . . . ,N . (5.1)

Unless otherwise stated, we choose N = 25,M = 50 so that the test points are different than the collocation points.
The maximum relative error E is defined as

E =
||u− uN ||∞,Ω

||u||∞,Ω

. (5.2)
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The proper selection of an RBF is crucial in obtaining good accuracy. In the first example, we test various commonly
used RBFs and then choose the best one to perform the tests for the remaining examples. The determination of
a suitable shape parameter remains a major issue in the many applications of RBFs involving such parameters.
As we have mentioned earlier, numerous techniques have been proposed for the selection of an appropriate shape
parameter. In this work, we apply the so-called LOOCV (leave-one-out cross validation) algorithm proposed by
Rippa [32] for the identification of a suitable shape parameter. The MATLAB c⃝ codes for LOOCV can be found
in [9]. The MATLAB c⃝ function fminbnd is used to find the minimum of a function of one variable within a fixed
interval. Since fminbnd is a local minimizer, an initial guess of the lower and upper bounds denoted by min and
max needs to be provided so that the search takes place in the interval [min, max]. One of the attractive features
of using LOOCV is that we do not need to know the exact solution of the given problem for the selection of a
(sub-optimal) shape parameter. Typically, in the problems considered, there are M systems of equations of order
N to be solved, see, e.g., (2.21). It is clearly not cost-effective to apply the LOOCV to each of the M systems
and determine the sub-optimal shape parameter for each. We therefore only apply the LOOCV to a randomly
chosen system among the M systems. This adds O(N3) computational complexity to the proposed technique. The
sub-optimal shape parameter thus obtained is then used for all the other systems. This technique, as shown by the
results, appears to be working well.

All numerical computations were carried out on a MATLAB c⃝ 2010a platform in OS Windows 7 (32 bit) with Intel
Core(TM) i5 2.4GHz CPU and 4 GB memory.

We have considered the following numerical examples.

5.1. Example 1. We consider the Poisson equation (2.1a) with a Neumann boundary condition prescribed on ∂Ω1

and a Dirichlet boundary condition prescribed on ∂Ω2. The boundary conditions correspond to the exact solution
which is given by u = ex+y.
We first perform some tests with the normalized multiquadric (MQ) basis functions

ϕj(x, y) = Φ(rj) =
√
(crj)2 + 1, r2j = (x− xj)

2 + (y − yj)
2,

where c is the shape parameter. In Figure 2, we present the maximum relative error in u versus the shape parameter
c for the case when M = 128, N = 64 using the normalized MQ basis functions. From this figure, we can observe
that the optimal shape parameter is c = 5.208 and the corresponding error is 2.940(−8). The results in Table
1 are obtained using the LOOCV algorithm for various search intervals [min, max]. When comparing the results
in Figure 2 and Table 1, we can see that the (sub-optimal) shape parameter results obtained for various search
intervals are very stable and satisfactorily close to the optimal shape parameter. In terms of accuracy, the errors
obtained using the LOOCV algorithm are comparable to the ones obtained using the optimal shape parameter.
Moreover, in order to obtain the optimal shape parameter in Figure 2, one needs to know the exact solution. In
contrast, to obtain the sub-optimal shape parameter using the LOOCV algorithm in Table 1, it is not necessary
to know the exact solution a priori. The results obtained for the Dirichlet problem (2.1) are very similar.

In Table 2, we present the results obtained using various numbers of collocation points M = N . It can be seen
that the sub-optimal shape parameter becomes larger when the density of the collocation points increases.

In Figure 3 we present the error convergence plots for (M,N) = (16, 8), (32, 16), (64, 32) and (128, 64) for varying
c. From these plots we observe that as the number of degrees of freedom increases, the accuracy improves.

We also compared the performance of the proposed MDA Kansa-RBF versus the full Kansa-RBF solution in which
the full system (2.12) is solved. In Table 3, we present the errors E, CPU times and condition numbers for the
full Kansa-RBF and the corresponding quantities using the proposed MDA Kansa-RBF for various numbers of
degrees of freedom, using LOOCV. The most time consuming part in both approaches is the search of a suitable
shape parameter using LOOCV, in which systems are solved repeatedly. This makes the advantage of the MDA
Kansa-RBF even more pronounced as, for example, the solution of the full Kansa system for M = N = 50 once
requires 2.82 seconds while with LOOCV the method requires 55.68 seconds. Clearly, the use of LOOCV with the
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Figure 2. Example 1: Maximum relative error versus shape parameter with M = 128, N = 64.

[min, max] sub-optimal c E
[0, 8] 5.013 8.790(−8)
[0, 10] 5.005 6.706(−8)
[0, 12] 5.078 3.432(−8)
[0, 14] 5.001 6.062(−8)
[0, 16] 5.002 8.902(−8)
[0, 18] 5.006 2.361(−7)
[0, 20] 5.007 6.516(−8)

Table 1. Example 1: Sub-optimal shape parameters and the corresponding maximum relative
errors for various search intervals using fminbnd with M = 128, N = 64.

M = N sub-optimal c E
80 4.714 9.316(−7)
100 6.057 3.361(−7)
120 7.499 2.247(−7)
140 8.896 3.045(−7)
160 10.445 1.949(−7)

Table 2. Example 1: Sub-optimal shape parameter and the maximum relative errors for various
M = N with initial search interval [0, 20].

MDA Kansa approach does not slow the process as considerably. Note that for M = N = 100 and 150 the size of
the full Kansa-RBF matrices becomes prohibitive. From the values of the condition numbers in the two approaches
we may infer that the Principle of Uncertainty [32,33] is more pronounced for the full Kansa-RBF than the MDA
Kansa-RBF. The sub-optimal shape parameters are not given in Table 3 since the focus is on the CPU time and
accuracy. Similar results were observed for the other examples considered.

Next, we examine and compare the performance of different RBFs using the proposed MDA. The Matérn RBF
[29, 30]

Φ(r) = (rc)nKn(rc),
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Figure 3. Example 1: Maximum relative error versus shape parameter with different numbers of
degrees of freedom.

Full Kansa MDA Kansa
M = N E CPU(sec) condition # E CPU(sec) condition #

20 5.066(-5) 1.062 1.37(+19) 2.558(-4) 0.143 6.65(+5)
30 4.032(-5) 5.410 6.94(+19) 4.062(-6) 0.309 1.03(+13)
40 2.683(-5) 19.124 2.53(+20) 2.069(-6) 0.638 1.75(+15)
50 7.163(-6) 55.684 4.29(+21) 7.223(-6) 0.947 8.24(+13)
60 3.253(-6) 214.481 8.21(+20) 1.985(-6) 1.608 7.93(+15)
100 – – – 4.951(-7) 6.087 1.40(+17)
150 – – – 2.672(-6) 21.053 1.03(+18)

Table 3. Example 1: Comparison of CPU times and E for full Kansa RBF and MDA Kansa
RBF solutions for various M = N with initial search interval [0, 8].

where n ∈ Z,Kn is the modified Bessel function of second kind with order n and c is the shape parameter, is
known as a highly effective basis function. In [30], the Kansa method using the Matérn RBF was applied to solve
Poisson’s equation. For large-scale problems, domain decomposition was applied to decompose the domain into
smaller domains so that the Kansa method can be applied. In this work, instead of domain decomposition, we use
matrix decomposition to handle large-scale problems. For (2.1a) with Dirichlet boundary conditions, the profiles
of the maximum relative error versus the shape parameter for the Matérn RBF of orders n = 4, 5, 6, and 7, with
M = 128, N = 64, are shown in Figure 4. As can be observed, as the order increases so does the value of the
optimal shape parameter. Furthermore, the stability of the curve deteriorates as the order becomes higher due to
an increase in the higher condition number. As shown in Table 4, when using the Matérn of order 6, the results for
various search intervals are compatible with the results in Table 1. Since the value of the optimal shape parameter
increases with the order of the Matérn RBF, we use different search intervals for different orders. In Table 5, we
present the sub-optimal shape parameters and the corresponding errors for various orders of the Matérn RBF. The
accuracy obtained using the Matérn RBF of various orders and the LOOCV algorithm is very close to the results
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obtained using the actual optimal shape parameters as shown in Figure 4. Even though the results are highly
accurate, the drawback of using the Matérn RBF is the high cost of computation due to the presence of the special
function Kn(cr).
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n=4

n=6
n=5

n=7

Figure 4. Example 1: Maximum relative error versus shape parameter for various orders of the
Matérn function with M = 128, N = 64.

[min, max] sub-optimal c E
[0, 12] 9.048 2.026(−8)
[0, 14] 9.055 2.246(−8)
[0, 16] 9.037 2.010(−8)
[0, 18] 9.020 2.335(−8)
[0, 20] 9.026 1.985(−8)
[0, 22] 8.979 2.046(−8)

Table 4. Example 1: Sub-optimal shape parameters and the corresponding maximum relative
errors for various search intervals using the Matérn function of order 6 with M = 128, N = 64.

order sub-optimal c E
4 1.006 8.123(−7)
5 3.735 2.888(−8)
6 9.049 2.300(−8)
7 13.854 2.888(−8)
8 18.466 4.953(−8)

Table 5. Example 1: Sub-optimal shape parameter and the maximum relative errors using various
orders of the Matérn function with M = 128 and N = 64.

The Gaussian RBF
Φ(r) = e−cr2 , where c is the shape parameter,
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is another popular and widely used RBF. As shown in Figure 5, we see a very different profile of the shape parameter
versus the maximum relative error, for problem (2.1). The errors are fluctuating between 10−4 and 10−6. Despite
this irregularity, we obtain excellent results using the LOOCV algorithm, as shown in Table 6. We note that all the
local minima in Figure 5 have similar accuracy. The MATLAB c⃝ function fminbnd is capable of finding the local
minima and, hence, as we can see in Table 6, for different search intervals we may obtain quite different sub-optimal
shape parameters and yet the obtained accuracy is very satisfactory. In conclusion, however, it is preferable to use
one of the previous two RBFs which are more predictable in finding a suitable shape parameter.

5 10 15 20 25 30

10
−6

10
−4

c

E

c=21.880, E=8.583(−7)

Figure 5. Example 1: Maximum relative error versus shape parameter for Gaussian RBF with
M = 128, N = 64.

[min, max] sub-optimal c E
[0, 6] 5.657 2.319(−6)
[0, 8] 3.028 1.597(−6)
[0, 10] 6.176 2.340(−6)
[0, 12] 10.493 9.629(−7)
[0, 14] 9.076 9.728(−7)
[0, 16] 12.262 6.537(−7)
[0, 18] 12.480 1.000(−6)
[0, 20] 13.055 1.988(−6)
[0, 22] 11.603 1.103(−6)

Table 6. Example 1: Sub-optimal shape parameters and the corresponding maximum relative
errors for various search intervals using the Gaussian RBF with M = 128, N = 64.

Finally, we tested the performance of the inverse multiquadric (IMQ) RBF

Φ(r) =
1√

1 + (cr)2
, where c is the shape parameter,

for the same example. The results obtained were very similar to those obtained using the normalized MQ RBF
but the best accuracy recorder in this case was slightly worse at around 10−7.

Among all the RBFs tested in this example, we conclude that the normalized MQ is the best in terms of efficiency,
stability, and accuracy. As a result, we will only consider the normalized MQ as an RBF for the next two examples.
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Remark. We also considered a distribution of the collocation points which renders their concentration near the
boundaries denser (see, e.g., [10]). In particular, instead the of the N uniformly distributed radii defined by (2.7)
we used the N Chebyshev-Gauss-Lobatto points on the interval [ϱ1, ϱ2], defined by

rn =
1

2

(
ϱ1 + ϱ2 + (ϱ1 − ϱ2) cos(

nπ

N
)
)
, n = 1, . . . , N, (5.3)

while the angles are still defined by (2.6) and the collocation points by (2.8). Extensive experimentation revealed no
significant difference in the accuracy of the results with the uniform distribution and the Chebyshev-Gauss-Lobatto
point distribution. Moreover, it was observed that there was no significant difference between the size of the errors
near the boundaries and the interior of the domain.

5.2. Example 2. We next consider the first biharmonic boundary value problem (3.1) corresponding to the exact
solution u = sin(πx) cos(πy/2). In Table 7 we present the sub-optimal shape parameters and their corresponding
errors using the LOOCV algorithm with various search intervals for the case M = 128, N = 64. As in Example
1, the results we obtained are very stable irrespective to the initial search interval. Without prior knowledge of
the exact solution, we can find a good shape parameter and obtain accuracy which is fairly close to the optimal
accuracy, as shown in Figure 6.

3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

c

E

c = 4.5833, E = 6.277(−7)

Figure 6. Example 2: Maximum relative error versus the shape parameter for M = 128, N = 64.

In Table 8 we present the sub-optimal shape parameters and errors in u for various values of M = N using the
LOOCV algorithm for the case of Dirichlet and Neumann boundary conditions. The initial search internal is set to
[0, 20] and obtain stable and accurate results. We also run a similar test for the corresponding second biharmonic
boundary value problem (3.1a), (3.4) and (3.5) in which the initial search interval was set to [0, 10]. The results
are shown in Table 9.

5.3. Example 3. We finally consider a mixed boundary value problem for the Cauchy-Navier equations of elasticity
given by (4.1), (4.5) and (4.1c) and corresponding to the exact solution u1 = ex+y, u2 = sin(x+y). We take Poisson’s
ratio and the shear modulus to be ν = 0.3 and µ = 1, respectively. In Figure 7 we present the errors in u1 and u2

for various numbers of degrees of freedom versus the shape parameter c when the tractions are prescribed on ∂Ω1

(cf. Section 4.2.1). In this case, the optimal shape parameter is c = 5.216 and the corresponding errors in u1 and
u2 are 3.530(−8) and 1.059(−7), respectively. Note that the errors E1 and E2 in u1 and u2 are defined using (5.2).

In Table 10 we present results obtained when applying the LOOCV algorithm to find the sub-optimal shape
parameter and the corresponding errors in u1 and u2. Overall, accurate results are obtained for various initial
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[min, max] sub-optimal c E
[0, 8] 4.433 1.713(−6)
[0, 10] 4.351 1.422(−6)
[0, 12] 4.590 1.066(−6)
[0, 14] 4.211 4.485(−6)
[0, 16] 4.272 4.184(−6)
[0, 18] 4.242 2.411(−6)
[0, 20] 4.235 1.801(−6)

Table 7. Example 2: Sub-optimal shape parameters and the corresponding maximum relative
errors for various initial search interval using fminbnd for M = 128, N = 64.

M = N sub-optimal c E
80 4.003 1.351(−5)
100 5.429 5.353(−6)
120 7.311 3.583(−6)
140 7.857 5.250(−6)
160 9.219 9.647(−6)

Table 8. Example 2: Sub-optimal shape parameters and the maximum relative errors for various
M = N .

M = N sub-optimal c E
80 3.678 1.651(−5)
100 4.991 4, 172(−5)
120 6.774 1.839(−4)
140 7.329 8.462(−5)
160 8.451 9.012(−5)

Table 9. Example 2: Sub-optimal shape parameters and the maximum relative errors for various
M = N for the second biharmonic problem.

search intervals. If we choose the interval properly, the accuracy can be very close to the optimal one as shown
in Figure 7. In Table 11 we present results obtained using various M = N for a search interval of [0,20]. We also
considered the corresponding Dirichlet boundary value problem (4.1) and in Table 12 we present results obtained
using various M = N for a search interval of [0,20] which are very similar to those in Table 11. Moreover, these
results are consistent with the corresponding results obtained in Examples 1 and 2.

6. Conclusions

We have applied a Kansa-RBF method for the solution of elliptic boundary value problems in annular domains.
With an appropriate choice of collocation points, the discretization of such problems governed by the Poisson, inho-
mogeneous biharmonic or the Cauchy-Navier equations of elasticity leads to linear systems in which the coefficient
matrices are either block circulant or can be easily transformed into block circulant matrices. Thus these systems
may be solved efficiently using MDAs leading to substantial savings in computational cost and storage. In addition,
a major advantage of the proposed technique, other than its simplicity, is that it is applicable for any RBF and,
as shown in our numerical tests, it is applicable to large-scale problems achieving high accuracy. Moreover, the
use of the LOOCV algorithm enables us to select a good shape parameter which is critical to ensure appropriate
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Figure 7. Example 3: Maximum relative error versus the shape parameter with M = 128, N = 64.

[min, max] sub-optimal c E1 E2

[2, 8] 6.791 3.647(−7) 9.501(−7)
[3, 8] 5.631 7.482(−8) 1.732(−7)
[0, 8] 4.944 1.654(−7) 3.806(−7)
[0, 10] 8.439 1.487(−6) 4.767(−6)
[0, 12] 8.440 1.488(−6) 4.771(−6)
[0, 14] 8.427 1.472(−6) 4.722(−6)
[0, 16] 8.421 1.464(−6) 4.697(−6)
[0, 18] 8.443 1.491(−6) 4.778(−6)
[0, 20] 8.432 1.477(−6) 4.738(−6)

Table 10. Example 3: Sub-optimal shape parameters and the corresponding maximum relative
errors for various initial search intervals using fminbnd with M = 128, N = 64.

M = N sub-optimal c E1 E2

80 6.391 5.987(−6) 2.484(−5)
100 7.585 4.755(−6) 6.914(−6)
120 9.202 1.728(−6) 5.171(−6)
140 12.071 4.045(−6) 1.431(−5)
160 12.121 1.966(−6) 2.943(−6)

Table 11. Example 3: Sub-optimal shape parameters and the maximum relative errors for various
M = N .

numerical accuracy. We would like to indicate that the proposed method can be extended to solving a large class of
partial differential equations without difficulty. The algorithm proposed in this paper can be easily applied to other
RBF collocation methods [4, 8, 28]. In the spirit of reproducible research and for the convenience of interested
readers the MATLAB c⃝ code for Example 1, as described by Algorithm 1 in Section 2.3, maybe accessed at [35].

Possible areas of future research include
• The application of the method using compactly supported RBF, see, e.g., [2].
• The application of the method using a localized RBF collocation, see, e.g., [27].
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M = N sub-optimal c E1 E2

80 7.227 1.368(−5) 5.191(−5)
100 8.741 1.212(−5) 1.736(−5)
120 9.905 2.877(−6) 8.399(−6)
140 11.695 3.262(−6) 1.173(−5)
160 13.471 4.089(−6) 6.032(−6)

Table 12. Example 3: Sub-optimal shape parameters and the maximum relative errors for various
M = N for Dirichlet boundary value problem.

• The extension of the current method for the solution of three-dimensional axisymmetric elliptic boundary
value problems, see, e.g., [21].

• The extension of the current method to problems in which the type of boundary conditions alternates on
the circular segments of the boundary, see, e.g., [18].
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Appendix

We consider the RBFs ϕmn, m = 1, . . . ,M, n = 1, . . . , N . These satisfy, see, e.g., [7, Appendix D],

ϕmn(x, y) = Φ(rmn), r2mn(x, y) = (x− xmn)
2 + (y − ymn)

2. (A.1)

It can be easily seen that
∂ϕmn

∂x
(x, y) =

Φ′(rmn)

rmn
(x− xmn),

∂ϕmn

∂y
(x, y) =

Φ′(rmn)

rmn
(y − ymn), (A.2)

∂2ϕmn

∂x2
(x, y) =

Φ′(rmn)

rmn
+

(
rmnΦ

′′(rmn)− Φ′(rmn)

r3mn

)
(x− xmn)

2, (A.3)

∂2ϕmn

∂y2
(x, y) =

Φ′(rmn)

rmn
+

(
rmnΦ

′′(rmn)− Φ′(rmn)

r3mn

)
(y − ymn)

2, (A.4)

and
∂2ϕmn

∂x∂y
(x, y) =

(
rmnΦ

′′(rmn)− Φ′(rmn)

r3mn

)
(x− xmn)(y − ymn). (A.5)

Also,

∆ϕmn(x, y) = Φ′′(rmn) +
Φ′(rmn)

rmn
(A.6)

and

∆2ϕmn(x, y) = Φ′′′′(rmn) +
2Φ′′′(rmn)

rmn
− Φ′′(rmn)

r2mn

+
Φ′(rmn)

r3mn

. (A.7)

In the sequel, we shall be using the notation (cf. (2.8))

δm1,m2x = xm1,n1 − xm2,n2 = rn1 cos(ϑm1 +
2παn1

N
)− rn2 cos(ϑm2 +

2παn2

N
),

δm1,m2y = ym1,n1 − ym2,n2 = rn1 sin(ϑm1 +
2παn1

N
)− rn2 sin(ϑm2 +

2παn2

N
). (A.8)
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We shall also need the normal derivatives on the boundary ∂Ω1 which are given by

(nx,ny)(xm1,1, ym1,1) = −
(
cos(ϑm1 +

2πα1

N
), sin(ϑm1 +

2πα1

N
)

)
. (A.9)

We next state and prove the following lemmata:

Lemma 1. For any radial function, each submatrix (An1,n2) in (2.12) possesses a circulant structure.

Proof. We first consider the submatrices (An1,n2) , n1 = 2, . . . , N−1, n2 = 1, . . . , N, which are defined by (2.13a).
From (A.6), ∆ϕm2,n2 is an RBF, i.e. it is a function of rm2,n2 (cf. (A.1)). Moreover,

r2m2,n2
(xm1,n1 , ym1,n1) = (δm1,m2x)

2 + (δm1,m2y)
2 = r2n1

+ r2n2
− 2rn1rn2 cos

(
ϑm1 − ϑm2 +

2π(αn1 − αn2)

N

)
,

shows that for fixed n1, n2, the quantity rm2,n2
(xm1,n1 , ym1,n1) only depends on (ϑm1 − ϑm2), i.e. (m1 −m2) and

therefore the submatrices are circulant.
The proof that the submatrices (An1,n2

) , n1 = 1, N, n2 = 1, . . . , N , defined by (2.13b)-(2.13c), are circulant in the
case of Dirichlet boundary conditions is identical since their elements involve the RBFs ϕm2,n2 , which only depend
on rm2,n2 .
In the case of a Neumann boundary condition on ∂Ω1, however, we have that the submatrices (A1,n) , n = 1, . . . , N ,
are defined by (2.15), or

(A1,n2)m1,m2
=

∂ϕm2,n2

∂x
(xm1,1, ym1,1)nx(xm1,1, ym1,1) +

∂ϕm2,n2

∂y
(xm1,1, ym1,1)ny(xm1,1, ym1,1),

and from (A.2) and (A.9) we obtain

= −Φ′(rm2n2)(xm1,1, ym1,1)

rm2n2(xm1,1, ym1,1))

[
(xm1,1 − xm2,n2) cos(ϑm1 +

2πα1

N
) + (ym1,1 − ym2,n2) sin(ϑm1 +

2πα1

N
)

]
.

Ignoring the radial part, we examine

(xm1,1 − xm2,n2) cos(ϑm1 +
2πα1

N
) + (ym1,1 − ym2,n2) sin(ϑm1 +

2πα1

N
)

=

(
r1 cos(ϑm1 +

2πα1

N
)− rn2 cos(ϑm2 +

2παn2

N
)

)
cos(ϑm1 +

2πα1

N
)

+

(
r1 sin(ϑm1 +

2πα1

N
)− rn2 sin(ϑm2 +

2παn2

N
)

)
sin(ϑm1 +

2πα1

N
)

= r1 − rn2 cos(ϑm2 − ϑm1 +
2π(αn2 − α1)

N
), (A.10)

which, again, only depends on (m2 −m1). Hence, this part is also radial and the corresponding submatrices are
circulant. �

Following identical arguments we also arrive at the corresponding result for the biharmonic case.
Lemma 2. For any radial function, each submatrix (An1,n2) in (2.12) corresponding to collocation scheme (3.2),
for both the first and the second biharmonic problem, possesses a circulant structure.

Finally, we consider the corresponding result for the Cauchy-Navier equations of elasticity.

Lemma 3. For any radial function, each submatrix
(
Ãn1,n2

)
in (4.9) possesses a 2× 2 block circulant structure.

Proof. In order to prove the lemma we need to show that, see, e.g. [22],

Rϑm1
(An1,n2)m1,m2

Rϑm2
= Rϑm1+m (An1,n2)m1+m,m2+m Rϑm2+m , m1,m2 = 1, . . . ,M, n1, n2 = 1, . . . , N,

(A.11)
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provided m1+m,m2+m ≤ M . In case m1+m > M , m1+m is replaced by m1+m−M and in case m2+m > M ,
m2 +m is replaced by m2 +m−M .
Since R2

ϑk
= I2 proving (A.11) is equivalent to proving

Rϑm1+mRϑm1
(An1,n2)m1,m2

Rϑm2
Rϑm1+m = (An1,n2)m1+m,m2+m , m1,m2 = 1, . . . ,M, n1, n2 = 1, . . . , N.

(A.12)
However,

Rϑm1+mRϑm1
=

(
cosϑm1+m sinϑm1+m

sinϑm1+m −cosϑm1+m

)(
cosϑm1 sinϑm1

sinϑm1 −cosϑm1

)
=

(
cosϑm − sinϑm

sinϑm cosϑm

)
= Wϑm ,

and

Rϑm1
Rϑm1+m =

(
cosϑm1

sinϑm1

sinϑm1 −cosϑm1

)(
cosϑm1+m sinϑm1+m

sinϑm1+m −cosϑm1+m

)
=

(
cosϑm sinϑm

− sinϑm cosϑm

)
= W−1

ϑm
.

Hence proving (A.12) is equivalent to proving that

Wϑm (An1,n2)m1,m2
W−1

ϑm
= (An1,n2)m1+m,m2+m . (A.13)

From (4.4a), for m1,m2 = 1, . . . ,M, n1 = 2, . . . , N − 1, n2 = 1, . . . , N , we can write

(An1,n2)m1,m2
=

µ∆ϕm2,n2(xm1,n1 , ym1,n1)I2 +
µ

1− 2ν


∂2ϕm2,n2

∂x2
(xm1,n1 , ym1,n1)

∂2ϕm2,n2

∂x∂y
(xm1,n1 , ym1,n1)

∂2ϕm2,n2

∂x∂y
(xm1,n1 , ym1,n1)

∂2ϕm2,n2

∂y2
(xm1,n1 , ym1,n1)

 . (A.14)

We first consider the first term in (A.14), namely µ∆ϕm2,n2(xm1,n1 , ym1,n1)I2.
We clearly have that

µ∆ϕm2,n2(xm1,n1 , ym1,n1)WϑmI2W
−1
ϑm

= µ∆ϕm2,n2(xm1,n1 , ym1,n1)I2 = µ∆ϕm2+m,n2(xm1+m,n1 , ym1+m,n1)I2,

since the Laplacian of ϕm2,n2(x, y) is radial from (A.6) and

(δm1,m2x)
2 + (δm1,m2y)

2 = r2n1
+ r2n2

− 2rn1rn2 cos

(
ϑm1 − ϑm2 +

2π(αn1 − αn2)

N

)
= (δm1+m,m2+mx)2 + (δm1+m,m2+my)2. (A.15)

Therefore, the first term in (A.14) satisfies (A.13).
For the second term in (A.14), from (A.3)-(A.5) and ignoring the radial parts we only need show that(

cosϑm − sinϑm

sinϑm cosϑm

)(
(δm1,m2x)

2 (δm1,m2x)(δm1,m2y)
(δm1,m2x)(δm1,m2y) (δm1,m2y)

2

)(
cosϑm sinϑm

− sinϑm cosϑm

)
=

(
(δm1+m,m2+mx)2 (δm1+m,m2+mx)(δm1+m,m2+my)

(δm1+m,m2+mx)(δm1+m,m2+my) (δm1+m,m2+my)2

)
. (A.16)

By performing the multiplications on the left hand side of (A.16) we obtain that it is equal to(
(cosϑmδm1,m2x − sinϑmδm1,m2y)

2 (cosϑmδm1,m2x − sinϑmδm1,m2y)(sinϑmδm1,m2x + cosϑmδm1,m2y)
(cosϑmδm1,m2x − sinϑmδm1,m2y)(sinϑmδm1,m2x + cosϑmδm1,m2y) (sinϑmδm1,m2x + cosϑmδm1,m2y)

2

)
.

Moreover, it can be easily shown that

cosϑmδm1,m2x− sinϑmδm1,m2y = rn1 cos(ϑm1+m +
2παn1

N
)− rn2 cos(ϑm2+m +

2παn2

N
)

and
sinϑmδm1,m2x+ cosϑmδm1,m2y = rn1 sin(ϑm1+m +

2παn1

N
)− rn2 sin(ϑm2+m +

2παn2

N
),

from which (A.16) follows. Hence, the second term in (A.14) also satisfies (A.13).
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We next need to prove that

Wϑm (A1,n2)m1,m2
W−1

ϑm
= (A1,n2)m1+m,m2+m and Wϑm (AN,n2)m1,m2

W−1
ϑm

= (AN,n2)m1+m,m2+m . (A.17)

Since from (4.4b) we can write

(A1,n2)m1,m2
= ϕm2,n2(xm1,1, ym1,1)I2 and (AN,n2)m1,m2

= ϕm2,n2(xm1,N , ym1,N )I2,

from (A.15), following a similar argument to the one used for the first term of (A.14), (A.17) follows.

Finally, we show that if instead of the displacements u1, u2 we have that the tractions t1, t2 are prescribed on, say,
the boundary ∂Ω1, cf. Section 4.2.1, then

Wϑm (A1,n2)m1,m2
W−1

ϑm
= (A1,n2)m1+m,m2+m (A.18)

is still true.
We write

(A1,n)m1,m2
=

(
T11 T12

T21 T22

)
, (A.19)

where Tij , i, j = 1, 2, are the appropriate quantities in (4.6).
We can easily show that

Wϑm

(
T11 T12

T21 T22

)
W−1

ϑm

=

(
cos2 ϑmT11 − cosϑm sinϑm(T21 + T12) + sin2 ϑmT22 cos2 ϑmT12 + cosϑm sinϑm(T11 − T22)− sin2 ϑmT21

cos2 ϑmT21 + cosϑm sinϑm(T11 − T22)− sin2 ϑmT12 sin2 ϑmT11 + cosϑm sinϑm(T21 + T12) + cos2 ϑmT22

)
.

We shall first show that the first term in (4.6) is radial. Using the notation of (A.8) with n1 = 1, we have from
(A.2) that

∂ϕm2,n

∂x
(xm1,1, ym1,1)nx(xm1,1, ym1,1) +

∂ϕm2,n

∂y
(xm1,1, ym1,1)ny(xm1,1, ym1,1)

=
Φ′(rm2n)

rm2n
[δm1,m2xnx(xm1,1, ym1,1) + δm1,m2y ny(xm1,1, ym1,1)] ,

and ignoring the radial factor, we have, using (A.10) that

δm1,m2xnx(xm1,1, ym1,1) + δm1,m2y ny(xm1,1, ym1,1)

= r1 − rn2 cos(ϑm2 − ϑm1 +
2π(αn2 − α1)

N
),

which only depends on (m2 −m1), hence it is radial.
We next consider the second term in (4.6). Dropping the multiplying constants and the obviously radial parts, and
with the appropriate notation, we consider the quantities

T̃11(m1,m2) = δm1,m2xnx(xm1,1, ym1,1) = r1 cos
2(ϑm1 +

2πα1

N
)− rn2 cos(ϑm2 +

2παn2

N
) cos(ϑm1 +

2πα1

N
),

T̃12(m1,m2) = 2νδm1,m2y nx(xm1,1, ym1,1) + (1− 2ν)δm1,m2xny(xm1,1, ym1,1)

= r1 sin(ϑm1 +
2πα1

N
) cos(ϑm1 +

2πα1

N
)

−rn2

(
2ν cos(ϑm1 +

2πα1

N
) sin(ϑm2 +

2παn2

N
) + (1− 2ν) sin(ϑm1 +

2πα1

N
) cos(ϑm2 +

2παn2

N
)

)
= r1 sin(ϑm1 +

2πα1

N
) cos(ϑm1 +

2πα1

N
)

−rn2

(
2ν sin(ϑm2 − ϑm1 +

2π(αn2
− α1)

N
) + sin(ϑm1 +

2πα1

N
) cos(ϑm2 +

2παn2

N
)

)
,
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T̃21(m1,m2) = (1− 2ν)δm1,m2y nx(xm1,1, ym1,1) + 2νδm1,m2xny(xm1,1, ym1,1)

= r1 sin(ϑm1 +
2πα1

N
) cos(ϑm1 +

2πα1

N
)

−rn2

(
(1− 2ν) cos(ϑm1 +

2πα1

N
) sin(ϑm2 +

2παn2

N
) + 2ν sin(ϑm1 +

2πα1

N
) cos(ϑm2 +

2παn2

N
)

)
= r1 sin(ϑm1 +

2πα1

N
) cos(ϑm1 +

2πα1

N
)

−rn2

(
2ν sin(ϑm1 − ϑm2 +

2π(α1 − αn2)

N
) + cos(ϑm1 +

2πα1

N
) sin(ϑm2 +

2παn2

N
)

)
,

T̃22(m1,m2) = δm1,m2y ny(xm1,1, ym1,1) = r1 sin
2(ϑm1 +

2πα1

N
)− rn2 sin(ϑm2 +

2παn2

N
) sin(ϑm1 +

2πα1

N
).

By using (A.9), we first consider the term

cos2 ϑmT̃11 − cosϑm sinϑm(T̃21 + T̃12) + sin2 ϑmT̃22

= cos2 ϑmδm1,m2xnx − cosϑm sinϑm (δm1,m2y nx + δm1,m2xny) + sin2 ϑmδm1,m2y ny

= r1 cos
2(ϑm1 + ϑm +

2πα1

N
)− rn2 cos(ϑm2 + ϑm +

2παn2

N
) cos(ϑm1 + ϑm +

2πα1

N
)

= T̃11(m1 +m,m2 +m).

We next consider
cos2 ϑmT̃12 + cosϑm sinϑm(T̃11 − T̃22)− sin2 ϑmT̃21

= cos2 ϑm (2νδm1,m2
y nx + (1− 2ν)δm1,m2

xny) + cosϑm sinϑm(δm1,m2
xnx − δm1,m2

y ny)

− sin2 ϑm ((1− 2ν)δm1,m2y nx + 2νδm1,m2xny)

= −2νrn2 sin(ϑm2 − ϑm1 +
2π(αn2 − α1)

N
) + r1 sin(ϑm1 + ϑm +

2πα1

N
) cos(ϑm1 + ϑm +

2πα1

N
)

−rn2
sin(ϑm1

+ ϑm +
2πα1

N
) cos(ϑm2

+ ϑm +
2παn2

N
) = T̃12(m1 +m,m2 +m).

Similarly, we have that
cos2 ϑmT̃21 + cosϑm sinϑm(T̃11 − T̃22)− sin2 ϑmT̃12

= cos2 ϑm ((1− 2ν)δm1,m2y nx + 2νδm1,m2xny) + cosϑm sinϑm(δm1,m2xnx − δm1,m2y ny)

− sin2 ϑm (2νδm1,m2y nx + (1− 2ν)δm1,m2xny)

= −2νrn2 sin(ϑm1 − ϑm2 +
2π(α1 − αn2)

N
) + r1 sin(ϑm1 + ϑm +

2πα1

N
) cos(ϑm1 + ϑm +

2πα1

N
)

−rn2 cos(ϑm1 + ϑm +
2πα1

N
) sin(ϑm2 + ϑm +

2παn2

N
) = T̃21(m1 +m,m2 +m).

Finally,
sin2 ϑmT̃11 + cosϑm sinϑm(T̃21 + T̃12) + cos2 ϑmT̃22

= sin2 ϑmδm1,m2xnx + cosϑm sinϑm (δm1,m2y nx + δm1,m2xny) + cos2 ϑmδm1,m2y ny.

= r1 sin
2(ϑm1 + ϑm +

2πα1

N
)− rn2 sin(ϑm2 + ϑm +

2παn2

N
) sin(ϑm1 + ϑm +

2πα1

N
)

= T̃22(m1 +m,m2 +m).

Therefore (A.18) is satisfied and the proof is complete. �
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