
THE DATA COMPLEXITY OF DESCRIPTION LOGIC ONTOLOGIES

CARSTEN LUTZ AND FRANK WOLTER

University of Bremen, Germany
e-mail address: clu@uni-bremen.de

University of Liverpool
e-mail address: wolter@liverpool.ac.uk

ABSTRACT. We analyze the data complexity of ontology-mediated querying where the ontologies
are formulated in a description logic (DL) of the ALC family and queries are conjunctive queries,
positive existential queries, or acyclic conjunctive queries. Our approach is non-uniform in the sense
that we aim to understand the complexity of each single ontology instead of for all ontologies for-
mulated in a certain language. While doing so, we quantify over the queries and are interested, for
example, in the question whether all queries can be evaluated in polynomial time w.r.t. a given on-
tology. Our results include a PTIME/CONP-dichotomy for ontologies of depth one in the description
logic ALCFI, the same dichotomy for ALC- and ALCI-ontologies of unrestricted depth, and the
non-existence of such a dichotomy for ALCF-ontologies. For the latter DL, we additionally show
that it is undecidable whether a given ontology admits PTIME query evaluation. We also consider the
connection between PTIME query evaluation and rewritability into (monadic) Datalog.

1. INTRODUCTION

In recent years, the use of ontologies to access instance data has become increasingly popular
[PLC+08, KZ14, BO15]. The general idea is that an ontology provides domain knowledge and
an enriched vocabulary for querying, thus serving as an interface between the query and the data,
and enabling the derivation of additional facts. In this emerging area, called ontology-mediated
querying, it is a central research goal to identify ontology languages for which query evaluation
scales to large amounts of instance data. Since the size of the data typically dominates the size of
the ontology and the size of the query by orders of magnitude, the central measure for such scala-
bility is data complexity—the complexity of query evaluation where only the data is considered to
be an input, but both the query and the ontology are fixed.

In description logic (DL), ontologies take the form of a TBox, data is stored in an ABox, and
the most important classes of queries are conjunctive queries (CQs) and variations thereof, such
as positive existential queries (PEQs). A fundamental observation regarding this setup is that, for
expressive DLs such as ALC and SHIQ, the complexity of query evaluation is CONP-complete
and thus intractable [Sch93, HMS07, GLHS08].1 The classical approach to avoiding this prob-
lem is to replace ALC and SHIQ with less expressive DLs that are ‘Horn’ in the sense that they

1998 ACM Subject Classification: Description Logics.
Key words and phrases: Description Logic, Ontology-Mediated Querying, Data Complexity.
1When speaking of complexity, we always mean data complexity

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© DATA COMPLEXITY OF ONTOLOGIES
Creative Commons

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/132609437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 DATA COMPLEXITY OF ONTOLOGIES

can be embedded into the Horn fragment of first-order (FO) logic. Horn DLs typicall admit query
evaluation in PTIME, examples include a variety of logics from the EL [BBL05] and DL-Lite fam-
ilies [CDGL+07] as well as Horn-SHIQ, a large fragment of SHIQ with PTIME query evalua-
tion [HMS07].

It may thus seem that the data complexity of query evaluation in the presence of DL ontologies
is understood rather well. However, all results discussed above are at the level of logics, i.e., tra-
ditional results about data complexity concern a class of TBoxes that is defined in a syntactic way
in terms of expressibility in a certain DL language, but no attempt is made to identify more struc-
ture inside these classes. Such a more fine-grained study, however, seems very natural both from
a theoretical and from a practical perspective; in particular, it is well-known that ontologies which
emerge in practice tend to use ‘expensive’ language constructs that can result in CONP-hardness of
data complexity, but they typically do so in an extremely restricted and intuitively ‘harmless’ way.
This distinction between hard and harmless cases cannot be analyzed on the level of logics. The
aim of this paper is to initiate a more fine-grained study of data complexity that is non-uniform in
the sense that it does not treat all TBoxes formulated in the same DL in a uniform way.

When taking a non-uniform perspective, there is an important choice regarding the level of
granularity. First, one can analyze the complexity on the level of TBoxes, quantifying over the
actual query. Then, query evaluation for a TBox T is in PTIME if every query (from the class under
consideration) can be evaluated in PTIME w.r.t. T and it is CONP-hard if there is at least one query
that is CONP-hard to evaluate w.r.t. T . And second, one might take an even more fine-grained
approach where the query is not quantified away and the aim is to classify the complexity on the
level of ontology-mediated queries (OMQs), that is, combinations of a TBox and an actual query.
From a practical perspective, both setups make sense; when the actual queries are fixed at the design
time of the application, one would probably prefer to work on the level of OMQs whereas the level
of TBoxes seems more appropriate when the queries can be freely formulated at application running
time. A non-uniform analysis on the level of OMQs has been carried out in [BtCLW14]. In this
paper, we concentrate on the level of TBoxes. The ultimate goal of our approach is as follows:
For a fixed DL L and query language Q, classify all TBoxes T in L according to the complexity of
evaluating queries from Q w.r.t. T .

We consider the basic expressive DLALC, its extensionsALCI with inverse roles andALCF
with functional roles, and their union ALCFI. As query languages, we cover CQs, acyclic CQs,
and PEQs (which have the same expressive power as unions of conjunctive queries, UCQs, which
are thus implicitly also covered). In the current paper, we mainly concentrate on understanding
the boundary between PTIME and CONP-hardness of query evaluation w.r.t. DL TBoxes, mostly
neglecting other relevant classes such as AC0, LOGSPACE, and NLOGSPACE.

Our main results are as follows (they apply to all query languages mentioned above).

1. There is a PTIME/CONP-dichotomy for query evaluation w.r.t. ALCFI-TBoxes of depth one,
i.e., TBoxes in which no existential or universal restriction is in the scope of another existential or
universal restriction.

The proof rests on interesting model-theoretic characterizations of polynomial time CQ-evaluation
which are discussed below. Note that this is a relevant case since most TBoxes from practical
applications have depth one. In particular, all TBoxes formulated in DL-Lite and its extensions
proposed in [CDGL+07, ACKZ09] have depth one, and the same is true for more than 80 percent
of the 429 TBoxes in the BioPortal ontology repository. In connection with Point 1 above, we
also show that PTIME query evaluation coincides with rewritability into monadic Datalog (with

DATA COMPLEXITY OF ONTOLOGIES 3

inequalities, to capture functional roles). As in the case of data complexity, what we mean here is
that all queries are rewritable into monadic Datalog w.r.t. the TBox T under consideration.

2. There is a PTIME/CONP-dichotomy for query evaluation w.r.t. ALCI-TBoxes.

This is proved by showing that there is a PTIME/CONP-dichotomy for query evaluation w.r.t.
ALCI-TBoxes if and only if there is a PTIME/NP-dichotomy for non-uniform constraint satis-
faction problems with finite templates (CSPs). The latter is known as the Feder-Vardi conjecture
that was recently proved in [Bul17, Zhu17], as the culmination of a major research programme that
combined complexity theory, graph theory, logic, and algebra [BJK05, KS09, Bul11, Bar14]. Our
equivalence proof establishes a close link between query evaluation in ALC and ALCI and CSP
that is relevant for DL research also beyond the stated dichotomy problem. Note that, in contrast
to the proof of the Feder-Vardi conjecture, the dichotomy proof for TBoxes of depth one (stated
as Point 1 above) is much more elementary. Also, it covers functional roles and establishes equiv-
alence between PTIME query evaluation and rewritability into monadic Datalog, which fails for
ALCI-TBoxes of unrestricted depth even when monadic Datalog is replaced with Datalog; this is
a consequence of the link to CSPs establishes in this paper.

3. There is no PTIME/CONP-dichotomy for query evaluation w.r.t. ALCF-TBoxes (unless PTIME
= NP).

This is proved by showing that, for every problem in CONP, there is an ALCF-TBox for which
query evaluation has the same complexity (up to polynomial time reductions); it then remains to
apply Ladner’s Theorem, which guarantees the existence of NP-intermediate problems. Conse-
quently, we cannot expect an exhaustive classification of the complexity of query evaluation w.r.t.
ALCF-TBoxes. Variations of the proof of Point 3 allow us to establish also the following:

4. For ALCF-TBoxes, the following problems are undecidable: PTIME-hardness of query evalua-
tion, CONP-hardness of query evaluation, and rewritability into monadic Datalog and into Datalog
(with inequalities).

To prove the results listed above, we introduce two new notions that are of independent interest
and general utility. The first one is materializability of a TBox T , which means that evaluating a
query over an ABox A w.r.t. T can be reduced to query evaluation in a single model of A and T (a
materialization). Note that such models play a crucial role in the context of Horn DLs, where they
are often called canonical models or universal models. In contrast to the Horn DL case, however,
we only require the existence of such a model without making any assumptions about its form or
construction.

5. If an ALCFI-TBox T is not materializable, then CQ-evaluation w.r.t. T is CONP-hard.

We also investigate the nature of materializations. It turns out that if a TBox is materializable for one
of the considered query languages, then it is materializable also for all others. The concrete mate-
rializations, however, need not agree. To obtain these results, we characterize CQ-materializations
in terms of homomorphisms and ELIQ-materializations in terms of simulations (an ELIQ is an
ELI-instance query, thus the DL version of an acyclic CQ, with a single answer variable).

Perhaps in contrary to the intuitions that arise from the experience with Horn DLs, material-
izability of a TBox T is not a sufficient condition for query evaluation w.r.t. T to be in PTIME
(unless PTIME = NP) since the existing materialization might be hard to compute. This leads us
to study the notion of unraveling tolerance of a TBox T , meaning that answers to acyclic CQs
over an ABox A w.r.t. T are preserved under unraveling the ABox A. In CSP, unraveling toler-
ance corresponds to the existence of tree obstructions, a notion that characterizes the well known

4 DATA COMPLEXITY OF ONTOLOGIES

arc consistency condition and rewritability into monadic Datalog [FV98, Kro10a]. It can be shown
that every TBox formulated in Horn-ALCFI (the intersection of ALCFI and Horn-SHIQ) is
unraveling tolerant and that there are unraveling tolerant TBoxes which are not equivalent to any
Horn-ALCFI-TBox. Thus, the following result yields a rather general (and uniform!) PTIME
upper bound for CQ-evaluation.

6. If an ALCFI-TBox T is unraveling tolerant, then query evaluation w.r.t. T is in PTIME.
Although the above result is rather general, unraveling tolerance of a TBox T is not a necessary
condition for CQ-evaluation w.r.t. T to be in PTIME (unless PTIME = NP). However, for ALCFI-
TBoxes T of depth one, being materializable and being unraveling tolerant turns out to be equiv-
alent. For such TBoxes, we thus obtain that CQ-evalutation w.r.t. T is in PTIME iff T is materi-
alizable iff T is unraveling tolerant while, otherwise, CQ-evaluation w.r.t. T is CONP-hard. This
establishes the first main result above.

Our framework also allows one to formally capture some intuitions and beliefs commonly held
in the context of CQ-answering in DLs. For example, we show that for every ALCFI-TBox T ,
CQ-evaluation is in PTIME iff PEQ-evaluation is in PTIME iff ELIQ-evaluation is in PTIME, and
the same is true for CONP-hardness and for rewritability into Datalog and into monadic Datalog. In
fact, the use of multiple query languages and in particular of ELI-instance queries does not only
yield additional results, but is at the heart of our proof strategies. Another interesting observation in
this spirit is that anALCFI-TBox is materializable iff it is convex, a condition that is also called the
disjunction property and plays a central role in attaining PTIME complexity for standard reasoning
in Horn DLs such as EL, DL-Lite, and Horn-SHIQ; see for example [BBL05, KL07] for more
details.

This paper is a significantly extended and revised version of the conference publication [LW12].

Related Work. An early reference on data complexity in DLs is [Sch93], showing CONP-hardness
of ELQs in the fragment ALE of ALC (an ELQ is an ELIQ in which all edges are directed away
from the answer variable). A CONP upper bound for ELIQs in the much more expressive DL SHIQ
was obtained in [HMS07] and generalized to CQs in [GLHS08]. Horn-SHIQ was first defined in
[HMS07], where also a PTIME upper bound for ELIQs is established; the generalization to CQs can
be found in [EGOS08]. See also [KL07, Ros07, OCE08, CDL+13] and references therein for the
data complexity in DLs and [BGO10, BMRT11] for related work on the guarded fragment and on
existential rules.

To the best of our knowledge, the conference version of this paper was first to initiate the study
of data complexity in ontology-mediated querying at the level of individual TBoxes and the first
to observe a link between this area and CSP. There is, however, a certain technical similarity to
the link between view-based query processing for regular path queries (RPQs) and CSP found in
[CGLV00, CGLV03b, CGLV03a]. In this case, the recognition problem for perfect rewritings for
RPQs can be polynomially reduced to non-uniform CSP and vice versa. On the level of OMQs, the
data complexity of ontology-mediated querying with DLs has been studied in [BtCLW14], see also
[FKL17]; also here, a connection to CSP plays a central role. In [LSW13, LSW15], the non-uniform
data complexity of ontology-mediated query answering is studied in the case where the TBox is
formulated in an inexpressive DL of the DL-Lite or EL family and where individual predicates in
the data can be given a closed-world reading, which also gives rise to CONP-hardness of query
evaluation; while [LSW13] is considering the level of TBoxes, [LSW15] treats the level of OMQs,
establishing a connection to surjective CSPs. Rewritability into Datalog for atomic queries and at
the level of OMQs has also been studied in [KNC16]. Finally, we mention [LS17] where a complete

DATA COMPLEXITY OF ONTOLOGIES 5

classification of the data complexity of OMQs (also within PTIME) is achieved when the TBox is
formulated in EL and the actual queries are atomic queries.

Recently, the data complexity at the level of TBoxes has been studied also in the guarded
fragment and in the two-variable guarded fragment of FO with counting [HLPW17a]. This involves
a generalization of the notions of materializability and unraveling tolerance and leads to a variety
of PTIME/CONP-dichotomy results. In particular, our dichotomy between Datalog-rewritability
and CONP is extended from ALCIF-TBoxes of depth one to ALCHIF-TBoxes of depth two.
Using a variant of Ladner’s Theorem, several non-dichotomy results for weak fragments of the
two-variable guarded fragment with counting of depth two are established and it is shown that
PTIME data complexity of query evaluation is undecidable. For ALCHIQ-TBoxes of depth one,
though, PTIME data complexity of query evaluation and, equivalently, rewritability into Datalog
(with inequalities) is proved to be decidable. In [HLPW17b], the results presented in this paper have
been used to show that whenever an ALCIF-TBox of depth one enjoys PTIME query evaluation,
then it can be rewritten into a Horn-ALCIF-TBox that gives the same answers to CQs (the converse
is trivial). It is also proved that this result does not hold in other cases such as forALCHIF-TBoxes
of depth one.

The work on CSP dichotomies started with Schaefer’s PTIME/NP-dichotomy theorem, stating
that every CSP defined by a two element template is in PTIME or NP-hard [Sch78]. Schaefer’s
theorem was followed by dichotomy results for CSPs with (undirected) graph templates [HN90]
and several other special cases, leading to the widely known Feder-Vardi conjecture which postu-
lates a PTIME/NP-dichotomy for all CSPs, independently of the size of the template [FV98]. The
conjecture has recently been confirmed [Bul17, Zhu17] using an approach to studying the complex-
ity of CSPs via universal algebra [BJK05]. Interesting results have also been obtained for other
complexity classes such as AC0 [ABI+05, LLT07].

2. PRELIMINARIES

We introduce the relevant description logics and query languages, define the fundamental notions
studied in this paper, and illustrate them with suitable examples.

We shall be concerned with the DL ALC and its extensions ALCI, ALCF , and ALCFI. Let
NC, NR, and NI denote countably infinite sets of concept names, role names, and individual names,
respectively. ALC-concepts are constructed according to the rule

C,D := > | ⊥ | A | C uD | C tD | ¬C | ∃r.C | ∀r.C
where A ranges over NC and r ranges over NR. ALCI-concepts admit, in addition, inverse roles
from the set N−R = {r− | r ∈ NR}, which can be used in place of role names. Thus, A u ∃r−.∀s.B
is an example of an ALCI-concept. To avoid heavy notation, we set r− := s if r = s− for a role
name s; in particular, we thus have (r−)− = r.

In DLs, ontologies are formalized as TBoxes. AnALC-TBox is a finite set of concept inclusions
(CIs) C v D, where C,D are ALC concepts, and ALCI-TBoxes are defined analogously. An
ALCF-TBox (resp. ALCFI-TBox) is an ALC-TBox (resp. ALCI-TBox) that additionally admits
functionality assertions func(r), where r ∈ NR (resp. r ∈ NR ∪ N−R), declaring that r is interpreted
as a partial function. Note that there is no such thing as an ALCF-concept or an ALCFI-concept,
as the extension with functional roles does not change the concept language.

An ABox A is a non-empty finite set of assertions of the form A(a) and r(a, b) with A ∈ NC,
r ∈ NR, and a, b ∈ NI. In some cases, we drop the finiteness condition on ABoxes and then

6 DATA COMPLEXITY OF ONTOLOGIES

explicitly speak about infinite ABoxes. We use Ind(A) to denote the set of individual names used in
the ABox A and sometimes write r−(a, b) ∈ A instead of r(b, a) ∈ A.

The semantics of DLs is given by interpretations I = (∆I , ·I), where ∆I is a non-empty set
and ·I maps each concept name A ∈ NC to a subset AI of ∆I and each role name r ∈ NR to a
binary relation rI on ∆I . The extension (r−)I of r− under the interpretation I is defined as the
converse relation (rI)−1 of rI and the extension CI ⊆ ∆I of concepts under the interpretation I
is defined inductively as follows:

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃r.C)I = {d ∈ ∆I | ∃d′ ∈ ∆I : (d, d′) ∈ rI and d′ ∈ CI}
(∀r.C)I = {d ∈ ∆I | ∀d′ ∈ ∆I : (d, d′) ∈ rI implies d′ ∈ CI}

An interpretation I satisfies a CI C v D if CI ⊆ DI , an assertion A(a) if a ∈ AI , an assertion
r(a, b) if (a, b) ∈ rI , and a functionality assertion func(r) if rI is a partial function. Note that
we make the standard name assumption, that is, individual names are not interpreted as domain
elements (like first-order constants), but as themselves. This assumption is common both in DLs
and in database theory. The results in this paper do not depend on it.

An interpretation I is a model of a TBox T if it satisfies all CIs in T and I is a model of an
ABox A if all individual names from A are in in ∆I and I satisfies all assertions in A. We call an
ABox A consistent w.r.t. a TBox T if A and T have a joint model.

We consider several query languages. A positive existential query (PEQ) q(~x) is a first-order
formula with free variables ~x = x1, . . . , xn constructed from atoms A(x) and r(x, y) using con-
junction, disjunction, and existential quantification, where A ∈ NC, r ∈ NR, and x, y are variables.
The variables in ~x are the answer variables of q(~x). A PEQ without answer variables is Boolean.
An assignment π for q(~x) in an interpretation I is a mapping from the variables that occur in q(~x)
to ∆I . A tuple ~a = a1, . . . , an in Ind(I) is an answer to q(~x) in I if there exists an assigment π
for q(~x) in I such that I |=π q(~x) (in the standard first-order sense) and π(xi) = ai for 1 ≤ i ≤ n.
In this case, we write I |= q(~a). A tuple ~a ∈ Ind(A), A an ABox, is a certain answer to q(~x) in A
w.r.t. a TBox T , in symbols T ,A |= q(~a), if I |= q(~a) for all models I of T and A. Computing
certain answers to a query in the sense just defined is the main querying problem we are interested
in. Although this paper focusses on the theoretical aspects of query answering, we given a concrete
example that illustrates the usefulness of query answering with DL ontologies.

Example 1. Let

T = {Professer v Academic, Professor v ∃gives.Course}
A = {Student(john), supervisedBy(john,mark), Professor(mark)}

q(x, y) = ∃z Student(x) ∧ supervisedBy(x, y) ∧ Academic(y) ∧ gives(y, z) ∧ Course(z)

Thus the query asks to return all pairs that consist of a student x and an academic y such that x is
supervised by y and y gives a course. Although this information is not directly present in the ABox,
because of the TBox it is easy to see that (john,mark) is a certain answer.

DATA COMPLEXITY OF ONTOLOGIES 7

Apart from PEQs, we also study several fragments thereof. A conjunctive query (CQ) is a PEQ
without disjunction. We generally assume that a CQ q(~x) takes the form ∃~y ϕ(~x, ~y), where ϕ(~x, ~y)
is a conjunction of atoms of the form A(x) and r(x, y). It is easy to see that every PEQ q(~x) is
equivalent to a disjunction

∨
i∈I qi(~x), where each qi(~x) is a CQ (such a disjunction is often called

a union of conjunctive queries, or UCQ).
To introduce simple forms of CQs that play a crucial role in this paper, we recall two further

DLs that we use here for mainly querying purposes. EL-concepts are constructed from NC and NR

according to the syntax rule
C,D := > | A | C uD | ∃r.C

and ELI-concepts additionally admit inverse roles. An EL-TBox is a finite set of concept inclusions
C v D with C and D EL-concepts, and likewise for ELI-TBoxes.

We now use EL and ELI to define restricted classes of CQs. If C is an ELI-concept and x a
variable, thenC(x) is called an ELI query (ELIQ); ifC is an EL-concept, thenC(x) is called an EL
query (ELQ). Note that every ELIQ can be regarded as an acyclic CQ with one answer variable, and
indeed this is an equivalent definition of ELIQs; in the case of ELQs, it is additionally the case that
all edges are directed away from the answer variable. For example, the ELIQ ∃r.(A u ∃s−.B)(x)
is equivalent to the acyclic CQ

∃y1∃y2(r(x, y1) ∧A(y1) ∧ s(y2, y1) ∧B(y2)).

In what follows, we will not distinguish between an ELIQ and its translation into an acyclic CQ
with one answer variable and freely apply notions introduced for PEQs also to ELIQs and ELQs.
We also sometimes slightly abuse notation and use PEQ to denote the set of all positive existential
queries, and likewise for CQ, ELIQ, and ELQ.

Example 2.
(1) Let T∃,r = {A v ∃r.A} and q(x) = ∃r.A(x). Then we have for any ABox A, T∃,r,A |= q(a)
iff A(a) ∈ A or there are r(a, b), A(b) ∈ A.
(2) Let T∃,l = {∃r.A v A} and q(x) = A(x). For any ABoxA, T∃,l,A |= q(a) iff there is an r-path
in A from a to some b with A(b) ∈ A; that is, there are r(a0, a1), . . . , r(an−1, an) ∈ A, n ≥ 0,
with a0 = a, an = b, and A(b) ∈ A.
(3) Consider an undirected graph G represented as an ABox A with assertions r(a, b), r(b, a) ∈ A
iff there is an edge between a and b. Let A1, . . . , Ak,M be concept names. Then G is k-colorable
iff Tk,A 6|= ∃xM(x), where

Tk = {Ai uAj vM | 1 ≤ i < j ≤ k}∪
{Ai u ∃r.Ai vM | 1 ≤ i ≤ k}∪
{> v t

1≤i≤k
Ai}.

Instead of actually computing certain answers to queries, we concentrate on the query evaluation
problem, which is the decision problem version of query answering. We next introduce this problem
along with associated notions of complexity. An ontology-mediated query (OMQ) is a pair (T , q(~x))
with T a TBox T and q(~x) a query. The query evaluation problem for (T , q(~x)) is to decide, given
an ABox A and ~a in Ind(A), whether T ,A |= q(~a). We shall typically be interested in joint
complexity bounds for evaluating all OMQs formulated in a query language Q of interest w.r.t. a
given TBox T .

8 DATA COMPLEXITY OF ONTOLOGIES

Definition 3. Let T be an ALCFI-TBox and let Q ∈ {CQ,PEQ,ELIQ,ELQ}. Then
• Q-evaluation w.r.t. T is in PTIME if for every q(~x) ∈ Q, the query evaluation problem for

(T , q(~x)) is in PTIME.
• Q-evaluation w.r.t. T is CONP-hard if there exists q(~x) ∈ Q such that the query evaluation

problem for (T , q(~x)) is CONP-hard.

Note that one should not think of ‘Q-evaluation w.r.t. T ’ as a decision problem since, informally,
this is a collection of infinitely many decision problems, one for each query in Q. Instead, one
should think of ‘Q-evaluation w.r.t. T to be in PTIME’ (or CONP-hard) as a property of T .

Example 4.
(1) PEQ-evaluation w.r.t. the TBoxes T∃,r and T∃,l from Example 2 is in PTIME. This follows from
the fact that these TBoxes are EL-TBoxes (TBoxes using only EL-concepts) and it is well known
that PEQ-evaluation w.r.t. EL-TBoxes is in PTIME [KL07].
(2) Consider the TBoxes Tk from Example 2 that express k-colorability using the query ∃xM(x).
For k ≥ 3, CQ-evaluation w.r.t. Tk is CONP-hard since k-colorability is NP-hard. However, in
contrast to the tractability of 2-colorability, CQ-evaluation w.r.t. T2 is still CONP-hard. This follows
from Theorem 18 below and, intuitively, is the case because T2 ‘entails a disjunction’: for A =
{B(a)}, we have T2,A |= A1(a) ∨A2(a), but neither T2,A |= A1(a) nor T2,A |= A2(a).

In addition to the classification of TBoxes according to whether query evaluation is in PTIME or
CONP-hard, we are also interested in whether OMQs based on the TBox are rewritable into more
classical database querying languages, in particular into Datalog and into monadic Datalog.

A Datalog rule ρ has the form S(~x) ← R1(~y1) ∧ · · · ∧ Rn(~yn) where n > 0, S is a relation
symbol, and R1, . . . , Rn are relation symbols, that is, concept names and role names. We refer to
S(~x) as the head of ρ and R1(~y1) ∧ · · · ∧ Rn(~yn) as its body. Every variable in the head of ρ
is required to occur also in its body. A Datalog program Π is a finite set of Datalog rules with a
selected goal relation goal that does not occur in rule bodies. Relation symbols that occur in the
head of at least one rule are called intensional relation symbols (IDBs), the remaining symbols are
called extensional relation symbols (EDBs). Note that, by definition, goal is an IDB. The arity of
the program is the arity of the goal relation. Programs of arity zero are called Boolean. A Datalog
program that uses only IDBs of arity one, with the possible exception of the goal relation, is called
monadic.

For an ABox A, a Datalog program Π, and ~a from Ind(A) of the same length as the arity of
goal, we write A |= Π(~a) if Π returns ~a as an answer on A, defined in the usual way [CGT89].
A (monadic) Datalog program Π is a (monadic) Datalog-rewriting of an OMQ (T , q(~x)) if for all
ABoxes A and ~a from Ind(A), T ,A |= q(~a) iff A |= Π(~a). In this case the OMQ (T , q(~x)) is
called (monadic) Datalog-rewritable. When working with DLs such as ALCFI that include func-
tional roles, it is more natural to admit the use of inequalities in the bodies of Datalog rules instead
of working with ‘pure’ programs. We refer to such extended programs as (monadic) Datalog6=

programs and accordingly speak of (monadic) Datalog6=-rewritability.

Example 5.
(1) The OMQ (T∃,l, A(x)) from Example 2 expressing a form of reachability is rewritable into the
monadic Datalog program

goal(x)← P (x), P (x)← A(x), P (x)← r(x, y) ∧ P (y).

DATA COMPLEXITY OF ONTOLOGIES 9

(2) The OMQ (Tk,∃xM(x)) from Example 2 is Datalog-rewritable when k = 2 since non-2-
colorability can be expressed by a Datalog program (but not as a monadic one). For k ≥ 3, non-k-
colorability cannot be expressed by a Datalog program (in fact, not even by a Datalog6= program)
[ACY91].
(3) The OMQ ({func(r)},∃xM(x)) is rewritable into the monadic Datalog6= program

goal()← r(x, y1) ∧ r(x, y2) ∧ y1 6= y2, goal()←M(x)

but is not rewritable into pure Datalog.

Definition 6. Let T be an ALCFI-TBox and let Q ∈ {CQ,PEQ,ELIQ,ELQ}. Then T is
(monadic) Datalog6=-rewritable for Q if (T , q(~x)) is (monadic) Datalog 6=-rewritable for every
q(~x) ∈ Q.

We would like to stress that the extension of Datalog to Datalog6= makes sense only in the pres-
ence of functional roles. In fact, it follows from the CSP connection established in Section 6 and
the results in [FV03] that for ALCI-TBoxes, Datalog 6=-rewritability for Q agrees with Datalog-
rewritability for Q, for all query classes Q considered in this paper.

Example 7. It is folklore that every EL-TBox is monadic Datalog-rewritable for ELQ, ELIQ, CQs,
and PEQs. Thus, this applies in particular to the EL-TBoxes T∃,l and T∃,r from Example 2. A
concrete construction of Datalog-rewritings for ELIQs can be found in the proof of Theorem 25
below. In contrast, the ALC-TBox Tk from Example 2 is not Datalog6=-rewritable for ELQ when
k ≥ 3 since the OMQ (Tk,∃xM(x)) is not Datalog-rewritable, by Example 5 (2).

Datalog6=-programs can be evaluated in PTIME [CGT89] in data complexity, and thus Datalog6=-
rewritability for Q of a TBox T implies that Q-evaluation w.r.t. T is in PTIME in data complexity.
We shall see later that the converse direction does not hold in general.

We will often be concerned with homomorphisms between ABoxes and between interpreta-
tions, defined next. Let A and B be ABoxes. A function h : Ind(A)→ Ind(B) is a homomorphism
from A to B if it satisfies the following conditions:

(1) A(a) ∈ A implies A(h(a)) ∈ B and
(2) r(a, b) ∈ A implies r(h(a), h(b)) ∈ B.

We say that h preserves I ⊆ NI if h(a) = a for all a ∈ I . Homomorphisms from an interpretation
I to an interpretation J are defined analogously as functions h : ∆I → ∆J . Note that these two
notions are in fact identical since, up to presentation, ABoxes and finite interpretations are the same
thing. In what follows we will not always distinguish between the two presentations.

3. MATERIALIZABILITY

We introduce materializability as a central notion for analyzing the complexity and rewritability
of TBoxes. A materialization of a TBox T and ABox A for a class of queries Q is a (potentially
infinite) model of T and A that gives the same answers to queries in Q as T and A do. It is not
difficult to see that a materialization for ELIQs is not necessarily a materialization for CQs and that
a materialization for ELQs is not necessarily a materialization for ELIQs. We shall call a TBox
T materializable for a query language Q if for every ABox A that is consistent w.r.t. T , there
is a materialization of T and A for Q. Interestingly, we show that materializability of ALCFI-
TBoxes does not depend on whether one considers ELIQs, CQs, or PEQs. This result allows us
to simply talk about materializable TBoxes, independently of the query language considered. The

10 DATA COMPLEXITY OF ONTOLOGIES

fundamental result linking materializability of a TBox to the complexity of query evaluation is that
ELIQ-evaluation is CONP-hard w.r.t. non-materializable ALCFI-TBoxes. As another application
of materializability, we show that for ALCFI-TBoxes, PTIME query evaluation, CONP-hardness
of query evaluation, and Datalog 6=-rewritability also do not depend on the query language. In the
case of ALCF , materializability for ELIQs additionally coincides with materializability for ELQs.

Definition 8. Let T be an ALCFI-TBox and Q ∈ {CQ,PEQ,ELIQ,ELQ}. Then
(1) a model I of T and an ABoxA is aQ-materialization of T andA if for all queries q(~x) ∈ Q

and ~a ⊆ Ind(A), we have I |= q(~a) iff T ,A |= q(~a);
(2) T is Q-materializable if for every ABox A that is consistent w.r.t. T , there exists a Q-

materialization of T and A.

In Point (1) of Definition 8, it is important that the materialization I of T and A is a model of T
and A. In fact, for an ABox A that is consistent w.r.t. T , we can always find an interpretation I
such that for every CQ q(~x) and ~a ⊆ Ind(A), I |= q(~a) iff T ,A |= q(~a). In particular, the direct
product of all (up to isomorphisms) countable models of T andA can serve as such an I. However,
the interpretation is, in general, not a model of T .

Note that a Q-materialization can be viewed as a more abstract version of the canonical or
minimal or universal model as often used in the context of ‘Horn DLs’ such as EL and DL-Lite
[LTW09, KLT+10, BO15] and more expressive ontology languages based on tuple-generating de-
pendencies (tgds) [CGK13] as well as in data exchange [FKMP05]. In fact, the ELQ-materialization
in the next example is exactly the ‘compact canonical model’ from [LTW09].

Example 9.
(1) Let T∃,l = {∃r.A v A} be as in Example 2 and let A be an ABox. Let I be the interpretation
obtained from A by adding to AI all a ∈ Ind(A) such that there exists an r-path from a to some b
with A(b) ∈ A. Then I is a PEQ-materialization of T and A and so T is PEQ-materializable.
(2) Let T∃,r = {A v ∃r.A} be as in Example 2 and let A be an ABox with at least one assertion of
the form A(a). To obtain an ELQ-materialization I of T and A, start with A as an interpretation,
add a fresh domain element dr to ∆I and to AI , and extend rI with (a, dr) and (dr, dr) for all
A(a) ∈ A. Thus T∃,r is ELQ-materializable.
(3) The TBox T = {A v A1 t A2} is not ELQ-materializable. To see this let A = {A(a)}. Then
no model I of T and A is an ELQ-materialization of T and A as it satisfies a ∈ AI1 or a ∈ AI2 but
neither T ,A |= A1(a) nor T ,A |= A2(a).

Trivially, every PEQ-materialization is a CQ-materialization, every CQ-materialization is an ELIQ-
materialization and every ELIQ-materialization is an ELQ-materialization. Conversely, it follows
directly from the fact that each PEQ is equivalent to a disjunction of CQs that every CQ-materializ-
ation is also a PEQ-materialization. In contrast, the following example demonstrates that ELQ-
materializations are different from ELIQ-materializations. A similar argument separates ELIQ-
materializations from CQ-materializations.

Example 10. Let T∃,r be as in Example 9,

A = {B1(a), B2(b), A(a), A(b)} and
q(x) = (B1 u ∃r.∃r−.B2)(x),

Then the ELQ-materialization I from Example 9 (2) is not a Q-materialization for any Q from the
set of query languages ELIQ,CQ,PEQ. For example, we have I |= q(a), but T ,A 6|= q(a). An
ELIQ/CQ/PEQ-materialization of T andA is obtained by unfolding I (see below): instead of using

DATA COMPLEXITY OF ONTOLOGIES 11

only one additional domain element dr as a witness for ∃r.A, we attach to both a and b an infinite
r-path of elements that satisfy A. Note that every CQ/PEQ-materialization of T∃,r and A must be
infinite.

We will sometimes restrict our attention to materializations I that are countable and generated, i.e,
every d ∈ ∆I is reachable from some a ∈ ∆I ∩ NI in the undirected graph

GI = (∆I , {{d, d′} | (d, d′) ∈
⋃
r∈NR

rI}).

The following lemma shows that we can make that assumption without loss of generality.

Lemma 11. Let T be an ALCFI-TBox, A an ABox, and Q ∈ {CQ,PEQ,ELIQ,ELQ}. If I is a
Q-materialization of T and A, then there exists a subinterpretation J of I that is a countable and
generated Q-materialization of T and A.

Proof. Let I be a Q-materialization of T and A. To construct J we apply a standard selective
filtration procedure to I. More precisely, we identify a sequence Ind(A) = S0 ⊆ S1 ⊆ · · · ⊆ ∆I

and then define J to be the restriction of I to
⋃
i Si. Let C be the set of all concepts of the form

∃r.C that occur in T and of all concepts ∃r.¬C such that ∀r.C occurs in T . Assume Si has already
been defined. Then define Si+1 as the union of Si and, for every d ∈ Si and concept ∃r.C ∈ C with
d ∈ (∃r.C)I , an arbitrary d′ ∈ ∆I with (d, d′) ∈ rI and d′ ∈ CI (unless such a d′ exists already in
Si). It is easy to see that J is a countable and generated Q-materialization of T and A. o

3.1. Model-Theoretic Characterizations of Materializability. We characterize materializations
using simulations and homomorphisms. This sheds light on the nature of materializations and es-
tablishes a close connection between materializations and initial models as studied in model theory,
algebraic specification, and logic programming [Mal71, MG85, Mak87].

A simulation from an interpretation I1 to an interpretation I2 is a relation S ⊆ ∆I1 × ∆I2

such that
(1) for all A ∈ NC: if d1 ∈ AI1 and (d1, d2) ∈ S, then d2 ∈ AI2 ;
(2) for all r ∈ NR: if (d1, d2) ∈ S and (d1, d

′
1) ∈ rI1 , then there exists d′2 ∈ ∆I2 such that

(d′1, d
′
2) ∈ S and (d2, d

′
2) ∈ rI2 ;

(3) for all a ∈ ∆I1 ∩ NI: a ∈ ∆I2 and (a, a) ∈ S.
Note that, by Condition (3), domain elements that are individual names need to be respected by
simulations while other domain elements need not. In database parlance, the latter are thus treated
as labeled nulls, that is, while their existence is important, their identity is not.

We call a simulation S an i-simulation if Condition (2) is satisfied also for inverse roles. Note
that S is a homomorphism preserving ∆I1 ∩ NI if S is a function with domain ∆I . We remind
the reader of the following characterizations of ELQs using simulations, ELIQs using i-simulations,
and CQs using homomorphisms (see e.g. [LW10]). An interpretation I has finite outdegree if the
undirected graph GI has finite outdegree.

Lemma 12. Let I and J be interpretations such that ∆I ∩ NI is finite, I is countable and gener-
ated, and J has finite outdegree. Then the following conditions are equivalent (where none of the
assumed conditions on I and J is required for (2)⇒ (1)).

(1) For all ELIQs C(x) and a ∈ ∆I ∩ NI: if I |= C(a), then J |= C(a);
(2) There is an i-simulation from I to J .

12 DATA COMPLEXITY OF ONTOLOGIES

The same equivalence holds when ELIQs and i-simulations are replaced by ELQs and simulations,
respectively. Moreover, the following conditions are equivalent (where none of the assumed condi-
tions on I and J is required for (5)⇒ (3)).

(3) For all PEQs q(~x) and ~a ⊆ ∆I ∩ NI: if I |= q(~a), then J |= q(~a);
(4) For all CQs q(~x) and ~a ⊆ ∆I ∩ NI: if I |= q(~a), then J |= q(~a);
(5) There is a homomorphism from I to J preserving ∆I ∩ NI.

Proof. We prove the equivalence of (3)-(5). The equivalence of (1) and (2) is similar (both for
ELIQs and ELQs) but simpler and left to the reader. The implication (3) ⇒ (4) is trivial. For the
proof of (4)⇒ (5), assume that I is countable and generated and let J have finite outdegree. We
first assume that only a finite set Σ of concept and role names have a non-empty interpretation in
I and then generalize the result to arbitrary I. Assume that (4) holds. First observe that for every
finite subset X of ∆I there is a homomorphism hX preserving X ∩ NI from the subinterpretation
I�X of I induced by X into J : associate with every d ∈ X a variable xd and regard I�X as the CQ

qX(~x) = ∃~y
∧

d∈X∩AI
A(xd) ∧

∧
(d,d′)∈(X×X)∩rI

r(xd, xd′),

where ~x comprises the variables in {xa | a ∈ X ∩ NI} and ~y comprises the variables xd with
d ∈ X \NI (qX is a CQ by our assumption that only finitely many concept and role names have non-
empty interpretation). For the assignment π(xd) = d, we have I |=π ϕ(~x, ~y). Thus I |=π qX(~x)
and so, by (2), J |=π qX(~x). Consequently, there exists an assignment π′ for qX(~x) in J which
coincides with π on {xa | a ∈ X ∩ NI} such that J |=π′ ϕ(~x, ~y). Let hX(d) = π′(d) for d ∈ X .
Then hX is a homomorphism from I�X to J preserving X ∩ NI, as required.

We now lift the homomorphisms hX to a homomorphism h from I to J preserving ∆I ∩ NI.
Since I is countable and generated, there exists a sequence X0 ⊆ X1 ⊆ · · · of finite subsets of ∆I

such that X0 = ∆I ∩ NI,
⋃
i≥0Xi = ∆I , and for all d ∈ Xi there exists a path in Xi from some

a ∈ X0 to d.
By the observation above, we find homomorphisms hXi from I�Xi to J preservingXi∩NI, for

i ≥ 0. Let d0, d1 . . . be an enumeration of ∆I . We define the required homomorphism h as the limit
of a sequence h0 ⊆ h1 ⊆ · · · , where each hn has domain {d0, . . . , dn} and where we ensure for
each hn and all d ∈ {d0, . . . , dn} that there are infinitely many j with hn(d) = h�Xj (d). Observe
that since J has finite outdegree and since for all d ∈ Xi, there exists a path in Xi from some
a ∈ X0 to d, for each d ∈ ∆I there exist only finitely many distinct values in {h�Xi(d) | i ≥ 0}. By
the pigeonhole principle, there thus exist infinitely many j with the same value hXj (d). For h0(d0)
we take such a value for d0. Assume hn has been defined and assume that the set I = {j | hn(d) =
h�Xj (d) for all d ∈ {d0, . . . , dn}} is infinite. Again by the pigeonhole principle, we find a value
e ∈ ∆J such that hXj (dn+1) = e for infinitely many j ∈ I . We set hn+1(dn+1) = e. The function
h =

⋃
i≥0 h0 is a homomorphism from I to J preserving ∆I ∩ NI, as required.

To lift this result to arbitrary interpretations I, it is sufficient to prove that the homomorphisms
hX still exist. This can be shown using again the pigeonhole principle. Let X ⊆ ∆I be finite. We
may assume that for each d ∈ X , there exists a path in X from some a ∈ X ∩ NI, to d. We have
shown that for each finite set Σ of concept and role names, there exists a homomorphism hΣ

X from
the Σ-reduct IΣ

X of IX to J (IΣ
X interprets only the symbols in Σ as non-empty). Since J has finite

outdegree, infinitely many hΣ
X coincide. A straightforward modification of the pigeonhole argument

above can now be used to construct the required homomorphism hX .

DATA COMPLEXITY OF ONTOLOGIES 13

For the proof of (5)⇒ (3), assume I |= q(~a) and let h be a homomorphism from I to J pre-
serving ∆I ∩NI. Let π be an assignment for q(~x) in I witnessing I |= q(~a). Then the composition
h ◦ π is an assignment for q(~x) in J witnessing J |= q(~a). o

For the next steps, we need some observations regarding the unfolding of interpretations into forest-
shaped interpretations. Let us first make precise what we mean by unfolding. The i-unfolding of
an interpretation I is an interpretation J defined as follows. The domain ∆J of J consists of all
words d0r1 . . . rndn with n ≥ 0, each di from ∆I and each ri a (possibly inverse) role such that

(a) di ∈ NI iff i = 0;
(b) (di, di+1) ∈ rIi+1 for 0 ≤ i < n;
(c) if r−i = ri+1, then di−1 6= di+1 for 0 < i < n.

For d0 · · · dn ∈ ∆J , we set tail(d0 · · · dn) = dn. Now set

AJ = {w ∈ ∆J | tail(w) ∈ AI} for all A ∈ NC

rJ = (rI ∩ (NI × NI))∪
{(σ, σrd) | σ, σrd ∈ ∆J } ∪ {(σr−d, σ) | σ, σr−d ∈ ∆J } for all r ∈ NR.

We say that an interpretation I is i-unfolded if it is isomorphic to its own i-unfolding. Clearly, every
i-unfolding of an interpretation is i-unfolded.

For ALCF-TBoxes, it is not required to unfold along inverse roles. This is reflected in the
unfolding of an interpretation I, where in contrast to the i-unfolding we use as the domain the
set of all words d0r1 . . . rndn with n ≥ 0, each di from ∆I , and each ri a role name such that
Conditions (a) and (b) above are satisfied. The interpretation of concept and role names remains the
same. We call an interpretation I unfolded if it is isomorphic to its own unfolding. The following
lemma summarizes the main properties of unfoldings. Its proof is straightforward and left to the
reader.

Lemma 13. Let I be an interpretation, Ii its i-unfolding, and Iu its unfolding. Then for every
interpretation J , the following conditions are satisfied:

(1) the function f(w) := tail(w), w ∈ ∆I
i
, is a homomorphism from Ii to I preserving

∆I ∩ NI;
(2) the function f(w) := tail(w), w ∈ ∆I

u
, is a homomorphism from Iu to I preserving

∆I ∩ NI;
(3) if there is an i-simulation from I to J , then there is a homomorphism from Ii to J preserv-

ing ∆I ∩ NI;
(4) if there is a simulation from I to J , then there is a homomorphism from Iu to J preserving

∆I ∩ NI;
(5) if I is a model of T and A with T an ALCFI-TBox, then Ii is a model of T and A;
(6) if I is a model of T and A with T an ALCF-TBox, then Iu is a model of T and A.

An interpretation I is called hom-initial in a class K of interpretations if for every J ∈ K, there
exists a homomorphism from I to J preserving ∆I ∩ NI. I is called sim-initial (i-sim-initial) in
a class K of interpretations if for every J ∈ K, there exists a simulation (i-simulation) from I to
J . The following theorem provides the announced characterization of materializations in terms of
simulations and homomorphisms. In the following, the class of all models of T and A is denoted
by Mod(T ,A).

Theorem 14. Let T be an ALCFI-TBox, A an ABox, and let I ∈ Mod(T ,A) be countable and
generated. Then I is

14 DATA COMPLEXITY OF ONTOLOGIES

(1) an ELIQ-materialization of T and A iff it is i-sim-initial in Mod(T ,A);
(2) a CQ-materialization of T and A iff it is a PEQ-materialization of T and A iff it is hom-

initial in Mod(T ,A);
(3) an ELQ-materialization of T andA iff it is sim-initial in Mod(T ,A), provided that T is an
ALCF-TBox.

The ‘only if’ directions of all three points hold without any of the assumed conditions on I.

Proof. We show that (1) follows from Lemma 12 and Lemma 13; (2) and (3) can be proved similarly.
We start with the direction from right to left. Assume that I is i-sim-initial in Mod(T ,A).

Since I is a model of T and A, we have I |= C(a) whenever T ,A |= C(a) for any ELIQ C(x)
and a ∈ Ind(A). Conversely, if T ,A 6|= C(a) then there exists a model J of T and A such
that J 6|= C(a). There is an i-simulation from I to J . Thus, by the implication (2) ⇒ (1) from
Lemma 12, we have I 6|= C(a) as required.

For the direction from left to right, assume that I is a materialization of T and A and take a
model J of T and A. We have to construct an i-simulation from I to J . It actually suffices to
construct an i-simulation from I to the i-unfolding J i of J : by Point (3) of Lemma 13, there is
a homomorphism from J i to J and the composition of an i-simulation with a homomorphism is
again an i-simulation.

To obtain an i-simulation from I to J i, we first identify a subinterpretation J ′ of J i that has
finite outdegree and is still a model of T and A. By the implication (1)⇒ (2) from Lemma 12 and
since I is a materialization, there must then be an i-simulation from I to J ′. Clearly this is also an
i-simulation from I to J i and we are done.

It thus remains to construct J ′, which is done by applying selective filtration to J i in exactly
the same way as in the proof of Lemma 11. It can be verified that the outdegree of the resulting
subinterpretation J ′ of J i is bounded by |T | + |A| and, therefore, finite. By construction, J ′ ∈
Mod(T ,A). o

The following example shows that the generatedness condition in Theorem 14 cannot be dropped.
We leave it open whether the same is true for countability.

Example 15. Let T = {A v ∃r.A,B v A} and A = {B(a)} and consider the interpretation I
defined by

∆I = {a} ∪ {0, 1, 2 . . .} ∪ {. . . ,−2′,−1′, 0′, 1′, 2′, . . . }
AI = ∆I

BI = {a}
rI = {(a, 0)} ∪ {(n, n+ 1) | n ∈ N} ∪ {(n′, n′ + 1) | n ∈ Z}.

Then I is a PEQ-materialization of T and A, but it is not hom-initial (and in fact not even sim-
initial) since the restriction of I to domain {a} ∪ {0, 1, 2 . . .} is also a model of T and A, but there
is no homomorphism (and no simulation) from I to this restriction preserving {a}.

As an application of Theorem 14, we now show that materializability coincides for the query
languages PEQ, CQ, and ELIQ (and that for ALCF-TBoxes, all these also coincide with ELQ-
materializability).

Theorem 16. Let T be an ALCFI-TBox. Then the following conditions are equivalent:
(1) T is PEQ-materializable;
(2) T is CQ-materializable;
(3) T is ELIQ-materializable;

DATA COMPLEXITY OF ONTOLOGIES 15

(4) Mod(T ,A) contains an i-sim-initial I, for every ABox A that is consistent w.r.t. T ;
(5) Mod(T ,A) contains a hom-initial I, for every ABox A that is consistent w.r.t. T .

If T is an ALCF-TBox, then the above is the case iff T is ELQ-materializable iff Mod(T ,A)
contains a sim-initial I, for every ABox A that is consistent w.r.t. T .

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are trivial. For (3) ⇒ (4), let I be an ELIQ-
materialization of T and an ABox A. By Lemma 11, we may assume that I is countable and
generated. By Lemma 14, Mod(T ,A) contains an i-sim-initial interpretation. For (4)⇒ (5), assume
that I ∈ Mod(T ,A) is i-sim-initial. By Points (3) and (5) of Lemma 13, the i-unfolding of I is
hom-initial in Mod(T ,A) and (5) follows. (5)⇒ (1) follows from Theorem 14. The implications
for ALCF-TBoxes are proved similarly. o

Because of Theorem 16, we sometimes speak of materializability without reference to a query
language and of materializations instead of PEQ-materializations.

3.2. Materializability and CONP-hardness. We show that non-materializability of a TBox T im-
plies CONP-hardness of ELIQ-evaluation w.r.t. T . To this end, we first establish that materializ-
ability is equivalent to the disjunction property, which is sometimes also called convexity and plays
a central role in attaining PTIME complexity for subsumption in DLs [BBL05], and for attaining
PTIME data complexity for query answering with DL TBoxes [KL07].

Let T be a TBox. For an ABox A, individual names a0, . . . , ak ∈ Ind(A), and ELIQs
C0(x), . . . , Ck(x), we write T ,A |= C0(a0) ∨ · · · ∨ Ck(ak) if for every model I of T and A,
I |= Ci(ai) holds for some i ≤ k. We say that T has the ABox disjunction property for ELIQ
(resp. ELQ) if for all ABoxes A, individual names a0, . . . , ak ∈ Ind(A), and ELIQs (resp. ELQs)
C0(x), . . . , Ck(x), T ,A |= C0(a0) ∨ · · · ∨ Ck(ak) implies T ,A |= Ci(ai) for some i ≤ k.

Theorem 17. AnALCFI- (ALCF-)TBox T is materializable iff it has the ABox disjunction prop-
erty for ELIQs (ELQs).

Proof. For the nontrivial “if” direction, let A be an ABox that is consistent w.r.t. T and such that
there is no ELIQ-materialization of T and A. Then T ∪ A ∪ Γ is not satisfiable, where

Γ = {¬C(a) | T ,A 6|= C(a), a ∈ Ind(A), C(x) ELIQ}.
In fact, any satisfying interpretation would be an ELIQ-materialization. By compactness, there is
a finite subset Γ′ of Γ such that T ∪ A ∪ Γ′ is not satisfiable, i.e. T ,A |=

∨
¬C(a)∈Γ′ C(a). Since

Γ′ ⊆ Γ, we have T ,A 6|= C(a) for all ¬C(a) ∈ Γ′. Thus, T lacks the ABox disjunction property.
o

Based on Theorems 16 and 17, we now establish that materializability is a necessary condition for
query evaluation to be it PTIME.

Theorem 18. If anALCFI-TBox T (ALCF-TBox T) is not materializable, then ELIQ-evaluation
(ELQ-evaluation) w.r.t. T is CONP-hard.

Proof. The proof is by reduction of 2+2-SAT, a variant of propositional satisfiability that was first
introduced by Schaerf as a tool for establishing lower bounds for the data complexity of query
answering in a DL context [Sch93]. A 2+2 clause is of the form (p1 ∨ p2 ∨ ¬n1 ∨ ¬n2), where
each of p1, p2, n1, n2 is a propositional letter or a truth constant 0, 1. A 2+2 formula is a finite
conjunction of 2+2 clauses. Now, 2+2-SAT is the problem of deciding whether a given 2+2 formula
is satisfiable. It is shown in [Sch93] that 2+2-SAT is NP-complete.

16 DATA COMPLEXITY OF ONTOLOGIES

We first show that if an ALCFI-TBox T is not materializable, then UELIQ-evaluation w.r.t.
T is CONP-hard, where a UELIQ is a disjunction C0(x) ∨ · · · ∨ Ck(x), with each Ci(x) an ELIQ.
We then sketch the modifications necessary to lift the result to ELIQ-evaluation w.r.t. T .

Since T is not materializable, by Theorem 17 it does not have the ABox disjunction property.
Thus, there is an ABox A∨, individual names a0, . . . , ak ∈ Ind(A), and ELIQs C0(x), . . . , Ck(x),
k ≥ 1, such that T ,A∨ |= C0(a0)∨· · ·∨Ck(ak), but T ,A∨ 6|= Ci(ai) for all i ≤ k. Assume w.l.o.g.
that this sequence is minimal, i.e., T ,A∨ 6|= C0(a0)∨· · ·∨Ci−1(ai−1)∨Ci+1(ai+1)∨· · ·∨Ck(ak)
for all i ≤ k. This clearly implies that for all i ≤ k,

(∗) there is a model Ii of T and A∨ with I |= Ci(ai) and I 6|= Cj(aj) for all j 6= i.
We will useA∨, the individual names a1, . . . , ak, and the ELIQsC0(x), . . . , Ck(x) to generate truth
values for variables in the input 2+2 formula.

Let ϕ = c0 ∧ · · · ∧ cn be a 2+2 formula in propositional letters z0, . . . , zm, and let ci =
pi,1 ∨ pi,2 ∨ ¬ni,1 ∨ ¬ni,2 for all i ≤ n. Our aim is to define an ABox Aϕ with a distinguished
individual name f and a UELIQ q(x) such that ϕ is unsatisfiable iff T ,Aϕ |= q(f). To start, we
represent the formula ϕ in the ABox Aϕ as follows:

• the individual name f represents the formula ϕ;
• the individual names c0, . . . , cn represent the clauses of ϕ;
• the assertions c(f, c0), . . . , c(f, cn), associate f with its clauses, where c is a role name that

does not occur in T ;
• the individual names z0, . . . , zm represent variables, and the individual names 0, 1 represent

truth constants;
• the assertions ⋃

i≤n
{p1(ci, pi,1), p2(ci, pi,2), n1(ci, ni,1), n2(ci, ni,2)}

associate each clause with the variables/truth constants that occur in it, where p1, p2, n1, n2

are role names that do not occur in T .
We further extend Aϕ to enforce a truth value for each of the variables zi. To this end, add to Aϕ
copiesA0, . . . ,Am ofA∨ obtained by renaming individual names such that Ind(Ai)∩ Ind(Aj) = ∅
whenever i 6= j. As a notational convention, let aij be the name used for the individual name
aj ∈ Ind(A∨) in Ai for all i ≤ m and j ≤ k. Intuitively, the copy Ai of A is used to generate
a truth value for the variable zi. To actually connect each individual name zi to the associated
ABox Ai, we use role names r0, . . . , rk that do not occur in T . More specifically, we extend Aϕ as
follows:

• link variables zi to the ABoxes Ai by adding assertions rj(zi, aij) for all i ≤ m and j ≤ k;
thus, truth of zi means that the concept ∃r0.C0 is true at zi and falsity means that one of the
concepts ∃rj .Cj , j ≤ k, is true at zi;
• to ensure that 0 and 1 have the expected truth values, add a copy of C0(x) viewed as an

ABox with root 0′ and a copy of C1(x) viewed as an ABox with root 1′; add r0(0, 0′) and
r1(1, 1′).

Consider the query q0(x) = C(x) with

C = ∃c.(∃p1.ff u ∃p2.ff u ∃n1.tt u ∃n2.tt)

which describes the existence of a clause with only false literals and thus captures falsity of ϕ, where
tt is an abbreviation for ∃r0.C0 and ff an abbreviation for the ELU-concept ∃r1.C1 t · · · t ∃rk.Ck.

DATA COMPLEXITY OF ONTOLOGIES 17

It is straightforward to show that ϕ is unsatisfiable iff T ,A |= q0(f). To obtain the desired UELIQ
q(x), it remains to take q0(x) and distribute disjunction to the outside.

We now show how to improve the result from UELIQ-evaluation to ELIQ-evaluation. Our aim
is to change the encoding of falsity of a variable zi from satisfaction of ∃r1.C1 t · · · t ∃rk.Ck at
zi to satisfaction of ∃h.(∃r1.C1 u · · · u ∃rk.Ck), at zi, where h is an additional role that does not
occur in T . We can then replace the concept ff in the query q0 with ∃h.(∃r1.C1 u · · · u ∃rk.Ck),
which gives the desired ELIQ q(x).

It remains to modify Aϕ to support the new encoding of falsity. The basic idea is that each zi
has k successors bi1, . . . , b

i
k reachable via h such that for 1 ≤ j ≤ k,

• ∃r`.C` is satisfied at bij for all ` = 1, . . . , j − 1, j + 1, . . . , k and
• the assertion rj(bij , a

i
j) is in Aϕ.

Thus, ∃r1.C1 u · · · u ∃rk.Ck is satisfied at bij iff Cj is satisfied at aij , for all j with 1 ≤ j ≤ k. In
detail, the modification of Aϕ is as follows:

• for 1 ≤ j ≤ k, add to Aϕ a copy of Cj viewed as an ABox, where the root individual name
is dj ;
• for all i ≤ m, replace the assertions rj(zi, aij), 1 ≤ j ≤ k, with the following:

– h(zi, b
i
1), . . . , h(zi, b

i
k) for all i ≤ m;

– rj(b
i
j , a

i
j), r1(bij , d1), . . . , rj−1(bij , dj−1),

rj+1(bij , dj+1), . . . , rk(b
i
j , dk) for all i ≤ m and 1 ≤ j ≤ k.

This finishes the modified construction. Again, it is not hard to prove correctness.

It remains to note that, when T is an ALCF-TBox, then the above construction of q yields an
ELQ instead of an ELIQ. o

The converse of Theorem 18 fails, i.e., there are TBoxes that are materializable, but for which ELIQ-
evaluation is CONP-hard. In fact, materializations of such a TBox T and ABoxA are guaranteed to
exist, but cannot always be computed in PTIME (unless PTIME = CONP). Technically, this follows
from Theorem 33 later on which states that for every non-uniform CSP, there is a materializable
ALC-TBox for which Boolean CQ-answering has the same complexity, up to complementation of
the complexity class.

3.3. Complexity of TBoxes for Different Query Languages. We make use of our results on ma-
terializability to show that PTIME query evaluation w.r.t. ALCFI-TBoxes does not depend on
whether we consider PEQs, CQs, or ELIQs, and the same is true for CONP-hardness, for Datalog6=-
rewritability, and for monadic Datalog 6=-rewritability. ForALCF-TBoxes, we can add ELQs to the
list. Theorem 19 below gives a uniform explanation for the fact that, in the traditional approach
to data complexity in OBDA, the complexity of evaluating PEQs, CQs, and ELIQs has turned out
to be identical for almost all DLs. It allows us to (sometimes) speak of the ‘complexity of query
evaluation’ without reference to a concrete query language.

Theorem 19. For all ALCFI-TBoxes T ,
(1) PEQ-evaluation w.r.t. T is in PTIME iff CQ-evaluation w.r.t. T is in PTIME iff ELIQ-

evaluation w.r.t. T is in PTIME;
(2) T is (monadic) Datalog6=-rewritable for PEQ iff it is Datalog6=-rewritable for CQ iff it is

(monadic) Datalog6=-rewritable for ELIQ (unless PTIME = CONP);
(3) PEQ-evaluation w.r.t. T is CONP-hard iff CQ-evaluation w.r.t. T is CONP-hard iff ELIQ-

evaluation w.r.t. T is CONP-hard.

18 DATA COMPLEXITY OF ONTOLOGIES

If T is an ALCF-TBox, then ELIQ can be replaced by ELQ in (1), (2), and (3). If T is an ALCI-
TBox, then Datalog6=-rewritability can be replaced by Datalog-rewritability in (2).

Proof. We start with Points (1) and (2), for which the “only if” directions are trivial. For the
converse directions, we may assume by Theorem 18 that the TBox T is materializable. The impli-
cations from CQ to PEQ in Points (1) and (2) follow immediately from this assumption: one can first
transform a given PEQ q(~x) into an equivalent disjunction of CQs

∨
i∈I qi(~x). CQ-materializability

of T implies that, for any ABox A and ~a in Ind(A), T ,A |= q(~a) iff there exists i ∈ I such that
T ,A |= qi(~a). Thus if CQ-evaluation w.r.t. T is in PTIME, evaluation of (T , q(~x)) is in PTIME. The
same holds for (monadic) Datalog6=-rewritability because the class of Datalog6=-queries is closed
under finite union.

We now consider the implications from ELIQ to CQ (and from ELQ to CQ if T is a ALCF-
TBox) in Points (1) and (2). The following claim is the main step of the proof. It states that for any
CQ q(~x), we can reduce the evaluation of q(~x) w.r.t. T on an ABox A to evaluating quantifier-free
CQs and ELIQs C(x) w.r.t. T (ELQs if T is an ALCF-TBox), both on A.

Claim 1. For any materializable TBox T and CQ q(~x) with ~x = x1 · · ·xn, one can construct a
finite set Q of pairs (ϕ(~x, ~y), C), where

• ϕ(~x, ~y) is a (possibly empty) conjunction of atoms of the form x = y or r(x, y), where r is
a role name in q(~x) and
• C is a finite set of ELIQs

such that the following conditions are equivalent for any ABox A and ~a = a1 · · · an from Ind(A):
(i) T ,A |= q(~a);

(ii) there exists (ϕ(~x, ~y), C) ∈ Q and an assignment π in Ind(A) with π(xi) = ai for 1 ≤ i ≤ n,
A |=π ϕ(~x, ~y), and T ,A |= C(π(x)) for all C(x) ∈ C.

If T is an ALCF-TBox, then one can choose ELQs instead of ELIQs in each C in Q.

Before we prove Claim 1, we show how the desired results follow from it. Let a CQ q(~x) be given
and let Q be the set of pairs from Claim 1.

• Assume that ELIQ-evaluation w.r.t. T is in PTIME. Then T ,A |= q(~a) can be decided
in polynomial time since there are only polynomially many assignments π and for any
such π, A |=π ϕ(~x, ~y) can be checked in polynomial time (using a naive algorithm) and
T ,A |= C(π(x)) can be checked in polynomial time for each ELIQ C(x) ∈ C.
• Assume that T is (monadic) Datalog 6=-rewritable for ELIQ. Let p = (ϕ(~x, ~y), C) ∈ Q.

For each C(x) ∈ C, choose a (monadic) Datalog 6=-rewriting ΠC(x) of (T , C(x)), assume
w.l.o.g that none of the chosen programs share any IDB relations, and that the goal relation
of ΠC(x) is goalC . Let Πp be the (monadic) Datalog6= program that consists of the rules of
all the chosen programs, plus the following rule:

goal(~x) ← ϕ(~x, ~y) ∧
∧

C(x)∈C

goalC(x).

The desired (monadic) Datalog 6=-rewriting of (T , q(~x)) is obtained by taking the union of
all the constructed (monadic) Datalog6= queries.

The implications from ELQs to CQs for ALCF-TBoxes in Points (1) and (2) follow in the same
way since, then, each C in Q consists of ELQs only.

For the proof of Claim 1, we first require a technical observation that allows us to deal with
subqueries that are not connected to an answer variable in the CQ q(~x). To illustrate, consider the
query q0 = ∃xB(x). To prove Claim 1 for q0, we have to find a set Q of pairs (ϕ(~y), C) satisfying

DATA COMPLEXITY OF ONTOLOGIES 19

Conditions (i) and (ii). Clearly, in this case the components ϕ(~y) will be empty and so we have
to construct a finite set C of ELIQs such that for any ABox A, T ,A |= ∃xB(x) iff there exists
an ELIQ C(x) ∈ C and an assignment π in Ind(A) such that T ,A |= C(π(x)). An infinite set C
with this property is given by the set of all ELIQs ∃~r.B(x), where ~r is a sequence r1 · · · rn of roles
ri in T and ∃~r.B stands for ∃r1 · · · ∃rn.B—this follows immediately from the assumption that T
is materializable and that, by Lemma 11, for any ABox A that is consistent w.r.t. T , there exists
a generated CQ-initial model of T and ABox A. The following result states that it is sufficient to
include in C the set of all ∃~r.B(x) with ~r of length bounded by n0 := 2(2(|T |+|C|) · 2|T |+ 1.

Claim 2. Let C be an ELI-concept and assume that T ,A |= ∃xC(x). If T is materializable, then
there exists a sequence of roles ~r = r1 · · · rn with ri in T and of length n ≤ n0 and an a ∈ Ind(A)
such that T ,A |= ∃~r.C(a). If C is an EL-concept and T an ALCF-TBox, then the sequence ~r
consists of role names in T .

Proof of Claim 2. Let I be a CQ-materialization of T and A. By Points (3) and (5) of Lemma 13,
we may assume that I is i-unfolded. From T ,A |= ∃xC(x), we obtain CI 6= ∅. Let n be minimal
such that there are a ∈ Ind(A) and d ∈ CI with n = distI(d, a) where distI(d, a) denotes the
length of the shortest path from d to a in the undirected graph GI . If n ≤ n0, we are done.
Otherwise fix an a ∈ Ind(A) and denote by M the set all e ∈ CI with n = distI(e, a). Let
d0, . . . , dn with a = d0, dn = d, and (di, di+1) ∈ rIi+1 for i < n be the shortest path from a to
d. Observe that T ,A |= ∃~r.C(a) for ~r = r0 · · · rn−1 since I is a materialization of T and A. We
now employ a pumping argument to show that this leads to a contradiction. Let cl(T , C) denote the
closure under single negation of the set of subconcepts of concepts in T and C. Set

tIT ,C(e) = {D ∈ cl(T , C) | e ∈ DI}.
As n > n0, then there exist di and di+j with j > 1 and i+ j < n such that

tIT ,C(di) = tIT ,C(di+j), tIT ,C(di+1) = tIT ,C(di+j+1), ri+1 = ri+j+1

Now replace in I the interpretation induced by the subtree rooted at di+j+1 by the interpretation
induced by the subtree rooted at di+1. We do the same construction for all elements of M and
denote the resulting interpretation by J . One can easily show by induction that J is still a model
of T and A, but now J 6|= ∃~r.C(a) and so T ,A 6|= ∃~r.C(a). This contradiction finishes the proof
of Claim 2. For EL-concepts and ALCF-TBoxes, Claim 2 can be proved similarly by using an
unfolded (rather than i-unfolded) materialization, which exists by Points (4) and (6) of Lemma 13.

Proof of Claim 1. Assume that T and q(~x) = ∃~xψ(~x, ~y) are given. We have to construct a
set Q such that Conditions (i) and (ii) are satisfied. Let A be an ABox with T ,A |= q(~a), I a
materialization of T and A that is i-unfolded, and π an assignment in I such that I |=π ψ(~x, ~y).
We define a corresponding pair p = (ϕ(~x, ~z), C) to be included in Q (and these are the only pairs
in Q).

For identifying ϕ(~x, ~z), set x ∼ y if π(x) = π(y) and denote by [x] the equivalence class of
x w.r.t. “∼”. Let ϕ0 be the set of all atoms r([x], [y]) such that π(x), π(y) ∈ Ind(A) and there are
x′ ∈ [x] and y′ ∈ [y] with r(x′, y′) in ψ. We obtain ϕ(~x, ~y) by selecting an answer variable y ∈ [x]
for every [x] that contains such a variable and then replacing [x] by y in ϕ0, adding xi = xj to
ϕ(~x, ~z) for any two (selected) answer variables xi, xj with xi ∼ xj , and by regarding the remaining
equivalences classes [y] that do not contain answer variables as variables in ~z.

We now identify C. Assume w.l.o.g. that I uses the naming scheme of i-unravelings. Let
a ∈ Ind(A). By Ia, we denote the subinterpretation of I induced by the set of all elements

20 DATA COMPLEXITY OF ONTOLOGIES

ar1d1 · · · rndn ∈ ∆I . Let M be a maximal connected component of ∆Ia ∩ {π(y) | y ∈ var(ψ)}.
We associate with M an ELIQ to be included in C (and these are the only ELIQs in C).

The conjunctive query ϕM consists of all atoms r([x], [y]) such that π(x), π(y) ∈M and there
are x′ ∈ [x], y′ ∈ [y] with r(x′, y′) in ψ and all atoms A([x]) such that π(x) ∈ M and there is
x′ ∈ [x] with A(x′) in ψ. We again assume that equivalence classes [x] that contain an answer
variable (there is at most one such class in ϕM) are replaced with an answer variable from [x] and
regard the remaining equivalences classes as variables. Note that ϕM is tree-shaped since Ia is. We
can thus pick a variable x0 with π(x0) ∈ M such that distI(a, π(x0)) is minimal. Let x be [x0]
if [x0] contains no answer variable and, otherise, let x be the answer variable that [x0] has been
replaced with. Let [y1], . . . , [ym] be the variables in ϕM that are distinct from x and consider the
ELIQ ∃[y1] · · · ∃[ym]ϕM (x, [y1], . . . , [ym]), which we write as CM (x) where CM is an appropriate
ELI-concept. We now distinguish the following cases:

• π(x) = a. In this case, we include CM (x) in C;
• otherwise, we still know that T ,A |= ∃xC(x). Thus, by Claim 2 there is a sequence

of roles ~r = r1 · · · rn with ri in T and n ≤ n0 such that T ,A |= ∃~r.CM (a) for some
a ∈ Ind(A) . In this case, we include ∃~r.CM (y) in C for some fresh variable y.

This finishes the construction of C and thus of Q. Clearly, Q is finite. The stated properties of
Q follow directly from its construction. For ALCF-TBoxes and ELQs, Claim 1 can be proved
similarly using an unfolded materialization (instead of an i-unfolded one) and the observation that
in this case all CM ([x]) and ∃~r.CM (y) are ELQs (~r uses role names only by Claim 2).

We now turn our attention to Point (3). Here, the “if” directions are trivial and we prove the
“only if” part. It suffices to show that if PEQ-evaluation w.r.t. a TBox T is CONP-hard, then so
is ELIQ-evaluation. We start with showing the slightly simpler result that CONP-hardness of CQ-
evaluation w.r.t. T implies CONP-hardness of UELIQ-evaluation, and then sketch the modifications
required to strengthen the proof to attain the original statement.

Thus assume that evaluating the CQ q(~x) w.r.t. T is CONP-hard. We shall exhibit an UELIQ
q′(x) such that for every ABoxA and all ~a ∈ Ind(A), one can produce in polynomial time an ABox
A′ with a distinguished individual name a0 such that T ,A |= q(~a) iff T ,A′ |= q′(a0). Instead of
constructing q′(~x) right away, we will start with describing the translation of A to A′. Afterwards,
it will be clear how to construct q′(~x).

Thus, let A be an ABox and ~a from Ind(A). The construction of A′ builds on Claim 1 above.
LetQ be the set of pairs from that claim and reserve a fresh individual name a0. To obtain the desired
ABox A′, we extend A for every pair p = (ϕ(~x, ~y), C) in Q. Let C = Cp,1(x1), . . . , Cp,kp(xkp).
Then

• introduce a fresh individual name ap and fresh role names rp, r, rp,1, . . . , rp,kp ;
• add the assertion rp(a0, ap);
• for every assignment π in Ind(A) with A |=π ϕ(~x, ~y) and π(~x) = ~a, introduce

– a fresh individual name ap,π and the assertion r(ap, ap,π);
– the assertion rp,i(ap, π(xi)) for 1 ≤ i ≤ kp.

From Claim 1, it is immediate that T ,A |= q(~a) iff T ,A′ |= q′(x) where q′(x) is the UELIQ
t
p∈Q

q′(x) with Cp = ∃rp.∃r. u
1≤i≤kp

∃rp,i.Cp,i. Thus, evaluating q′(x) w.r.t. T is CONP-hard, as

required. It remains to modify the reduction by replacing CQs with PEQs and UELIQs with ELIQs.
The former is straightforward: every PEQ is equivalent to a finite disjunction of CQs, and thus
we can construct A′ and q′(x) in essentially the same way as before; instead of considering all
pairs from Q for a single CQ, we now use the union of all sets Q for the finitely many CQs in

DATA COMPLEXITY OF ONTOLOGIES 21

question. Finally, we can replace UELIQs with ELIQs by using the same construction as in the
proof of Theorem 18: after adding some straightforward auxiliary structure toA′, one can replace a
disjunction of ELIQs by (essentially) their conjunction, which is again an ELIQ. Details are left to
the reader. o

We remark that Theorem 19 can be extended to also cover rewritability into first-order (FO) queries,
and that the proof is almost identical to that for Datalog6=-rewritability.

4. UNRAVELING TOLERANCE

We develop a condition on TBoxes, called unraveling tolerance, that is sufficient for the TBox to be
monadic Datalog6=-rewritable for PEQ, and thus also sufficient for PEQ-evaluation w.r.t. the TBox
being in PTIME. Unraveling tolerance strictly generalizes syntactic ‘Horn conditions’ such as the
ones used to define the DL Horn-SHIQ, which was designed as a (syntactically) maximal DL with
PTIME query evaluation [HMS07, EGOS08].

Unraveling tolerance is based on an unraveling operation on ABoxes, in the same spirit as the
unfolding of an interpretation into a tree interpretation we discussed above. Formally, the unraveling
Au of an ABox A is the following (possibly infinite) ABox:

• Ind(Au) is the set of sequences b0r0b1 · · · rn−1bn, n ≥ 0, with b0, . . . , bn ∈ Ind(A) and
r0, . . . , rn−1 ∈ NR∪N−R such that for all i < n, we have ri(bi, bi+1) ∈ A and (bi−1, r

−
i−1) 6=

(bi+1, ri) when i > 0;
• for each C(b) ∈ A and α = b0r0 · · · rn−1bn ∈ Ind(Au) with bn = b, C(α) ∈ Au;
• for each α = b0r0 · · · rn−1bn ∈ Ind(Au) with n > 0, rn−1(b0r0 · · · rn−2bn−1, α) ∈ Au.

For allα = b0 · · · bn ∈ Ind(Au), we write tail(α) to denote bn. Note that the condition (bi−1, r
−
i−1) 6=

(bi+1, ri) is needed to ensure that functional roles can still be interpreted in a functional way after
unraveling.

Definition 20 (Unraveling Tolerance). A TBox T is unraveling tolerant if for all ABoxes A and
ELIQs q, we have that T ,A |= q implies (T ,Au) |= q.

It is not hard to prove that the converse direction ‘T ,Au |= q implies T ,A |= q’ is true for all
ALCFI-TBoxes. Note that it is pointless to define unraveling tolerance for queries that are not
necessarily tree shaped, such as CQs.

Example 21.
(1) The ALC-TBox T1 = {A v ∀r.B} is unraveling tolerant. This can be proved by showing that
(i) for any (finite or infinite) ABox A, the interpretation I+

A that is obtained from A by extending
BI

+
A with all a ∈ Ind(A) that satisfy ∃r−.A in A (when viewed as an interpretation) is an ELIQ-

materialization of T1 and A; and (ii) I+
A |= C(a) iff I+

Au |= C(a) for all ELIQs C(x) and a ∈
Ind(A). The proof of (ii) is based on a straightforward induction on the structure of the ELI-
concept C. As illustrated by the ABox A = {r(a, b), A(a)} and the fact that Au, T |= B(b), the
use of inverse roles in the definition ofAu is crucial here despite the fact that T1 does not use inverse
roles.
(2) A simple example for an ALC-TBox that is not unraveling tolerant is

T2 = {A u ∃r.A v B,¬A u ∃r.¬A v B}.
For A = {r(a, a)}, it is easy to see that we have T2,A |= B(a) (use a case distinction on the truth
value of A at a), but T2,Au 6|= B(a).

22 DATA COMPLEXITY OF ONTOLOGIES

Before we show that unraveling tolerance indeed implies PTIME query evaluation, we first demon-
strate the generality of this property by relating it to Horn-ALCFI, theALCFI-fragment of Horn-
SHIQ. Different versions of Horn-SHIQ have been proposed in the literature, giving rise to
different versions of Horn-ALCFI [HMS07, KRH07, EGOS08, Kaz09]. As the original definition
from [HMS07] based on polarity is rather technical, we prefer to work with the following equiva-
lent and less cumbersome definition. A Horn-ALCFI-TBox T is a finite set of concept inclusions
L v R and functionality assertions where L andR are built according to the following syntax rules:

R,R′ ::=> | ⊥ | A | ¬A | R uR′ | L→ R | ∃r.R | ∀r.R
L,L′ ::=> | ⊥ | A | L u L′ | L t L′ | ∃r.L

with r ranging over NR ∪ N−R and L → R abbreviating ¬L t R. Whenever convenient, we may
assume w.l.o.g. that T contains only a single concept inclusion> v CT whereCT is built according
to the topmost rule above.

By applying some simple transformations, it is not hard to show that every Horn-ALCFI-
TBox according to the original polarity-based definition is equivalent to a Horn-ALCFI-TBox of
the form introduced here. Although not important in our context, we note that even a polynomial
time transformation is possible.

Theorem 22.
Every Horn-ALCFI-TBox is unraveling tolerant.

Proof. As a preliminary, we give a characterization of the entailment of ELIQs in the presence
of Horn-ALCFI-TBoxes which is in the spirit of the chase procedure as used in database theory
[FKMP05, CGK13] and of consequence-driven algorithms as used for reasoning in Horn description
logics such as EL++ and Horn-SHIQ [BBL05, Kaz09, Krö10b].

We use extended ABoxes, i.e., finite sets of assertions C(a) and r(a, b) with C a potentially
compound concept. An ELIU⊥-concept is a concept that is formed according to the second syntax
rule in the definition of Horn-ALCFI. For an extended ABox A′ and an assertion C(a), C an
ELIU⊥-concept, we write A′ ` C(a) if C(a) has a syntactic match in A′, formally:

• A′ ` >(a) is unconditionally true;
• A′ ` ⊥(a) if ⊥(b) ∈ A′ for some b ∈ Ind(A);
• A′ ` A(a) if A(a) ∈ A′;
• A′ ` C uD(a) if A′ ` C(a) and A′ ` D(a);
• A′ ` C tD(a) if A′ ` C(a) or A′ ` D(a);
• A′ ` ∃r.C(a) if there is an r(a, b) ∈ A′ such that A′ ` C(b).

Now for the announced characterization. Let T = {> v CT } be a Horn-ALCFI-TBox and A a
potentially infinite ABox (so that the characterization also applies to unravelings of ABoxes). We
produce a sequence of extended ABoxes A0,A1, . . . , starting with A0 = A. In what follows, we
use additional individual names of the form ar1C1 · · · rkCk with a ∈ Ind(A0), r1, . . . , rk roles that
occur in T , and C1, . . . , Ck subconcepts of concepts in T . We assume that NI contains such names
as needed and use the symbols a, b, . . . also to refer to individual names of this compound form.
Each extended ABox Ai+1 is obtained from Ai by applying the following rules in a fair way:

R1 if a ∈ Ind(Ai), then add CT (a).
R2 if C uD(a) ∈ Ai, then add C(a) and D(a);
R3 if C → D(a) ∈ Ai and Ai ` C(a), then add D(a);
R4 if ∃r.C(a) ∈ Ai and func(r) /∈ T , then add r(a, arC) and C(arC);
R5 if ∃r.C(a) ∈ Ai, func(r) ∈ T , and r(a, b) ∈ Ai, then add C(b);

DATA COMPLEXITY OF ONTOLOGIES 23

R6 if ∃r.C(a) ∈ Ai, func(r) ∈ T , and there is no r(a, b) ∈ Ai, then add r(a, arC) and
C(arC);

R7 if ∀r.C(a) ∈ Ai and r(a, b) ∈ Ai, then add C(b).
Let Ac =

⋃
i≥0Ai be the completion of the original ABox A.2 Note that Ac may be infinite even

if A is finite, and that none of the above rules is applicable in Ac. We write ‘Ac ` ⊥’ instead
of ‘Ac ` ⊥(a) for some a ∈ NC’. If A 6` ⊥, then Ac corresponds to an interpretation Ic in the
standard way, i.e.,

∆Ic = Ind(Ac)
AIc = {a | A(a) ∈ Ac} for all A ∈ NC

rIc = {r(a, b) | r(a, b) ∈ Ac} for all r ∈ NR

where in Ic we assume that only the individual names in Ind(A) are elements of NI.

Claim 1. If Ac 6` ⊥, then Ic is a PEQ-materialization of T and A.

To prove Claim 1 it suffices to show that there is a homomorphism h preserving Ind(A) from Ic
into every model J of T and A and that Ic is a model of T and A. The latter is immediate by
construction of Ac. Regarding the former, the desired homomorphism h can can be constructed
inductively starting with the ABox A0 and then extending to A1,A2, Using Claim 1 and the
easily proved fact that Ac 6` ⊥ iff A is consistent w.r.t. T one can now show the following.

Claim 2. T ,A |= C(a) iff Ac ` C(a) or Ac ` ⊥, for all ELIQs C(x) and a ∈ Ind(A).

We now turn to the actual proof of Theorem 22. Consider the application of the above completion
construction to both the original ABox A and its unraveling Au. Recall that individual names
in Au are of the form a0r0a1 · · · rn−1an. Consequently, individual names in Auc take the form
a0r0a1 · · · rn−1ans1C1 · · · skCk. For a ∈ Ind(Ac) and α ∈ Ind(Auc), we write a ∼ α if a and α are
of the form ans1C1 · · · skCk and a0r0a1 · · · rn−1ans1C1 · · · skCk, respectively, with k ≥ 0. Note
that, in particular, a ∼ a for all a ∈ Ind(A). The following claim can be shown by induction on i.

Claim 3. For all a ∈ Ind(Ai) and α ∈ Ind(Aui) with a ∼ α, we have
(1) Ai ` C(a) iff Aui ` C(α) for all ELI-concepts C;
(2) C(a) ∈ Ai iff C(α) ∈ Aui for all subconcepts C of concepts in T .

Now, unraveling tolerance of T follows from Claims 2 and 3. o

Theorem 22 shows that unraveling tolerance and Horn logic are closely related. Yet, the next exam-
ple demonstrates that there are unraveling tolerant ALCFI-TBoxes that are not equivalent to any
Horn sentence of FO. Since any Horn-ALCFI-TBox is equivalent to such a sentence, it follows
that unraveling tolerantALCFI-TBoxes strictly generalize Horn-ALCFI-TBoxes. This increased
generality will pay off in Section 5 when we establish a dichotomy result for TBoxes of depth one.

Example 23. Take the ALC-TBox

T = {∃r.(A u ¬B1 u ¬B2) v ∃r.(¬A u ¬B1 u ¬B2)}.
One can show as in Example 21 (1) that T is unraveling tolerant; here, the materialization is
actuallyA itself rather than some extension thereof, i.e., as far as ELIQ (and even PEQ) evaluation
is concerned, T cannot be distinguished from the empty TBox.

It is well-known that FO Horn sentences are preserved under direct products of interpretations
[CK90]. To show that T is not equivalent to any such sentence, it thus suffices to show that T is not

2Order of rule application has an impact on the shape of Ac, but is irrelevant for the remainder of the proof.

24 DATA COMPLEXITY OF ONTOLOGIES

preserved under direct products. This is simple: let I1 and I2 consist of a single r-edge between
elements d and e, and let e ∈ (AuB1u¬B2)I1 and e ∈ (Au¬B1uB2)I2; then the direct product I
of I1 and I2 still has the r-edge between (d, d) and (e, e) and satisfies (e, e) ∈ (Au¬B1 u¬B2)I ,
thus is not a model of T .

We next show that unraveling tolerance is indeed a sufficient condition for monadic Datalog6=-
rewritability (and thus for PTIME query evaluation). In Section 6, we will establish a connec-
tion between query evaluation under DL TBoxes and constraint satisfaction problems (CSPs). The
monadic Datalog 6= programs that we construct resemble the canonical monadic Datalog programs
for CSPs [FV98].

Let T be an unraveling tolerant ALCFI-TBox and q = C0(x) an ELIQ. We show how to
construct a Datalog 6=-rewriting of the OMQ (T , q(x)). Using the construction from the proof of
Theorem 19, one can extend this construction from ELIQs to PEQs. Recall from the proof of
Theorem 19 that cl(T , C0) denotes the closure under single negation of the set of subconcepts of
T and C0. For an interpretation I and d ∈ ∆I , we use tIT ,q(d) to denote the set of concepts
C ∈ cl(T , C0) such that d ∈ CI . A T , q-type is a subset t ⊆ cl(T , C0) such that for some model
I of T , we have t = tIT ,q(d). We use tp(T , q) to denote the set of all T ,q-types. Observe that one
can construct the set tp(T , q) in exponential time as the set of all t ⊆ cl(T , C0) such that for any
concept ¬C ∈ cl(T , C0) either C ∈ t or ¬C ∈ t and the conceptu

C∈t
C is satisfiable in a model

of T .
For t, t′ ∈ tp(T , q) and r a role, we write t r t

′ if there are a model I of T and d, d′ ∈ ∆I

such that tIT ,q(d) = t, tIT ,q(d
′) = t′, and (d, d′) ∈ rI . One can construct the set of all (t, t′, r) such

that t r t
′ in exponential time by checking for each candidate tuple (t, t′, r) whether the concept

(u
C∈t

C) u ∃r.(u
C∈t′

C)

is satisfiable in a model of T .
Introduce, for every set T ⊆ tp(T , C0) a unary IDB relation PT . Let Π be the monadic

Datalog6= program that contains the following rules:
(1) PT (x)← A(x) for all concept names A ∈ cl(T , C0) and T = {t ∈ tp(T , q) | A ∈ t};
(2) PT (x) ← PT0(x) ∧ r(x, y) ∧ PT1(y) for all T0, T1 ⊆ tp(T , q) and all role names r that

occur in cl(T , C0) and their inverses, where T = {t ∈ T0 | ∃t′ ∈ T1 : t r t
′};

(3) PT0∩T1(x)← PT0(x) ∧ PT1(x) for all T0, T1 ⊆ tp(T , q);
(4) goal(x)← PT (x) for all T ⊆ tp(T , q) such that t ∈ T implies C0 ∈ T ;
(5) goal(x)← P∅(y);
(6) goal(x)← r(y, z1) ∧ r(y, z2) ∧ z1 6= z2 for all func(r) ∈ T .

To show that Π is a rewriting of the OMQ (T , C0(x)), it suffices to establish the following lemma.

Lemma 24. A |= Π(a0) iff T ,A |= C0(a0), for all ABoxes A and a0 ∈ Ind(A).

Proof. The “if” direction is straightforward: by induction on the number of rule applications, one
can show that whenever Π derives PT (a), then every model of T and A satisfies tIT ,q(a) ∈ T . By
definition of the goal rules of Π, A |= Π(a0) thus implies that every model of T and A makes
C0(a0) true or that A is inconsistent w.r.t. T . Consequently, T ,A |= C0(a0).

For the “only if” direction, it suffices to show that A 6|= Π(a0) implies T ,Au 6|= C0(a0) since
T is unraveling tolerant. Because of the rules in Π of the form (3), for every a ∈ Ind(A) we can
find a unique minimal Ta such that PTa(a) is derived by Π. Observe that, A(α) ∈ Au, tail(α) = a,
and t ∈ Ta implies A ∈ t because of the rules of the form (1) in Π and by construction of Au.

DATA COMPLEXITY OF ONTOLOGIES 25

We first associate with every α ∈ Ind(Au) a concrete T , q-type tα ∈ Ttail(α). To start, we
choose ta ∈ Ta arbitrarily for all a ∈ Ind(A). Now assume that tα has already been chosen and that
β = αrb ∈ Ind(Au). Then r(tail(α), b) ∈ A. Because of the rules in Π of the form (2) and (5), we
can thus choose tβ ∈ Tb such that tα r tβ . In this way, all types tα will eventually be chosen. We
now construct an interpretation I, starting with

∆I = Ind(Au)

AI = {α | A ∈ tα} for all concept names A
rI = {(α, β) | r(α, β) ∈ Au} for all role names r.

Next, consider every α ∈ Ind(Au) and every ∃r.C ∈ tα such that Au does not contain an assertion
r(α, β) with C ∈ tβ . First assume that func(r) 6∈ T . There must be a T , q-type t such that tα r t

and C ∈ t. Choose a model Jα,∃r.C of T and D = u ta u ∃r.u t, a d ∈ DJα,∃r.C , and an
e ∈ (u t)Jα,∃r.C with (d, e) ∈ rJα,∃r.C . W.l.o.g., we can assume that Jα,∃r.C is tree-shaped with
root d. Let J −α,∃r.C be obtained from Jα,∃r.C by dropping the subtree rooted at e. Now disjointly
add J −α,∃r.C to I, additionally including (a, d) in rI . Now assume that func(r) ∈ T . Then, if there
exists r(α, β) ∈ Au, then C ∈ tβ as otherwise we do not have tα r tβ . Thus, assume there is no
r(α, β) ∈ Au. There must be a T , q-type t such that tα r t and C ∈ t. We then have D ∈ t for
all ∃r.D ∈ tα and so construct only a single J −α,∃r.C for the role r and disjointly add J −α,∃r.C to I,
additionally including (a, d) in rI . This finishes the construction of I. The following claim can be
proved by induction on C, details are omitted.

Claim. For all C ∈ cl(T , C0) :
(a) α ∈ CI iff C ∈ tα for all α ∈ Ind(Au) and
(b) d ∈ CJα,∃r.D iff d ∈ CI for all Jα,∃r.D and all d ∈ ∆J

−
α,∃r.D .

By construction of I and since A(α) ∈ Au implies A ∈ tα, I is a model of A. Due to the rules in
Π that are of the form (4), Point (a) of the claim yields I 6|= C0(a0). Finally, we observe that I is a
model of T . The concept inclusions in T are satisfied by the above claim, since C v D ∈ T means
that C ∈ t implies D ∈ t for every T , q-type t, and since each Jα,∃r.C is a model of T . Due to the
rules in Π that are of the form (6) and since each Jα,∃r.C is a model of T , all functionality assertions
in T are satisfied as well. Summing up, we have shown that T ,Au 6|= C0(a0), as required. o

Together with Theorem 19, we have established the following result.

Theorem 25. Every unraveling tolerant ALCFI-TBox is monadic Datalog6=-rewritable for PEQ.

Together with Theorems 19 and 22, Theorem 25 also reproves the known PTIME upper bound for
the data complexity of CQ-evaluation in Horn-ALCFI [EGOS08]. Note that it is not clear how to
attain a proof of Theorem 25 via the CSP connection established in Section 6 since functional roles
break this connection.

By Theorems 18 and 25, unraveling tolerance implies materializability unless PTIME = NP.
Based on the disjunction property, this implication can also be proved without the side condition.

Theorem 26. Every unraveling tolerant ALCFI-TBox is materializable.

Proof. We show the contrapositive using a proof strategy that is very similar to the second step in the
proof of Theorem 18. Thus, take anALCFI-TBox T that is not materializable. By Theorem 16, T
does not have the disjunction property. Thus, there are an ABox A∨, ELIQs C0(x0), . . . , Ck(xk),
and a1, . . . , ak ∈ Ind(A∨) such that T ,A∨ |= C0(a0) ∨ · · · ∨ Ck(ak), but T ,A∨ 6|= Ci(ai) for all
i ≤ k. Let Ai be Ci viewed as a tree-shaped ABox with root bi, for all i ≤ k. Assume w.l.o.g.

26 DATA COMPLEXITY OF ONTOLOGIES

that none of the ABoxes A∨,A0, . . . ,Ak share any individual names and reserve fresh individual
names c0, . . . , ck and fresh role names r, r0, . . . , rk. Let the ABox A be the union of

A∨ ∪ A0 ∪ · · · ∪ Ak ∪ {r(c, c0), . . . , r(c, ck)}
and

{r0(cj , b0), . . . , rj−1(cj , bj−1), rj(cj , aj), rj+1(cj , bj+1), . . . , rk(cj , bk)}
for 1 ≤ j ≤ k. Consider the ELIQ

q = ∃r.(∃r0.C0 u · · · u ∃rk.Ck)(x).

By the following claim, A and q witness that T is not unraveling tolerant.

Claim. T ,A |= q(c), but T ,Au 6|= q(c).

Proof. “T ,A |= q(c)”. Take a model I of T andA. By construction ofA, we have aIi ∈ (∃rj .Cj)I
whenever i 6= j. Due to the edges r0(c0, a0), . . . , rk(ck, ak) and since T ,A∨ |= C0(a0) ∨ · · · ∨
Ck(ak), we thus find at least one ci such that cIi ∈ (∃ri.Ci)I . Consequently, I |= q(c).

“T ,Au 6|= q(c)” (sketch). Consider the elements crciriai in Au. Each such element is the root
of a copy of the unraveling Au∨ of A∨, restricted to those individual names in A∨ that are reachable
from ai. Since T ,A∨ 6|= Ci(ai), we find a model Ii of T and A∨ with ai /∈ CIii . By unraveling Ii,
we obtain a model Iui of T and Au∨ with ai /∈ C

Iui
i . Combining the models Iu0 , . . . , Iuk in a suitable

way, one can craft a model I of T andAu∨ such that crciriai /∈ CIi for all i ≤ k and the ‘role edges
of I’ that concern the roles r, r0, . . . , rk are exactly those in A. This implies I 6|= q(c) as desired.

In some more detail, I is obtained as follows. We can assume w.l.o.g. that the domains of
Iu0 , . . . , Iuk are disjoint. Take the disjoint union of Iu0 , . . . , Iuk , renaming ai in Iui to crciriai for
all i. Now take copies J ,J0, . . . ,Jk of any model of T , make sure that their domains are disjoint
and that they are also disjoint from the domain of the model constructed so far. Additionally make
sure that c ∈ ∆J and ci ∈ ∆Ji for all i. Disjointly add these models to the model constructed
so far. It can be verified that the model constructed up to this point is a model of T . Add all role
edges fromA that concern the roles r, r0, . . . , rk to the resulting model, which has no impact on the
satisfaction of T since r, r0, . . . , rk do not occur in T . It can be verified that I is as required. o

5. DICHOTOMY FOR ALCFI-TBOXES OF DEPTH ONE

In practical applications, the concepts used in TBoxes are often of very limited quantifier depth.
Motivated by this observation, we consider TBoxes of depth one which are sets of CIs C v D
such that no restriction ∃r.E or ∀r.E in C and D is in the scope of another restriction of the form
∃r.E or ∀r.E. To confirm that this is indeed a practically relevant case, we have analyzed the 429
ontologies in the BioPortal repository,3 finding that after removing all constructors that are not part
ofALCFI, more than 80% of them are of depth one. The main result of this section is a dichotomy
between PTIME and CONP for TBoxes of depth one which is established by proving a converse of
Theorem 26, that is, showing that materializability implies unraveling tolerance (and thus PTIME
query evaluation and even monadic Datalog6=-rewritability by Theorem 25) for TBoxes of depth
one. Together with Theorem 18, which says that non-materializability implies CONP-hardness, this
yields the dichotomy.

3The ontologies are available at https://bioportal.bioontology.org/ontologies.

DATA COMPLEXITY OF ONTOLOGIES 27

We remark that the same strategy cannot be used to obtain a dichotomy in the case of unre-
stricted depth. In particular, the well-known technique of rewriting a TBox into depth one by in-
troducing fresh concept names can change its complexity because it enables querying for concepts
such as ¬A or ∀r.A which are otherwise ‘invisible’ to (positive existential) queries. For TBoxes of
unrestricted depth (and even in ALC) it is in fact neither the case that PTIME query evaluation im-
plies unraveling tolerance (or even Datalog 6=-rewritability) nor that materializability implies PTIME
query evaluation. This is formally established in Section 6.

Theorem 27. Every materializable ALCFI-TBox of depth one is unraveling tolerant.

Proof. Let T be a materializable TBox of depth one,A an ABox, C0(x) an ELIQ, and a0 ∈ Ind(A)
such that T ,Au 6|= C0(a0). We have to show that T ,A 6|= C0(a0). It follows from T ,Au 6|= C0(a0)
that Au is consistent w.r.t. T . There must thus be a materialization Iu for T and Au, despite the
fact that Au is infinite: by Theorem 27, T has the disjunction property and the argument from the
proof of Theorem 27 that the disjunction property implies materializability goes through without
modification also for infinite ABoxes. Our aim is to turn Iu into a model I of A and T such that
I 6|= C0(a0). To achieve this, we first uniformize Iu in a suitable way.

We assume w.l.o.g. that Iu has forest-shape, i.e., that Iu can be constructed by selecting a
tree-shaped interpretation Iα with root α for each α ∈ Ind(Au), then taking the disjoint union of all
these interpretations, and finally adding role edges (α, β) to rI

u
whenever r(α, β) ∈ Au. In fact,

to achieve the desired shape we can take the i-unfolding of Iu defined and analysed in Lemmas 13
and 14, where we start the i-unfolding from the elements of Ind(Au) ⊆ ∆I

u
.

We start with exhibiting a self-similarity inside the unraveled ABox Au and inside Iu.

Claim 1. For all α, β ∈ Ind(Au) with tail(α) = tail(β),
(1) Au |= C(α) iff Au |= C(β) for all ELIQs C(x);
(2) α ∈ CIu iff β ∈ CIu for all concepts C built only from concept names, ¬, and u.

To establish Point (1), take α, β ∈ Ind(Au) such that tail(α) = tail(β) andAu 6|= C(α). Then there
is a model I of Au and T such that I 6|= C(α). One can find a model J of Au and T such that
J 6|= C(β), as follows. By construction of Au, there is an isomorphism ι : Ind(Au) → Ind(Au)
with ι(α) = β such that A(γ) ∈ Au iff A(ι(γ)) ∈ Au and r(γ, γ′) ∈ Au iff r(ι(γ), ι(γ′)) ∈ Au
for all γ ∈ Ind(Au), all concept names A, and all role names r. We obtain J from I by renaming
each γ ∈ Ind(Au) with ι(γ). Point (2) can be proved by a straightforward induction on C. The base
case uses Point (1) and the fact that Iu is a materialization of T and A. This finishes the proof of
Claim 1.

Now for the announced uniformization of Iu. What we want to achieve is that for all α, β ∈
Ind(Au), tail(α) = tail(β) implies Iα = Iβ (recall that Iα is the tree component of Iu rooted at α,
and likewise for Iβ). Construct the interpretation J u as follows:

• for each α ∈ Ind(Au) with tail(α) = a, take a copy Jα of Ia with the root a renamed to α;
• then J u is the disjoint union of all interpretations Jα, α ∈ Ind(Au), extended with a role

edge (α, β) ∈ rJ u whenever r(α, β) ∈ Au.
Our next aim is to show that J u is as required, that is, it is a model of T and Au and satisfies
J u 6|= C0(a0).

It is indeed straightforward to verify that J u is a model of Au: all role assertions are satisfied
by construction; moreover, A(α) ∈ Au implies A(a) ∈ Au where a = tail(α) , thus a ∈ AIu and
α ∈ AJu .

Next, we show that J u is a model of T . Let f : ∆J
u → ∆I

u
be a mapping that assigns to

each domain element of J u the original element in Iu of which it is a copy.

28 DATA COMPLEXITY OF ONTOLOGIES

Claim 2. d ∈ CJ u iff f(d) ∈ CIu for all d ∈ ∆J
u

and ALCI-concepts C of depth one.

The proof of claim 2 is by induction on the structure of C. We assume w.l.o.g. that C is built only
from the constructors ¬, u, and ∃r.C. The base case, where C is a concept name, is an immediate
consequence of the definition of J u. The case where C = ¬D and C = D1 uD2 is routine. It thus
remains to consider the case C = ∃r.D, where D is built from ¬ and u only.

First let d ∈ CJ
u
. Then there is a (d, e) ∈ rJ

u
with e ∈ DJ

u
. First assume that the edge

(d, e) was added to rJ
u

because d = α and e = β for some α, β ∈ Ind(Au) with r(α, β) ∈ Au.
Let tail(α) = a and tail(β) = b. Then we have f(α) = a and f(β) = b. By construction of
Au, r(α, β) ∈ Au implies that β = αrb or α = βr−a. In both cases we have r(a, b) ∈ A,
thus r(a, arb) ∈ Au, thus (a, arb) ∈ rIu . Since β = e ∈ DJ u , induction hypothesis yields that
b ∈ DIu . From Point (2) of Claim 1, we obtain arb ∈ DIu and we are done. Now assume that there
is an α ∈ Ind(Au) such that (d, e) ∈ Jα. By construction of J u, we then have (f(d), f(e)) ∈ rIu

and induction hypothesis yields f(e) ∈ DIu .
Now let f(d) ∈ CI

u
. Then there is an (f(d), e) ∈ rI

u
with e ∈ DI

u
. First assume that

f(d) = α and e = β for some α, β ∈ Ind(Au) with r(α, β) ∈ Au. Since f(d) ∈ Ind(Au), we
must have d = γ ∈ Ind(Au) and f(d) = a ∈ Ind(A) with tail(γ) = a. By construction of Au,
r(a, β) ∈ Au implies that β = arb, thus r(a, b) ∈ A, thus r(γ, δ) ∈ Au with (i) δ = γrb or
(ii) γ = δr−a and tail(δ) = b. Since arb = e ∈ DI

u
, Point (2) of Claim 1 yields b ∈ DIu .

Since tail(δ) = b implies f(δ) = b, induction hypothesis yields δ ∈ DJ u and we are done. Now
assume that there is an α ∈ Ind(Au) such that (f(d), e) ∈ Iα. By construction of J u, f(d) being
in Iα implies that α = a for some a ∈ Ind(A) and that there is an α′ ∈ Ind(Au) such that d is in
Jα′ and tail(α′) = a. Again by construction of J u, we thus find an e′ in Jα′ with f(e′) = e and
(d, e′) ∈ rJα′ ⊆ rJ u . Induction hypothesis yields e′ ∈ DJ u . This finishes the proof of Claim 2.

It follows from Claim 2 that J u satisfies all CIs in T . To show that J u is a model of T , it
remains to show that J u satisfies all functionality assertions. Thus, let func(r) ∈ T and d ∈ ∆J

u
.

If d /∈ Ind(Au), then it is straightforward to verify that, by construction of J u, d has at most one
r-successor in J u. Now assume d = α ∈ Ind(Au) and let tail(α) = a. By construction of J u and
Au, α has the same number of r-successors in J u as a in Iu. Since Iu satisfies func(r), α can have
at most one r-successor in J u.

The final condition that J u should satisfy is J u 6|= C0(a0). Assume to the contrary. We view
C0(x0) as a (tree-shaped) CQ. Take a homomorphism h from C0(x0) to J u with h(x0) = a0. (In
this proof we consider homomorphisms that do not have to preserve any individual names.) Let
the CQ q(x) be obtained from C0(x0) by identifying variables y1, y2 whenever h(y1) = h(y2). To
achieve a contradiction, it suffices to exhibit a homomorphism h′ from q(x0) to Iu with h′(x0) =
a0. We start with setting h′(x) = h(x) whenever h(x) ∈ Ind(Au). Let q′ be obtained from q(x0)
by dropping all role atoms r(x, y) with h′(x) and h′(y) already defined (which are satisfied under
h′ by construction of J u and since Iu is a model of A). Because of the forest shape of J u and
by construction, q′ is a disjoint union of ELIQs such that, in each ELIQ C(x) contained in q′, h′ is
defined for the root x of C(x), but not for any other variable in it. Consequently, it suffices to show
that whenever Jα |= C(α) for some ELIQ C(x) and α ∈ Ind(Au), then Iu |= C(α); the remaining
part of h′ can then be constructed in a straightforward way. Now Jα |= C(α) implies Ia |= C(a)
where a = tail(α) by choice of Jα, which yields Iu |= C(a) and thus Iu |= C(α) by Point (1) of
Claim 1.

This finishes the construction and analysis of the uniform model J u. It remains to convert J u
into a model I of T and the original ABox A such that I 6|= C0(a0):

• take the disjoint union of the components Ja of J u, for each a ∈ Ind(A);

DATA COMPLEXITY OF ONTOLOGIES 29

• add the edge (a, b) to rI whenever r(a, b) ∈ A.
It is straightforward to verify that I is a model of A: all role assertions are satisfied by construction
of I; moreover, A(a) ∈ A implies A(a) ∈ Au implies a ∈ AJ u implies a ∈ AI . To show that
I is a model of T and that I 6|= C0(a0), we first observe the following. A bisimulation between
interpretations I1 and I2 is a relation S ⊆ ∆I1 ×∆I2 such that

(1) for all A ∈ NC and (d1, d2) ∈ S: d1 ∈ AI1 iff d2 ∈ AI2 ;
(2) for all r ∈ NR ∪ {s− | s ∈ NR}: if (d1, d2) ∈ S and (d1, d

′
1) ∈ rI1 , then there exists

d′2 ∈ ∆I2 such that (d′1, d
′
2) ∈ S and (d2, d

′
2) ∈ rI2 ;

(3) for all r ∈ NR ∪ {s− | s ∈ NR}: if (d1, d2) ∈ S and (d2, d
′
2) ∈ rI2 , then there exists

d′1 ∈ ∆I1 such that (d′1, d
′
2) ∈ S and (d1, d

′
1) ∈ rI2 .

Recall that, whenever there is a bisimulation S between I1 and I2 with (d, e) ∈ S, then d ∈ CI1 iff
e ∈ CI2 for all ALCI-concepts C [GO07, LPW11].

Claim 3. There is a bisimulation S between J u and I such that (a, a) ∈ S for all a ∈ Ind(A).

Since J u is uniform in the sense that Jα is isomorphic to Jβ whenever tail(α) = tail(β), we find a
bisimulation between Jα and Ja whenever tail(α) = a. It can be verified that the union of all these
bisimulations qualifies as the desired bisimulation S for Claim 3. Thus, Claim 3 is proved.

It follows from Claim 3 that I satisfies all concept inclusions in T , and that I 6|= C0(a0). It
thus remains to verify that I also satisfies all functionality assertions in T . This can be done in the
same way in which we have verified that J u satisfies all those assertions. o

The desired dichotomy follows: If an ALCFI-TBox T of depth one is materializable, then
PEQ-evaluation w.r.t. T is in PTIME and monadic Datalog 6=-rewritable by Theorems 27 and 25.
Otherwise, ELIQ-evaluation w.r.t. T is CONP-complete by Theorem 18.

Theorem 28 (Dichotomy). For every ALCFI-TBox T of depth one, one of the following is true:
• Q-evaluation w.r.t. T is in PTIME for any Q ∈ {PEQ,CQ,ELIQ} (and monadic Datalog 6=-

rewritable);
• Q-evaluation w.r.t. T is CONP-complete for any Q ∈ {PEQ,CQ,ELIQ}.

For example of depth one TBoxes for which query evaluation is in PTIME and for which it is
CONP-hard, please see Example 9; there, cases (1) and (2) are materializable and thus in PTIME
while case (3) is not materializable and thus CONP-hard.

6. QUERY EVALUATION IN ALC/ALCI = CSP

We drop functional roles and consider TBoxes formulated inALC and inALCI showing that query
evaluation w.r.t. TBoxes from these classes has the same computational power as non-uniform CSPs,
in the following sense:

(1) for every OMQ (T , q) with T an ALCI-TBox and q an ELIQ, there is a CSP such that the
complement of the CSP and the query evaluation problem for the (T , q) are reducible to
each other in polynomial time;

(2) for every CSP, there is an ALC-TBox T such that the CSP is equivalent to the comple-
ment of evaluating an OMQ (T , ∃xM(x)) and, conversely, for every OMQ (T , q) query
evaluation can be reduced in polynomial time to the CSP’s complement.

30 DATA COMPLEXITY OF ONTOLOGIES

This result has many interesting consequences. In particular, the PTIME/NP-dichotomy for non-
uniform CSPs [Bul17, Zhu17], formerly also known as the Feder-Vardi conjecture, yields a PTIME/CONP-
dichotomy for query evaluation w.r.t. ALC-TBoxes (equivalently: w.r.t. ALCI-TBoxes). Remark-
ably, all this is true already for materializable TBoxes. By Theorem 19 and since we carefully
choose the appropriate query language in each technical result below, it furthermore holds for any
of the query languages ELIQ, CQ, and PEQ (and ELQ for ALC-TBoxes).

We begin by introducing CSPs. Since every CSP is equivalent to a CSP with a single predicate
that is binary, up to polynomial time reductions [FV98], we consider CSPs over unary and binary
predicates (concept names and role names) only. A signature Σ is a finite set of concept and role
names. We use sig(T) to denote the set of all concept and role names that occur in the TBox T . An
ABoxA is a Σ-ABox if all concept and role names inA are in Σ. Moreover, we writeA|Σ to denote
the restriction of an ABox A to the assertions that use a symbol from Σ. For two finite Σ-ABoxes
A and B, we write A → B if there is a homomorphism from A to B that does not have to preserve
any individual names. A Σ-ABox B gives rise to the following (non-uniform) constraint satisfaction
problem CSP(B): given a finite Σ-ABox A, decide whether A → B. B is called the template of
CSP(B). Many problems in NP can be given in the form CSP(B). For example, k-colorability is
CSP(Ck), where Ck is the {r}-ABox that contains r(i, j) for all 1 ≤ i 6= j ≤ k.

We now formulate and prove Points (1) and (2) from above, starting with (1). The following is
proved in [BtCLW14].

Theorem 29. For every ALCI-TBox T and ELIQ C(x), one can compute a template B in expo-
nential time such that the query evaluation problem for the OMQ (T , C(x)) and the complement of
CSP(B) are polynomial time reducible to each other.

The proof of Theorem 29 given in [BtCLW14] proceeds in two steps. To deal with answer variables,
it uses generalized CSPs with constants, defined by a finite set of templates (instead of a single
one) and admitting the inclusion of constant symbols in the signature of the CSP (instead of only
relation symbols). One shows that (i) for every OMQ (T , C(x)), one can construct a generalized
CSP with a single constant whose complement is mutually reducible in polynomial time with the
query evaluation problem for (T , C(x)) and (ii) every generalized CSP with constants is mutually
reducible in polynomial time with some standard CSP. For the reader’s convenience, we illustrate
the construction of the template from a given OMQ, concentrating on Boolean ELIQs which are of
the form ∃xC(x) with C(x) an ELIQ. In this special case, one can avoid the use of generalized
CSPs with constants.

Theorem 30. Let T be an ALCI-TBox, q = ∃xC(x) with C(x) an ELIQ, and Σ the signature of
T and q. Then one can construct (in time single exponential in |T |+ |C|) a Σ-template BT ,q such
that for all ABoxes A:

(HomDual) T ,A |= q iff A|Σ 6→ BT ,q
Proof. Assume T and q = ∃xC(x) are given. We use the notation from the proof of Theorem 25.
Thus, cl(T , C) denotes the closure under single negation of the set of subconcepts of T and C,
tp(T , q) denotes the set of T , q-types and for t, t′ ∈ tp(T , q) we write t r t

′ if t and t′ can be
satisfied in domain elements of a model of T that are related by r. Now, a T , q-type t omits q if it
is satisfiable in a model I of T with CI = ∅. Let BT ,q be the set of assertions A(t) such t omits q
and A ∈ t and r(t, t′) such that t and t′ omit q and t r t

′. It is not difficult to show that condition
(HomDual) holds for all ABoxesA. Observe that BT ,q can be constructed in exponential time since
the set of T , q-types omitting q can be constructed in exponential time. o

DATA COMPLEXITY OF ONTOLOGIES 31

Example 31. Let T = {A v ∀r.B} and define q = ∃xB(x). Then up to isomorphism, BT ,q is
{r(a, a), r(a, b), A(b), r(a, c)}.
As a consequence of Theorem 29, we obtain the following dichotomy result.

Theorem 32 (Dichotomy). For every ALCI-TBox T , one of the following is true:
• Q-evaluation w.r.t. T is in PTIME for any Q ∈ {PEQ,CQ,ELIQ};
• Q-evaluation w.r.t. T is CONP-complete for any Q ∈ {PEQ,CQ,ELIQ}.

For ALC-TBoxes, this dichotomy additionally holds for ELQs.

Proof. Assume to the contrary of what is to be shown that there is an ALCI-TBox T such that
Q-evaluation w.r.t. T is neither in PTIME nor CONP-hard, for some Q ∈ {PEQ,CQ,ELIQ}. Then
by Theorem 19, the same holds for ELIQ-evaluation w.r.t. T . It follows that there is a concrete
ELIQ q such that query evaluation for (T , q) is CONP-intermediate. By Theorem 29, there is a tem-
plate B such that evaluating (T , q) is mutually reducible in polynomial time with the complement
of CSP(B). Thus CSP(B) is NP-intermediate, a contradiction to the fact that there are no such
CSPs [Bul17, Zhu17]. o

We now establish Point (2) from the beginning of the section. In a sense, the following provides a
converse to Theorem 29.

Theorem 33. For every template B over signature Σ, one can construct in polynomial time a ma-
terializable ALC-TBox TB such that, for a distinguished concept name M , the following hold:

(1) CSP(B) is equivalent to the complement of the OMQ (TB,∃xM(x)) in the sense that for
every Σ-ABox A, A → B iff TB,A 6|= ∃xM(x);

(2) the query evaluation problem for (TB, q) is polynomial time reducible to the complement of
CSP(B), for all PEQs q.

Note that the equivalence formulated in Point (1) implies polynomial time reducibility of CSP(B)
to the complement of (TB,∃xM(x)) and vice versa, but is much stronger than that.

Our approach to proving Theorem 33 is to generalize the reduction of k-colorability to query
evaluation w.r.t. ALC-TBoxes discussed in Examples 2 and 4, where the main challenge is to over-
come the observation from Example 4 that PTIME CSPs such as 2-colorability may be translated
into CONP-hard TBoxes. Note that this is due to the disjunction in the TBox Tk of Example 2,
which causes non-materializability. Our solution is to replace the concept names A1, . . . , Ak in Tk
with suitable compound concepts that are ‘invisible’ to the (positive existential) query. Unlike the
original depth one TBox Tk, the resulting TBox is of depth three. This ‘hiding’ of concept names
also plays a crucial role in the proofs of non-dichotomy and undecidability presented in Section 7.4

We now formally develop this idea and establish some crucial properties of the TBoxes that are
obtained by hiding concept names (which are called enriched abstractions below). We return to the
proof of Theorem 33 afterwards.

Let T be an ALCI-TBox and Σ ⊆ sig(T) a signature that contains all role names in T .
Our aim is to hide all concept names that are not in Σ. For B ∈ NC \ Σ, let ZB be a fresh
concept name and let rB and sB be fresh role names. The abstraction of B is the ALC-concept
HB := ∀rB.∃sB.¬ZB . The Σ-abstraction C ′ of a (potentially compound) concept C is obtained
from C by replacing every B ∈ NC \ Σ with HB . The Σ-abstraction of a TBox T is obtained from
T by replacing all concepts in T with their Σ-abstractions. We associate with T and Σ an auxiliary
TBox

T ∃ = {> v ∃rB.>,> v ∃sB.ZB | B ∈ Σ}
4The ‘hiding technique’ introduced here has been adopted in [BLR+16] in the context of query inseparability.

32 DATA COMPLEXITY OF ONTOLOGIES

Finally, T ′ ∪ T ∃ is called the enriched Σ-abstraction of T and Σ. To hide the concept names that
are not in Σ, we can replace a TBox T with its enriched abstraction. The following example shows
that the TBox T ∃ is crucial for this: without T ∃, disjunctions in T over concept names from Σ can
still induce disjunctions in the Σ-abstraction.

Example 34. Let T = {A v ¬B1 t ¬B2} and Σ = {A}. Then T ′ = {A v ¬HB1 t ¬HB2}
is the Σ-abstraction of T . For A = {A(a)}, we derive T ′,A |= ∃rB1 .>(a) ∨ ∃rB2 .>(a) but
T ′,A 6|= ∃rB1 .>(a) and T ′,A 6|= ∃rB2 .>(a). Thus T ′ does not have the ABox disjunction property
and is not materializable. In contrast, it follows from Lemma 35 below that T ′∪T ∃ is materializable
and, in fact, T ′ ∪ T ∃,A |= q(a) iff T ∃,A |= q(a) holds for all PEQs q.

In the proof of Theorem 33 and in Section 7, we work with TBoxes that enjoy two crucial properties
which ensure a good behaviour of enriched Σ-abstractions. We introduce these properties next.

A TBox T admits trivial models if the singleton interpretation I with XI = ∅ for all X ∈
NC ∪NR is a model of T . It is Σ-extensional if for every Σ-ABoxA consistent w.r.t. T , there exists
a model I of T and A such that ∆I = Ind(A), AI = {a | A(a) ∈ A} for all concept names
A ∈ Σ, and rI = {(a, b) | r(a, b) ∈ A} for all role names r ∈ Σ.

The following lemma summarizes the main properties of abstractions. Point (1) relates consis-
tency of ABoxes w.r.t. a TBox T to consistency w.r.t. their enriched Σ-abstraction T ′ ∪ T ∃. Note
that the ABox A might contain the fresh symbols from T ′ but these have no impact on consistency
(as witnessed by the use of A|Σ rather than A on the left-hand side of the equivalence). Point (2)
is similar to Point (1) but concerns the evaluation of OMQs based on T and based on T ′ ∪ T ∃;
we only consider a restricted form of actual queries that are sufficient for the proofs in Section 7.
Points (3) and (4) together state that evaluating OMQs (T ′ ∪ T ∃, q) with q a PEQ is tractable on
ABoxes whose Σ-part is consistent w.r.t. T .

Lemma 35. Let T be anALCI-TBox, Σ ⊆ sig(T) contain all role names in T , and assume that T
is Σ-entensional and admits trivial models. Let T ′ ∪ T ∃ be the enriched Σ-abstraction of T . Then
for every ABox A and all concept names A (that are not among the fresh symbols in T ′):

(1) A|Σ is consistent w.r.t. T iff A is consistent w.r.t. T ′ ∪ T ∃;
(2) for all a ∈ Ind(A) and the Σ-abstraction A′ of A:

T ,A|Σ |= A(a) iff T ′ ∪ T ∃,A |= A′(a)

and
T ,A|Σ |= ∃xA(x) iff T ′ ∪ T ∃,A |= ∃xA′(x);

(3) T ∃ is monadic Datalog6=-rewritable for PEQs;
(4) if A|Σ is consistent w.r.t. T , then

T ′ ∪ T ∃,A |= q(~a) iff T ∃,A |= q(~a)

for all PEQs q and all ~a.

Proof. (1) Assume first that A is consistent w.r.t. T ′ ∪ T ∃. We show that A|Σ is consistent w.r.t. T .
Take a model I of T ′ ∪ T ∃ and A. Define an interpretation J in the same way as I except that
BJ := HIB for allB ∈ NC \Σ. It is straightforward to show by induction for allALCI-conceptsD
not using the fresh symbols from Σ-abstractions and their Σ-abstractions D′: d ∈ DJ iff d ∈ D′I ,
for all d ∈ ∆I . Thus J is a model of T and A|Σ and it follows that A|Σ is consistent w.r.t. T .

Now assume that A|Σ is consistent w.r.t. T . We show that A is consistent w.r.t. T ′ ∪ T ∃. Take
a model I of T andA|Σ. Construct a model J of T ′∪T ∃ andA as follows: ∆J is the set of words

DATA COMPLEXITY OF ONTOLOGIES 33

w = dv1 · · · vn such that d ∈ ∆I and vi ∈ {rB, sB, s̄B | B ∈ NC \ Σ} where vi 6= s̄B if (i) i > 2
or (ii) i = 2 and (d 6∈ HIB or v1 6= rB). Now let

AJ = AI for all A ∈ NC ∩ Σ

BJ = {d ∈ Ind(A) | B(d) ∈ A} for all B ∈ NC \ Σ

ZJB = ZIB ∪ {w | tail(w) = sB} for all B ∈ NC \ Σ

rJ = rI for all r ∈ NC ∩ Σ

rJB = rIB ∪ {(w,wrB) | wrB ∈ ∆J } for all B ∈ NC \ Σ

sJB = sIB ∪ {(w,wsB) | wrB ∈ ∆J } ∪ {(w,ws̄B) | ws̄B ∈ ∆J } for all B ∈ NC \ Σ

It follows directly from the construction of J that HJB = BI , for all B ∈ NC \ Σ. Thus, for
all concepts D (not using fresh symbols from Σ-abstractions) and their Σ-abstractions D′ and all
d ∈ ∆I : d ∈ D′J iff d ∈ DI . Thus, the CIs of T ′ hold in all d ∈ ∆I since the CIs of T hold in all
d ∈ ∆I . The CIs of T ′ also hold in all d ∈ ∆J \∆I since T admits trivial models. Thus, J is a
model of T ′. Since J is a model of T ∃ by construction, it follows that J is a model of T ′ ∪ T ∃.

(2) can be proved using the models constructed in the proof of (1).
(3) is a consequence of the fact that T ∃ can be viewed as a TBox formulated in the description

logic DL-LiteR and that any OMQ (T , q) with T a DL-LiteR-TBox and q a PEQ is known to be
rewritable into a union of CQs [CDGL+07, ACKZ09].

(4) Assume thatA|Σ is consistent w.r.t. T and that T ∃,A 6|= q(~a). We show T ′∪T ∃,A 6|= q(~a).
Note first that one can construct a hom-initial model I∃A of T ∃ and A in the same way as J was
constructed from I in the proof of Point (2) (by replacing I with the interpretation IA corresponding
to A and not using the symbols s̄B in the construction). Thus, ∆I

∃
A is the set of words w =

av1 · · · vn such that a ∈ Ind(A) and vi ∈ {rB, sB, | B ∈ NC \Σ}. We have I∃A 6|= q(~a). Now, as T
is Σ-extensional, there is a model I of T and A|Σ with ∆I = Ind(A) and AI = {a | A(a) ∈ A}
for all A ∈ Σ, and rI = {(a, b) | r(a, b) ∈ A} for all role names r ∈ Σ. Construct the model J
of T ′ ∪ T ∃ and A in the same way as in the proof of Point (2). Define a mapping h : J → I∃A
by setting h(w) = w′, where w′ is obtained from w by replacing every s̄B by sB . One can show
that h is a homomorphism. Thus J 6|= q(~a) and so T ′ ∪ T ∃,A 6|= q(~a), as required. The converse
direction is trivial. o

We are now ready to prove Theorem 33.

Proof of Theorem 33. Assume a Σ-template B is given. We construct the TBox TB in two steps.
First take for any d ∈ Ind(B) a concept name Ad and define a TBoxHB with the following CIs:

dom v t
d∈Ind(B)

Ad

Ad uAe v ⊥ for all d, e ∈ Ind(B), d 6= e

Ad u ∃r.Ae v ⊥ for all d, e ∈ Ind(B), r ∈ Σ, r(d, e) 6∈ B
Ad uA v ⊥ for all d ∈ Ind(B), A ∈ Σ, A(d) 6∈ B.

Here dom v t
d∈Ind(B)

Ad stands for the set of CIs

∃r.> v t
d∈Ind(B)

Ad, A v t
d∈Ind(B)

Ad, > v ∀r.(t
d∈Ind(B)

Ad)

where r and A range over all role and concept names in Σ, respectively. We use a CI of the form
dom v C rather than > v C to ensure that the TBox HB admits trivial models. It should also

34 DATA COMPLEXITY OF ONTOLOGIES

be clear that T is Σ-extensional. Now let M be a fresh concept name. Then the following can be
proved in a straightforward way.

Claim 1. For any ABox A the following conditions are equivalent:
(1) HB,A|Σ 6|= ∃xM(x);
(2) A|Σ is consistent w.r.t.HB;
(3) A|Σ → B.

Thus, CSP(B) and the complement of the query evaluation problem for (HB,∃xM(x)) are re-
ducible to each other in polynomial time. Because of the disjunctions, however, the query evaluation
problem w.r.tHB is typically CONP-hard even if CSP(B) is in PTIME.

In the second step, we thus ‘hide’ the concept names Ad by replacing them with their abstrac-
tions HAd . Let H′B ∪ T ∃ be the enriched Σ-abstraction of HB. From Claim 1 and Lemma 35 (1)
according to which A|Σ is consistent w.r.t.HB iff A is consistent w.r.t.H′B ∪ T ∃, we obtain

Claim 2. For any ABox A not containing the concept name M , the following conditions are equiv-
alent:

(1) H′B ∪ T ∃,A 6|= ∃xM(x);
(2) A is consistent w.r.t.H′B ∪ T ∃;
(3) A|Σ → B.

Let TB = H′B ∪ T ∃ be the enriched Σ-abstraction of HB. We show that TB is as required to prove
Theorem 33. The theorem comprises two points:

(1) We have to show that CSP(B) is equivalent to the complement of the OMQ (TB,∃xM(x)).
This is an immediate consequence of Claim 2.

(2) For the converse reduction, let q be a PEQ. We have to show that the query evaluation problem
for (TB, q) is reducible in polynomial time to the complement of CSP(B). Let A be an ABox and ~a
from Ind(A). We show that the following are equivalent:

(a) TB,A |= q(~a);
(b) A|Σ 6→ B or T ∃,A |= q(~a).

Regarding (b), we remark that checking whether T ∃,A |= q(~a) can be part of the reduction since,
by Lemma 35 (3), it needs only polynomial time. First assume that (a) holds. If A|Σ → B, then
by Claim 1 the ABox A|Σ is consistent w.r.t. HB. By Lemma 35 (4), we obtain TB,A |= q(~a) iff
T ∃,A |= q(~a) for all PEQs q and all ~a, as required.

Conversely, assume (b) holds. If A|Σ 6→ B, then by Claim 2 A is not consistent w.r.t. TB and
so TB,A |= q(~a). If T ∃,A |= q(~a), then TB,A |= q(~a) since T ∃ ⊆ TB. o

We close this section by illustrating an example consequence of Theorem 33. It was proved in
[FV98] that there are CSPs that are in PTIME yet not rewritable into Datalog, and in fact also not
into Datalog6= due to the results in [FV03]. This was strengthened to CSPs that contain no relations
of arity larger than two in [Ats08]. It was also observed in [FV98] that there are CSPs that are
rewritable into Datalog, but not into monadic Datalog (such as the CSP expressing 2-colorability).
This again extends to Datalog 6= and applies to CSPs with relations of arity at most two. With this in
mind, the following is a consequence of Theorems 33 and 19.

Theorem 36.
(1) There are ALC-TBoxes T such that PEQ-evaluation w.r.t. T is in PTIME, but T is not

Datalog-rewritable for ELIQs;

DATA COMPLEXITY OF ONTOLOGIES 35

(2) there are ALC-TBoxes that are Datalog-rewritable for PEQs, but not monadic Datalog-
rewritable for ELIQs.

7. NON-DICHOTOMY AND UNDECIDABILITY IN ALCF

We show that the complexity landscape of query evaluation w.r.t. ALCF-TBoxes is much richer
than for ALCI, and in fact too rich to be fully manageable. In particular, we prove that for CQ-
evaluation, there is no dichotomy between PTIME and CONP (unless PTIME = NP). We also estab-
lish that materializability, (monadic) Datalog6=-rewritability, PTIME query evaluation, and CONP-
hardness of query evaluation are undecidable. We start with the undecidability proofs, which are
by reduction of an undecidable rectangle tiling problem and reuse the ‘hidden concepts’ introduced
in the previous section. Next, the TBox from that reduction is adapted to prove the non-dichotomy
result by an encoding of the computations of nondeterministic polynomial time Turing machines
(again using hidden concepts). The basis for the technical development in this section is a TBox
constructed in [BBLW16] to prove the undecidability of query emptiness in ALCF .

An instance of the finite rectangle tiling problem is given by a triple P = (T, H, V) with T a
finite set of tile types including an initial tile Tinit to be placed on the lower left corner and a final tile
Tfinal to be placed on the upper right corner, H ⊆ T × T a horizontal matching relation, and V ⊆
T×T a vertical matching relation. A tiling for (T, H, V) is a map f : {0, . . . , n}×{0, . . . ,m} → T
such that n,m ≥ 0, f(0, 0) = Tinit, f(n,m) = Tfinal, (f(i, j), f(i + 1, j)) ∈ H for all i < n, and
(f(i, j), f(i, j + 1)) ∈ V for all i < m. We say that P admits a tiling if there exists a map f that
is a tiling for P. It is undecidable whether an instance of the finite rectangle tiling problem admits
a tiling.

Now let P = (T, H, V) be a finite rectangle tiling problem with T = {T1, . . . , Tp}. We regard
the tile types in T as concept names and set Σg = {T1, . . . , Tp, x, y, x̂, ŷ}, where x, y, x̂, and ŷ
are functional role names. The TBox TP is defined as the following set of CIs, where (Ti, Tj , T`)
range over all triples from T such that (Ti, Tj) ∈ H and (Ti, T`) ∈ V and where for e ∈ {c, x, y}
the concept Be ranges over all conjunctions L1 u L2 with Li ∈ {Ze,i,¬Ze,i}, for concept names
Ze,i (i = 1, 2):

Tfinal v Y u U uR
∃x.(U u Y u Tj) u Ix u Ti v U u Y
∃y.(R u Y u T`) u Iy u Ti v R u Y

∃x.(Tj u Y u ∃y.Y) u ∃y.(T` u Y u ∃x.Y) u Ix u Iy u C u Ti v Y
Y u Tinit v A

Bx u ∃x.∃x̂.Bx v Ix
By u ∃y.∃ŷ.By v Iy

∃x.∃y.Bc u ∃y.∃x.Bc v C
t

1≤s<t≤p
Ts u Tt v ⊥

U v ∀y.⊥ R v ∀x.⊥ U v ∀x.U R v ∀y.R
Y u Tinit v D u L D v ∀ŷ.⊥ L v ∀x̂.⊥ D v ∀x.D u ∀x̂.D L v ∀y.L u ∀ŷ.L

With the exception of the CIs in the last line, the TBox TP has been defined and analyzed in
[BBLW16]. Here, we briefly give intuition and discuss its main properties. The role names x
and y are used to represent horizontal and vertical adjacency of points in a rectangle. The role

36 DATA COMPLEXITY OF ONTOLOGIES

names x̂ and ŷ are used to simulate the inverses of x and y. The concept names in TP serve the
following puroposes:

• U , R, L, and D mark the upper, right, left, and lower (‘down’) border of the rectangle.
• In the Bc concepts, the concept names Zc,1 and Zc,2 serve as second-order variables and

ensure that a flag C is set at positions where the grid cell is closed.
• In the concepts Bx and By, the concept names Zx,1, Zx,2, Zy,1, Zy,2 also serve as second-

order variables and ensure that flags Ix and Iy are set at positions where x and x̂ as well as
y and ŷ are inverse to each other.
• The concept name Y is propagated through the grid from the upper right corner to the

lower left one, ensuring that these flags are set everywhere, that every position of the grid is
labeled with at least one tile type, and that the horizontal and vertical matching conditions
are satisfied.
• Finally, when the lower left corner of the grid is reached, the concept name A is set as a

flag.
Because of the use of the concepts Be, CQ evaluation w.r.t. TP is coNP-hard: we leave it as an
exercise to the reader to verify that TP does not have the ABox disjunction property. TP without
the three CIs involving the concepts Be, however, is (equivalent to) a Horn-ALCF TBox and thus
enjoys PTIME CQ-evaluation. Call a Σg-ABox A an grid ABox (with initial individual a) if A
represents a grid along with a proper tiling for P. In detail, we require that there is a tiling f for P
with domain {0, . . . , n} × {0, . . . ,m} and a bijection g : {0, . . . , n} × {0, . . . ,m} → Ind(A) with
g(0, 0) = a such that

• for all j < n, k ≤ m: T (g(j, k)) ∈ A iff T = f(j, k);
• for all b1, b2 ∈ Ind(A): x(b1, b2) ∈ A iff x̂(b2, b1) ∈ A iff there are j < n, k ≤ m such

that (b1, b2) = (g(j, k), g(j + 1, k));
• for all b1, b2 ∈ Ind(A): y(b1, b2) ∈ A iff ŷ(b2, b1) ∈ A iff there are j ≤ n, k < m such that

(b1, b2) = (g(j, k), g(j, k + 1)).
Clearly, if P admits a tiling then a grid ABox exists and for any grid ABox A, TP,A |= A(a)
for the (uniquely determined) initial individual a of A. The following summarizes relevant prop-
erties of Σg-ABoxes that follow almost directly from the analysis of TP in [BBLW16]. We say
that an ABox A contains an ABox A′ if A′ ⊆ A and that A contains a closed ABox A if, addi-
tionally, r(a, b) ∈ A and a ∈ Ind(A′) implies r(a, b) ∈ A′ for r ∈ {x, y, x̂, ŷ}. Moreover, we
say that inconsistency of (Σ-)ABoxes w.r.t. a TBox T is monadic Datalog 6=-rewritable if there is a
Boolean monadic Datalog 6=-program Π such that for any (Σ-)ABox A, A |= Π() iff A is inconsis-
tent w.r.t. T .

Lemma 37. Let P be a finite rectangle tiling problem. Then the following holds.
(1) TP admits trivial models and is Σg-extensional.
(2) Inconsistency of Σg-ABoxes w.r.t. TP is monadic Datalog6=-rewritable.
(3) If a Σg-ABox A is consistent w.r.t. TP, then A contains

• closed grid ABoxes A1, . . . ,An, n ≥ 0, with mutually disjoint sets Ind(Ai) and
• a (possibly empty) Σg-ABox A′ disjoint from A1 ∪ · · · ∪ An

such that A = A1 ∪ · · · ∪ An ∪ A′ and TP,A |= A(a) iff a is the initial node of some Ai.
Moreover, there is a model I of A witnessing Σg-extensionality of TP that satisfies a ∈ AI
iff a is the initial node of some Ai.

Proof. (1) is a straightforward consequence of the definition of TP. (2) Assume a Σg-ABox A is
given. Apply the following rules exhaustively to A:

DATA COMPLEXITY OF ONTOLOGIES 37

(a) add Ix(a) to A if there exists b with x(a, b), x̂(b, a) ∈ A;
(b) add Iy(a) to A if there exists b with y(a, b), ŷ(b, a) ∈ A;
(c) add C(a) to A if there exist a1, a2, b with x(a, a1), y(a, a2), y(a1, b), x(a2, b) ∈ A.

Denote the resulting ABox by A†. Now remove the three CIs involving the concepts Be from TP
and denote by T †P the resulting TBox. Using the analysis of the CIs involving the concepts Be in

[BBLW16], one can show thatA is consistent w.r.t. TP iffA† is consistent w.r.t. T †P. Since the latter
is a Horn-ALCF-TBox, it is unraveling tolerant and one can build a monadic Datalog6=-rewriting
of the inconsistency of Σg-ABoxes w.r.t. T †P, essentially as in the proof of Theorem 25. Finally,
the obtained program can be modified so as to behave as if started on A† when started on A, by
implementing rules (a) to (c) as monadic Datalog rules.

(3) This is almost a direct consequence of the properties established in [BBLW16]. In particular,
one finds the desired model I from the ‘moreover’ part by applying the three rules from the proof of
Point (2) and then applying the CIs in T †P as rules. The only condition on the decomposition of the
ABoxA intoA = A1 ∪ · · · ∪An ∪A′ that does not follow from [BBLW16] is that the containment
of A1, . . . ,An in A is closed also for the role names x̂ and ŷ. To ensure this condition, we use the
CIs that mention L andD that were not present in the TBox used in that paper. In fact, the following
two properties follow directly from these CIs: (i) the individuals c reachable along an x-path in A
from some a with TP,A |= A(a) all satisfy TP,A |= D(c) and so do not have an x̂-successor;
and (ii) the individuals c reachable along a y-path in A from some a with TP,A |= A(a) all satisfy
TP,A |= L(c) and so do not have a ŷ-successor. (i) and (ii) together with the properties established
in [BBLW16] entail that the containment of A1, . . . ,An in A is closed also for the role names x̂
and ŷ, as required. o

Note that it follows from Lemma 37 (3) that ifA is consistent w.r.t. T , then the sequenceA1, . . . ,An
is empty iff TP,A 6|= ∃xA(x) (and A′ is non-empty since ABoxes are non-empty). In particular
this must be the case when P does not admit a tiling. In the proof Lemma 38 below, this is actually
all we need from Lemma 37 (3). In full generality, it will only be used in the proof of non-dichotomy
later on. We also remark that the decompositionA1∪· · ·∪An∪A′ ofA in Lemma 37 (3) is unique.

Let T = TP ∪ {A v B1 t B2}, where B1 and B2 are fresh concept names. Set Σ = Σg ∪
{B1, B2} and let T ′ ∪ T ∃ be the enriched Σ-abstraction of T .

Lemma 38.
(1) If P admits a tiling, then CQ-evaluation w.r.t. T ′ ∪ T ∃ is CONP-hard and T ′ ∪ T ∃ is not

materializable.
(2) If P does not admit a tiling, then CQ-evaluation w.r.t. T ′ ∪ T ∃ is monadic Datalog6=-

rewritable and T ′ ∪ T ∃ is materializable.

Proof. (1) If P admits a tiling, then there is a grid ABoxAwith initial node a. A uses symbols from
Σg, only. We have TP,A |= A(a) and A is consistent w.r.t. TP. By Lemma 35 (2), T ′ ∪ T ∃,A |=
A′(a) where A′ is the Σ-abstraction of A. Since T ′ contains A′ v B1 t B2 and B1 and B2 do not
occur elsewhere in T ′ ∪ T ∃, it is clear that T ′ ∪ T ∃,A |= B1(a) ∨B2(a) but T ′ ∪ T ∃,A 6|= Bi(a)
for i = 1, 2. Thus T ′ ∪ T ∃ does not have the ABox disjunction property. It follows that T ′ ∪ T ∃ is
not materializable and that CQ-evaluation w.r.t. T ′ ∪ T ∃ is CONP-hard.

(2) Assume that P does not admit a tiling. Let q be a PEQ. We show how to construct a
monadic Datalog6=-rewriting Π of (T ′ ∪ T ∃, q). On ABoxes A that are inconsistent w.r.t. T ′ ∪ T ∃,
Π is supposed to return all tuples over Ind(A) of the same arity as q. By Lemma 35 (1), an ABox
A is consistent w.r.t. T ′ ∪ T ∃ iff A|Σ is consistent w.r.t. T . It thus follows from Lemma 37 (2) that

38 DATA COMPLEXITY OF ONTOLOGIES

inconsistency of ABoxes w.r.t. T ′∪T ∃ is monadic Datalog 6=-rewritable. From a concrete rewriting,
we can build a monadic Datalog 6=-program Π0 that checks inconsistency and, if successful, returns
all answers.

Now for ABoxes A that are consistent w.r.t. T ′ ∪ T ∃. By Lemma 35 (1), A|Σ is consistent
w.r.t. TP. Since P does not admit a tiling and by Lemma 37 (2), TP,A|Σ 6|= ∃xA(x). Thus, by
Lemma 37 (1) we find a model I of TP and A|Σ such that ∆I = Ind(A), BI = {a | B(a) ∈ A}
for all B ∈ Σ, rI = {(a, b) | r(a, b) ∈ A} for all r ∈ Σ, and AI = ∅. Since AI = ∅, I is a model
of T . From Lemma 35 (4), we thus obtain that T ′ ∪ T ∃,A |= q(~a) iff T ∃,A |= q(~a), for all ~a. By
Lemma 35 (3), (T ∃, q) is monadic Datalog6=-rewritable into a program Π1.

The desired program Π is simply the union of Π0 and Π1, assuming disjointness of IDB rela-
tions. o

Lemma 38 implies the announced undecidability results.

Theorem 39. For ALCF-TBoxes T , the following problems are undecidable (Points 1 to 4 are
subject to the side condition that PTIME 6= NP):

(1) CQ-evaluation w.r.t. T is in PTIME;
(2) CQ-evaluation w.r.t. T is CONP-hard;
(3) T is monadic Datalog6=-rewritable;
(4) T is Datalog6=-rewritable;
(5) T is materializable.

We now come to the proof of non-dichotomy.

Theorem 40 (Non-Dichotomy). For every language L ∈ CONP, there exists an ALCF-TBox T
such that, for a distinguished concept name M0, the following holds:

(1) L is polynomial time reducible to the evaluation of (T ,∃xM0(x));
(2) the evaluation of (T , q) is polynomial time reducible to L, for all PEQs q.

To prove Theorem 40 let L ∈ CONP. Take a non-deterministic polynomial time Turing Machine
M that recognizes the complement of L. Let M = (Q,Γ0,Γ1,∆, q0, qa, qr) with Q a finite set of
states, Γ0 and Γ1 finite input and tape alphabets such that Γ0 ⊆ Γ1 and Γ1 \ Γ0 contains the blank
symbol β, q0 ∈ Q the starting state, ∆ ⊆ Q × Γ1 × Q × Γ1 × {L,R} the transition relation, and
qa, qr ∈ Q the accepting and rejecting states. Denote by L(M) the language recognized by M . We
can assume w.l.o.g. that there is a fixed symbol γ0 ∈ Γ0 such that all words accepted by M are of
the form γ0v with v ∈ (Γ0 \ {γ0})∗; in fact, it is easy to modify M to satisfy this property without
changing the complexity of its word problem. We also assume that for any input v ∈ Γ∗0, M uses
exactly |v|k1 cells for the computation, halts after exactly |v|k2 steps in the accepting or rejecting
state, and does not move to the left of the starting cell.

To represent inputs to M and to provide the space for simulating computations, we use grid
ABoxes as in the proof of Theorem 39, where the tiling of the bottom row represents the input word
followed by blank symbols. As the set of tile types, we use T = Γ0 ∪ {β, T, Tfinal} where T is a
‘default tile’ that labels every position except those in the bottom row and the upper right corner.
Identify Tinit with γ0 and let Σg = Γ0∪{β, T, Tfinal}∪{x, y, x̂, ŷ}. Consider the TBox TPM defined
above, for PM = (T, H, V) with

H = {(γ0, γ), (γ, γ′), (γ, β), (β, β), (T, T), (T, Tfinal) | γ, γ′ ∈ Γ0 \ {γ0}}
V = {(γ, T), (β, T), (T, T), (T, Tfinal), (γ, Tfinal), (β, Tfinal) | γ ∈ Γ0}.

Recall that TPM checks whether a given Σg-ABox contains a grid structure with a tiling that respects
H , V , Tinit, and Tfinal, and derives the concept name A at the lower left corner of such grids. We

DATA COMPLEXITY OF ONTOLOGIES 39

now construct a TBox TM that, after the verification has finished, initiates a computation of M on
the grid. In addition to the concept names in TPM , TM uses concept names Aγ and Aq,γ for all
γ ∈ Γ1 and q ∈ Q to represent symbols written during the computation (in contrast to the elements
of Γ1 as concept names, used to encode the input word) and to represent the state and head position.
In detail, TM contains the following CIs:

• When the verification of the grid has finished, A floods the ABox:

A v ∀r.A for all r ∈ {x, y, x̂, ŷ}.
• The initial configuration is as required:

γ0 uA v Aq0,γ γ uA v Aγ for all γ ∈ (Γ0 ∪ {β}) \ {γ0}.
• For every (q, γ) ∈ Q× Γ1, the transition relation of M is satisfied:

Aq,γ uA v t
(q,γ,q′,γ′,L)∈∆

∃y.(Aγ′ u t
γ′′∈Γ1

∃x̂.Aq′,γ′′) t

t
(q,γ,q′,γ′,R)∈∆

∃y.(Aγ′ u t
γ′′∈Γ1

∃x.Aq′,γ′′).

• The representations provided by Aq,γ and Aγ for symbols in Γ1 coincide:

Aq,γ uAγ′ v Aq,γ′ uAγ , for all γ, γ′ ∈ Γ1

• The symbol written on a cell does not change if the head is not on the cell:

Aγ uA v ∀y.Aγ for all γ ∈ Γ1

• The rejecting state is never reached:

Aqr,γ uA v ⊥ for all γ ∈ Γ1.

Let T = TPM ∪ TM . We are going to show that an appropriate extended abstraction of T satisfies
Conditions (1) and (2) of Theorem 40. We start with the following lemma which summarizes two
important properties of T .

Lemma 41.
(1) T admits trivial models and is Σg-extensional.
(2) For any Σg-ABox A, A is consistent w.r.t. T iff the following two conditions hold:

(a) A is consistent w.r.t. TPM ;
(b) let A = A1 ∪ · · · ∪ An ∪ A′ be the decomposition of A given in Lemma 37 (2) and

assume that Ai is the ni × mi-grid ABox with input vi for 1 ≤ i ≤ n. Then the
following hold for 1 ≤ i ≤ n:

(i) ni ≥ |vi|k1 and mi ≥ |vi|k2 and
(ii) vi ∈ L(M).

Proof. Since (1) follows directly from the construction of T , we concentrate on (2). Assume first
that A is consistent w.r.t. T . Then A is consistent w.r.t. TPM and so we can assume that there is a
decompositionA1∪· · ·∪An∪A′ ofA as in Lemma 37 (3). By definition, eachAi is an ni×mi-grid
ABox with input vi. Since A is consistent w.r.t. T , there is a model I of A and T . By the first CIs
of TM and since the initial node a of each Ai must be in AI by Lemma 37, Ind(Ai) ⊆ AI for each
i. Thus the restriction of I to Ind(Ai) simulates an accepting computation of M starting with vi.
But since every computatation of M starting with a word of length n requires at least nk1 space and
mk2 time and the containment of Ai in A is closed for the role names x and y, this is impossible if
ni < |vi|k1 or mi < |vi|k2 and also if vi 6∈ L(M). Thus (i) and (ii) hold, as required.

40 DATA COMPLEXITY OF ONTOLOGIES

For the converse direction, assume that (a) and (b) hold. SinceA is consistent w.r.t. TPM , there
is a decomposition A1 ∪ · · · ∪ An ∪ A′ of A as in Lemma 37 (3). Also by Lemma 37 (3), there is
a model I of A that witnesses Σg-extensionality of TPM such that a ∈ AI iff a is the initial node
of some Ai. We construct a model I ′ of T by modifying I as follows: with the exception of A, the
symbols of TPM are interpreted in the same way as in I and thus I ′ is a model of TPM . To satisfy
the first CI of TM , we set AI

′
= Ind(A1 ∪ · · · ∪ An). Note that this suffices since the containment

of each Ai in A is closed for the role names x and y. The remaining symbols from TM are now
interpreted in such a way that they describe on each Ai an accepting computation for vi. This is
possible since vi ∈ L(M), ni ≥ |vi|k1 and mi ≥ |vi|k2 , and each computation of M starting with
a word v of length n requires at most nk1 space and mk2 time. It can be verified that I ′ is a model
of TM ; note that since A is a conjunct of the left hand side of every CI in TM , the CIs in TM are
trivially satisfied in every node d ∈ ∆I \ Ind(A1 ∪ · · · ∪ An). Thus I ′ satisfies T and A and we
have proved consistency of A w.r.t. T , as required. o

We are now in the position to prove Theorem 40.

Proof of Theorem 40. Let L ∈ CONP and let M and T be the TM and TBox from above. Set
Σ = Σg ∪ {M0} where M0 is a fresh concept name and let T ′ ∪ T ∃ be the enriched Σ-abstraction
of T . We show that T satisfies Points (1) and (2) from Theorem 40.

(1) It suffices to give a polynomial time reduction from L(M) to the complement of evaluating
(T ′ ∪T ∃,∃xM0(x)) (note that M0 does not occur in any of the involved TBoxes). Assume that an
input word v for M is given. If v is not from γ0(Γ0 \ {γ0})∗, then reject. Otherwise, construct in
polynomial time the |v|k1×|v|k2-grid ABoxA with input v. Observe thatA is consistent w.r.t. TPM
and has the trivial decomposition A = A1 in Lemma 37 (3). Thus Lemma 41 (2) implies that
v ∈ L(M) iffA is consistent w.r.t. T . The latter condition is equivalent to T ,A 6|= ∃xM0(x) since
M0 does not occur in A or T . Since T admits trivial models, Lemma 35 (2) thus yields v ∈ L(M)
iff T ′ ∪ T ∃,A 6|= ∃xM0(x).

(2) We first make the following observation.

Claim 1. T ′ ∪ T ∃,A |= q(~a) iff
• A|Σ is not consistent w.r.t. T or
• T ∃,A |= q(~a).

For the ‘only if’ direction, observe that if A|Σ is consistent w.r.t. T , then by Lemma 35 (4), T ′ ∪
T ∃,A |= q(~a) iff T ∃,A |= q(~a). For the ‘if’ direction, observe that ifA|Σ is not consistent w.r.t. T ,
then by Lemma 35 (1) A is not consistent w.r.t. T ′ ∪ T ∃. This finishes the proof of the claim.

By Lemma 35 (3), T ∃,A |= q(~a) can be decided in polynomial time. Thus, Claim 1 implies
that it suffices to give a polynomial time reduction of ABox consistency w.r.t. T to L(M). But
Lemma 41 (2) provides a polynomial reduction of ABox consistency w.r.t. T to L(M) since

• Condition (a) of Lemma 41 (2) can be checked in polynomial time (by Lemma 37 (1));
• the decomposition of A in Condition (b) of Lemma 41 (2) as well as the words vi, 1 ≤ i ≤
n, can be computed in polynomial time;
• and Point (i) of Condition (b) can be checked in polynomial time.

It thus remains to check whether vi ∈ L(M) for 1 ≤ i ≤ n. This finishes the proof of Theo-
rem 40. o

Theorems 40 and 19 imply that that there is no PTIME/CONP-dichotomy for query evaluation
w.r.t. ALCF-TBoxes, unless PTIME = NP.

DATA COMPLEXITY OF ONTOLOGIES 41

Observe that the TBoxes constructed in the undecidability and the non-dichotomy proof are
both of depth four. This can be easily reduced to depth three: recall that the TBoxes of depth four
are obtained from TBoxes T of depth two by taking their enriched Σ-abstractions. One can obtain
a TBox of depth three (for which query evaluation has the same complexity up to polynomial time
reductions) by first replacing in T compound concepts C in the scope of a single value or existential
restriction by fresh concept names AC and adding AC ≡ C to T . Then the fresh concept names are
added to the signature Σ and one constructs the enriched abstraction of the resulting TBox for the
extended signature. This TBox is as required. Thus, our undecidability and non-dichotomy results
hold for ALCF-TBoxes of depth three already.

8. DISCUSSION

We have studied the complexity of query evaluation in the presence of an ontology formulated
in a DL between ALC and ALCFI, focussing on the boundary between PTIME and CONP. For
ALCFI-TBoxes of depth one, we have established a dichotomy between PTIME and CONP and
shown that it can be precisely characterized in terms of unraveling tolerance and materializabil-
ity. Moreover and unlike in the general case, PTIME complexity coincides with rewitability into
Datalog6=. The case of higher or unrestricted depth is harder to analyze. We have shown that for
arbitrary ALC- and ALCI-TBoxes there is a dichotomy between PTIME and CONP. The proof
is by a reduction to the recently confirmed PTIME/NP-dichotomy for CSPs. For ALCF TBoxes
of depth three we have shown that there is no dichotomy unless PTIME = NP and that deciding
whether a given TBox admits PTIME query evaluation is undecidable, and so are related questions.

Several interesting research questions remain. We briefly discuss three possible directions.
(1) Is it decidable whether a given ALC- or ALCI-TBox admits PTIME query evaluation and,
closely related, whether it is unraveling tolerant and whether it is materializable? First results for
TBoxes of depth one have been obtained in [HLPW17a], but the general problem remains open. It is
interesting to point out that unraveling tolerance is decidable for OMQs whose TBox is formulated
in ALCI (where a concrete query is given, unlike in the case of unraveling tolerance of TBoxes);
in that case, unraveling tolerance is equivalent to rewritability into monadic Datalog [FKL17]. It
would also be interesting to study more general notions of unraveling tolerance based on unravelings
into structures of bounded treewidth rather than into real trees.
(2) It would be interesting to study additional complexity classes such as LOGSPACE, NLOGSPACE,
and AC0. It is known that all these classes occur even for ALC-TBoxes of depth one, see e.g.
[CDL+13] and the recent [LS17] which establishes a full complexity complexity classification of
OMQs that are based on an EL-TBox and an ELIQ. For example, CQ-evaluation w.r.t. the depth one
EL-TBox {∃r.A v A}, which encodes reachability in directed graphs, is NLOGSPACE-complete. It
would thus be interesting to identify further dichotomies such as between NLOGSPACE and PTIME.
We conjecture that for ALCFI-TBoxes of depth one, it is decidable whether query evaluation is in
PTIME, NLOGSPACE, LOGSPACE, and AC0.
(3) Apart from Datalog, rewritability into FO queries is also of interest. In the context of OMQs
where the actual query is fixed rather than quantified, several results have been obtained, see e.g.
[BLW13, HLSW15, BHLW16] for FO-rewritability of OMQs whose TBox is formulated in a Horn
DL and [BtCLW14, FKL17] for FO- and Datalog-rewritability of OMQs whose TBox is formulated
in ALC or an extension thereof. When the query is quantified (as in the current paper), a first rele-
vant result has been established in [LW11] where it is shown that that FO-rewritability is decidable

42 DATA COMPLEXITY OF ONTOLOGIES

for materializable ALCFI-TBoxes of depth one. This underlines the importance of deciding ma-
terializability, which would allow to lift this result to (otherwise unrestricted) ALCFI-TBoxes of
depth one.

Acknowledgments. Carsten Lutz was supported by ERC consolidator grant 647289. Frank Wolter
was supported by EPSRC grant EP/M012646/1.

REFERENCES

[ABI+05] Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer. The complexity
of satisfiability problems: Refining Schaefer’s theorem. In MFCS, pages 71–82, 2005.

[ACKZ09] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The DL-Lite family
and relations. J. Artif. Intell. Res. (JAIR), 36:1–69, 2009.

[ACY91] Foto N. Afrati, Stavros S. Cosmadakis, and Mihalis Yannakakis. On datalog vs. polynomial time. In PODS,
pages 13–25, 1991.

[Ats08] Albert Atserias. On digraph coloring problems and treewidth duality. Eur. J. Comb., 29(4):796–820, 2008.
[Bar14] Libor Barto. Constraint satisfaction problem and universal algebra. SIGLOG News, 1(2):14–24, 2014.
[BBLW16] Franz Baader, Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. Query and predicate emptiness in

ontology-based data access. J. Artif. Intell. Res. (JAIR), 56:1–59, 2016.
[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In IJCAI, pages 364–369.

Professional Book Center, 2005.
[BGO10] Vince Barany, Georg Gottlob, and Martin Otto. Querying the guarded fragment. In LICS, pages 1–10, 2010.
[BHLW16] Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. First order-rewritability and containment

of conjunctive queries in Horn description logics. In IJCAI, pages 965–971, 2016.
[Bul17] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In FOCS, 2017.
[BJK05] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of constraints using

finite algebras. SIAM J. Comput., 34(3):720–742, 2005.
[BLW13] Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. First-order rewritability of atomic queries in horn

description logics. In IJCAI, pages 754–760, 2013.
[BMRT11] Jean-Francois Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michael Thomazo. Walking the com-

plexity lines for generalized guarded existential rules. In IJCAI, pages 712–717, 2011.
[BO15] Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query answering with data-tractable descrip-

tion logics. In Reasoning Web, volume 9203 of LNCS, pages 218–307. Springer, 2015.
[BtCLW14] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data access: A study

through disjunctive datalog, CSP, and MMSNP. ACM Trans. Database Syst., 39(4):33:1–33:44, 2014.
[BLR+16] Elena Botoeva, Carsten Lutz, Vladislav Ryzhikov, Frank Wolter and Michael Zakharyaschev. Query-Based

Entailment and Inseparability for ALC Ontologies In IJCAI, pages 1001–1007, 2016.
[Bul02] Andrei A. Bulatov. A dichotomy theorem for constraints on a three-element set. In FOCS, pages 649–658,

2002.
[Bul11] Andrei A. Bulatov. On the CSP dichotomy conjecture. In CSR, pages 331–344, 2011.
[CDGL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.

Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Autom.
Reasoning, 39(3):385–429, 2007.

[CDL+13] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Data complexity of query answering in description logics. Artificial Intelligence, 195:335–360, 2013.

[CGK13] Andrea Calı̀, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering under expres-
sive relational constraints. J. Artif. Intell. Res. (JAIR), 48:115–174, 2013.

[CGLV00] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-based query
processing and constraint satisfaction. In LICS, pages 361–371, 2000.

[CGLV03a] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Reasoning on regular
path queries. SIGMOD Record, 32(4):83–92, 2003.

[CGLV03b] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. View-based query
containment. In PODS, pages 56–67, 2003.

[CGT89] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to know about datalog (and never
dared to ask). IEEE Trans. Knowl. Data Eng., 1(1):146–166, 1989.

DATA COMPLEXITY OF ONTOLOGIES 43

[CK90] C. C. Chang and H. Jerome Keisler. Model Theory, volume 73 of Studies in Logic and the Foundations of
Mathematics. Elsevier, 1990.

[EGOS08] Thomas Eiter, Georg Gottlob, Magdalena Ortiz, and Mantas Simkus. Query answering in the description
logic Horn-SHIQ. In JELIA, pages 166–179, 2008.

[FKL17] Cristina Feier, Antti Kuusisto, and Carsten Lutz. Rewritability in monadic disjunctive datalog, MMSNP,
and expressive description logics. In ICDT, pages 1–17, 2017.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange: semantics and query
answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[FV98] Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP and Constraint
Satisfaction: A Study through Datalog and Group Theory SIAM J. Comput., 28(1):57–104, 1998.

[FV03] Tomás Feder and Moshe Y. Vardi. Homomorphism closed vs. existential positive. In LICS, pages 311–320,
2003.

[GLHS08] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive query answering for the descrip-
tion logic SHIQ. JAIR, 31:157–204, 2008.

[GO07] Valentin Goranko and Martin Otto. Model theory of modal logic. In Handbook of Modal Logic, pages
249–329. Elsevier, 2007.

[HLSW15] Peter Hansen, Carsten Lutz, Inanç Seylan, and Frank Wolter. Efficient query rewriting in the description
logic EL and beyond. In IJCAI, pages 3034–3040, 2015.

[HLPW17a] André Hernich, Carsten Lutz, Fabio Papacchini, Frank Wolter. Dichotomies in Ontology-Mediated Query-
ing with the Guarded Fragment. In PODS, pages 185–199, 2017.

[HLPW17b] André Hernich, Carsten Lutz, Fabio Papacchini, Frank Wolter. Horn Rewritability vs PTime Query An-
swering for Description Logic TBoxes. In Description Logics, 2017.

[HMS07] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in description logics by a reduction to disjunc-
tive datalog. J. Autom. Reasoning, 39(3):351–384, 2007.

[HN90] Pavol Hell and Jaroslav Nesetril. On the complexity of h-coloring. J. Comb. Theory, Ser. B, 48(1):92–110,
1990.

[KNC16] Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau, Datalog rewritability of Disjunctive Datalog
programs and non-Horn ontologies. Artificial Intelligence, 236: 90–118, 2016.

[Kaz09] Yevgeny Kazakov. Consequence-driven reasoning for Horn-SHIQ ontologies. In Craig Boutilier, editor,
IJCAI, pages 2040–2045, 2009.

[KL07] Adila Krisnadhi and Carsten Lutz. Data complexity in the EL family of description logics. In LPAR, pages
333–347, 2007.

[KLT+10] Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev. The combined
approach to query answering in DL-Lite. In KR, 2010.

[KRH07] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. Complexity boundaries for Horn description
logics. In AAAI, pages 452–457, 2007.

[Kro10a] Andrei A. Krokhin. Tree dualities for constraint satisfaction. In CSL, pages 32–33, 2010.
[Krö10b] Markus Krötzsch. Efficient inferencing for OWL EL. In JELIA, pages 234–246, 2010.
[KS09] Gábor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture. In STOC, pages 725–734,

2009.
[KZ14] Roman Kontchakov and Michael Zakharyaschev. An introduction to description logics and query rewriting.

In Reasoning Web, volume 8714 of LNCS, pages 195–244. Springer, 2014.
[LLT07] Benoit Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order constraint satisfaction

problems. Logical Methods in Computer Science, 3(4), 2007.
[LPW11] Carsten Lutz, Robert Piro, and Frank Wolter. Description logic tboxes: Model-theoretic characterizations

and rewritability. In IJCAI, 2011.
[LSW13] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-based data access with closed predicates is inher-

ently intractable (sometimes). In IJCAI, pages 1024–1030. IJCAI/AAAI, 2013.
[LS17] Carsten Lutz and Leif Sabellek. Ontology-Mediated Querying with the Description Logic EL: Trichotomy

and Linear Datalog Rewritability. In IJCAI, pages 1181–1187. IJCAI/AAAI, 2017.
[LSW15] Carsten Lutz, Inanç Seylan, and Frank Wolter. Ontology-mediated queries with closed predicates. In IJCAI,

pages 3120–3126. AAAI Press, 2015.
[LTW09] Carsten Lutz, David Toman, and Frank Wolter. Conjunctive query answering in the description logic EL

using a relational database system. In IJCAI, pages 2070–2075, 2009.

44 DATA COMPLEXITY OF ONTOLOGIES

[LW10] Carsten Lutz and Frank Wolter. Deciding inseparability and conservative extensions in the description logic
EL. J. Symb. Comput., 45(2):194–228, 2010.

[LW11] Carsten Lutz and Frank Wolter. Non-uniform data complexity of query answering in description logics. In
Description Logics, 2011.

[LW12] Carsten Lutz and Frank Wolter. Non-uniform data complexity of query answering in description logics. In
KR. AAAI Press, 2012.

[Mak87] Johann A. Makowsky. Why Horn formulas matter in computer science: Initial structures and generic ex-
amples. J. Comput. Syst. Sci., 34(2/3):266–292, 1987.

[Mal71] Anatoli I. Malcev. The metamathematics of algebraic systems, collected papers:1936-1967. North-Holland,
1971.

[MG85] Jose Meseguer and Joseph A. Goguen. Initiality, induction, and computability. In Algebraic Methods in
Semantics, pages 459–541. Cambridge University Press, 1985.

[OCE08] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. Data complexity of query answering in expressive
description logics via tableaux. J. of Autom. Reasoning, 41(1):61–98, 2008.

[PLC+08] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Riccardo Rosati. Linking data to ontologies. J. Data Semantics, 10:133–173, 2008.

[Ros07] Riccardo Rosati. The limits of querying ontologies. In ICDT, volume 4353 of LNCS, pages 164–178.
Springer, 2007.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In STOC, pages 216–226, 1978.
[Sch93] Andrea Schaerf. On the complexity of the instance checking problem in concept languages with existential

quantification. J. of Intel. Inf. Systems, 2:265–278, 1993.
[Zhu17] Dmitriy Zhuk. The Proof of CSP Dichotomy Conjecture. In FOCS, 2017.

	1. Introduction
	Related Work

	2. Preliminaries
	3. Materializability
	3.1. Model-Theoretic Characterizations of Materializability
	3.2. Materializability and coNP-hardness
	3.3. Complexity of TBoxes for Different Query Languages

	4. Unraveling Tolerance
	5. Dichotomy for ALCFI-TBoxes of Depth One
	6. Query Evaluation in ALC/ALCI = CSP
	7. Non-Dichotomy and Undecidability in ALCF
	8. Discussion
	References

