4 research outputs found

    Towards signal-power integrity analysis by efficient power delivery network lumped models obtained from parameter extraction

    Get PDF
    The combined signal integrity (SI) and power integrity (PI) design process is getting more relevant and complex as a result of the continuous computing system performance growth. This complexity drives longer design cycle times using traditional tools and methods. In this paper, a low computational cost optimization method based on a parameter extraction (PE) technique is proposed to develop accurate and fast power delivery network (PDN) lumped models. Once this model is available, it is used in the simulation process during the SI and PI analysis, making the whole design process much more efficient. Our proposed methodology is applied to a classical dual data rate (DDR) memory sub-system problem, saving 99.8% of the analysis time with only 1.2% of the computational resources typically used in current industrial practices.ITESO, A.C

    Power Delivery Network Impedance Profile and Voltage Droop Optimization

    Get PDF
    The design process of power delivery networks (PDN) in modern computer platforms is becoming more relevant and complex due to its relationship with high-frequency effects on signal integrity. When circuits start operating, the changing current flowing through the PDN produces fluctuations creating voltage noise. Unsuccessful noise control can compromise data integrity. A suitable PDN design approach is the use of decoupling capacitors to lower the impedance profile and mitigate current surges, ensuring a small variation in the power supply voltage under significant transient current loads. An optimization approach to determine the number of decoupling capacitors in a PDN is presented in this paper, aiming at decreasing the amount of decoupling capacitors without violating the PDN design specifications, looking at both the impedance profile in the frequency domain and the resulting voltage droop in the transient time-domain.ITESO, A.C

    Frequency- and Time-Domain Yield Optimization of a Power Delivery Network Subject to Large Decoupling Capacitor Tolerances

    Get PDF
    Sub-optimal design of power delivery networks (PDN) may cause performance deterioration and severe functional failures on high-speed computer platforms. Voltage regulators (VR) distribute controlled voltage in the PDN to the active devices, providing a steady power supply at a desired DC voltage level with an acceptable noise level or ripple. Unacceptable voltage drops can be caused by transient switching currents at the devices. Many decoupling capacitors are commonly used to lower the PDN impedance profile in order to reduce power supply noise and to supply fast transient current to switching devices. However, commercially available decoupling capacitors typically present large manufacturing variability. In this paper, we first propose an optimization methodology that gradually finds the best compensation parameter values of a buck converter VR to meet suitable stability criteria. Simultaneously, the number of parallel decoupling capacitors in the PDN is minimized while meeting a frequency-domain impedance profile specification and a time-domain minimum voltage droop requirement under nominal parameter values. Finally, a statistical analysis, yield estimation, and yield optimization of the nominally optimized PDN subject to large decoupling capacitor tolerances is presented. We consider the impedance profile, transient voltage droop, and voltage regulator stability as the responses of interest for yield calculation.ITESO, A.C

    Analysis and design of power delivery networks exploiting simulation tools and numerical optimization techniques

    Get PDF
    A higher performance of computing systems is being demanded year after year, driving the digital industry to fiercely compete for offering the fastest computer system at the lowest cost. In addition, as computing system performance is growing, power delivery networks (PDN) and power integrity (PI) designs are getting increasingly more relevance due to the faster speeds and more parallelism required to obtain the required performance growth. The largest data throughput at the lowest power consumption is a common goal for most of the commercial computing systems. As a consequence of this performance growth and power delivery tradeoffs, the complexity involved in analyzing and designing PDN in digital systems is being increased. This complexity drives longer design cycle times when using traditional design tools. For this reason, the need of using more efficient design methods is getting more relevance in order to keep designing and launching products in a faster manner to the market. This trend pushes PDN designers to look for methodologies to simplify analysis and reduce design cycle times. The main objective for this Master’s thesis is to propose alternative methods by exploiting reliable simulation approaches and efficient numerical optimization techniques to analyze and design PDN to ensure power integrity. This thesis explores the use of circuital models and electromagnetic (EM) field solvers in combination with numerical optimization methods, including parameter extraction (PE) formulations. It also establishes a sound basis for using space mapping (SM) methodologies in future developments, in a way that we exploit the advantages of the most accurate and powerful models, such as 3D full-wave EM simulators, but conserving the simplicity and low computational resourcing of the analytical, circuital, and empirical models
    corecore