24 research outputs found

    Reasoning on Multi-Relational Contextual Hierarchies via Answer Set Programming with Algebraic Measures (Extended Abstract)

    Get PDF
    This extended abstract summarizes our previous work on a defeasible extension of Description Logic (DL) for contextual reasoning. Here, we considered on the one hand the addition of multiple dimensions of defeasibility, allowing us to express for example that a rule has to be satisfied no matter the geographical context but that the rule can change in the next years. On the other hand, we showed that Answer Set Programming (ASP) especially when enhanced with algebraic measures provide a powerful tool to implement our framework and open up perspectives for the future

    Knowledge Propagation in Contextualized Knowledge Repositories: an Experimental Evaluation

    Full text link
    As the interest in the representation of context dependent knowledge in the Semantic Web has been recognized, a number of logic based solutions have been proposed in this regard. In our recent works, in response to this need, we presented the description logic-based Contextualized Knowledge Repository (CKR) framework. CKR is not only a theoretical framework, but it has been effectively implemented over state-of-the-art tools for the management of Semantic Web data: inference inside and across contexts has been realized in the form of forward SPARQL-based rules over different RDF named graphs. In this paper we present the first evaluation results for such CKR implementation. In particular, in first experiment we study its scalability with respect to different reasoning regimes. In a second experiment we analyze the effects of knowledge propagation on the computation of inferences.Comment: ARCOE-Logic 2014 Workshop Notes, pp. 13-2

    Defeasible Reasoning in SROEL: from Rational Entailment to Rational Closure

    Full text link
    In this work we study a rational extension SROELRTSROEL^R T of the low complexity description logic SROEL, which underlies the OWL EL ontology language. The extension involves a typicality operator T, whose semantics is based on Lehmann and Magidor's ranked models and allows for the definition of defeasible inclusions. We consider both rational entailment and minimal entailment. We show that deciding instance checking under minimal entailment is in general Π2P\Pi^P_2-hard, while, under rational entailment, instance checking can be computed in polynomial time. We develop a Datalog calculus for instance checking under rational entailment and exploit it, with stratified negation, for computing the rational closure of simple KBs in polynomial time.Comment: Accepted for publication on Fundamenta Informatica

    OWL and Rules

    Get PDF
    The relationship between the Web Ontology Language OWL and rule-based formalisms has been the subject of many discussions and research investigations, some of them controversial. From the many attempts to reconcile the two paradigms, we present some of the newest developments. More precisely, we show which kind of rules can be modeled in the current version of OWL, and we show how OWL can be extended to incorporate rules. We finally give references to a large body of work on rules and OWL

    Local Closed-World Reasoning with Description Logics under the Well-Founded Semantics

    Get PDF
    An important question for the upcoming Semantic Web is how to best combine open world ontology languages, such as the OWL-based ones, with closed world rule-based languages. One of the most mature proposals for this combination is known as hybrid MKNF knowledge bases (Motik and Rosati, 2010 [52]), and it is based on an adaptation of the Stable Model Semantics to knowledge bases consisting of ontology axioms and rules. In this paper we propose a well-founded semantics for nondisjunctive hybrid MKNF knowledge bases that promises to provide better efficiency of reasoning, and that is compatible with both the OWL-based semantics and the traditional Well-Founded Semantics for logic programs. Moreover, our proposal allows for the detection of inconsistencies, possibly occurring in tightly integrated ontology axioms and rules, with only little additional effort. We also identify tractable fragments of the resulting language

    THE DATA COMPLEXITY OF DESCRIPTION LOGIC ONTOLOGIES

    Get PDF
    We analyze the data complexity of ontology-mediated querying where the ontologies are formulated in a description logic (DL) of the ALC family and queries are conjunctive queries, positive existential queries, or acyclic conjunctive queries. Our approach is non-uniform in the sense that we aim to understand the complexity of each single ontology instead of for all ontologies formulated in a certain language. While doing so, we quantify over the queries and are interested, for example, in the question whether all queries can be evaluated in polynomial time w.r.t. a given ontology. Our results include a PTime/coNP-dichotomy for ontologies of depth one in the description logic ALCFI, the same dichotomy for ALC- and ALCI-ontologies of unrestricted depth, and the non-existence of such a dichotomy for ALCF-ontologies. For the latter DL, we additionally show that it is undecidable whether a given ontology admits PTime query evaluation. We also consider the connection between PTime query evaluation and rewritability into (monadic) Datalog
    corecore