270 research outputs found

    First-Class Functions for First-Order Database Engines

    Full text link
    We describe Query Defunctionalization which enables off-the-shelf first-order database engines to process queries over first-class functions. Support for first-class functions is characterized by the ability to treat functions like regular data items that can be constructed at query runtime, passed to or returned from other (higher-order) functions, assigned to variables, and stored in persistent data structures. Query defunctionalization is a non-invasive approach that transforms such function-centric queries into the data-centric operations implemented by common query processors. Experiments with XQuery and PL/SQL database systems demonstrate that first-order database engines can faithfully and efficiently support the expressive "functions as data" paradigm.Comment: Proceedings of the 14th International Symposium on Database Programming Languages (DBPL 2013), August 30, 2013, Riva del Garda, Trento, Ital

    Moa and the multi-model architecture: a new perspective on XNF2

    Get PDF
    Advanced non-traditional application domains such as geographic information systems and digital library systems demand advanced data management support. In an effort to cope with this demand, we present the concept of a novel multi-model DBMS architecture which provides evaluation of queries on complexly structured data without sacrificing efficiency. A vital role in this architecture is played by the Moa language featuring a nested relational data model based on XNF2, in which we placed renewed interest. Furthermore, extensibility in Moa avoids optimization obstacles due to black-box treatment of ADTs. The combination of a mapping of queries on complexly structured data to an efficient physical algebra expression via a nested relational algebra, extensibility open to optimization, and the consequently better integration of domain-specific algorithms, makes that the Moa system can efficiently and effectively handle complex queries from non-traditional application domains

    MonetDB/XQuery: a fast XQuery processor powered by a relational engine

    Get PDF
    Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a compilation technique that translates XQuery into a basic relational algebra, (iii) a restricted (order) property-aware peephole relational query optimization strategy, and (iv) a mapping from XML update statements into relational updates. Thus, this system implements all essential XML database functionalities (rather than a single feature) such that we can learn from the full consequences of our architectural decisions. While implementing this system, we had to extend the state-of-the-art with a number of new technical contributions, such as loop-lifted staircase join and efficient relational query evaluation strategies for XQuery theta-joins with existential semantics. These contributions as well as the architectural lessons learned are also deemed valuable for other relational back-end engines. The performance and scalability of the resulting system is evaluated on the XMark benchmark up to data sizes of 11GB. The performance section also provides an extensive benchmark comparison of all major XMark results published previously, which confirm that the goal of purely relational XQuery processing, namely speed and scalability, was met

    Web and Semantic Web Query Languages

    Get PDF
    A number of techniques have been developed to facilitate powerful data retrieval on the Web and Semantic Web. Three categories of Web query languages can be distinguished, according to the format of the data they can retrieve: XML, RDF and Topic Maps. This article introduces the spectrum of languages falling into these categories and summarises their salient aspects. The languages are introduced using common sample data and query types. Key aspects of the query languages considered are stressed in a conclusion

    Compilation of Generic Regular Path Expressions Using C++ Class Templates

    Get PDF

    Development of Use Cases, Part I

    Get PDF
    For determining requirements and constructs appropriate for a Web query language, or in fact any language, use cases are of essence. The W3C has published two sets of use cases for XML and RDF query languages. In this article, solutions for these use cases are presented using Xcerpt. a novel Web and Semantic Web query language that combines access to standard Web data such as XML documents with access to Semantic Web metadata such as RDF resource descriptions with reasoning abilities and rules familiar from logicprogramming. To the best knowledge of the authors, this is the first in depth study of how to solve use cases for accessing XML and RDF in a single language: Integrated access to data and metadata has been recognized by industry and academia as one of the key challenges in data processing for the next decade. This article is a contribution towards addressing this challenge by demonstrating along practical and recognized use cases the usefulness of reasoning abilities, rules, and semistructured query languages for accessing both data (XML) and metadata (RDF)

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    A performant XQuery to SQL translator

    Get PDF
    We describe a largely complete and efficient XQuery to SQL translation for XML publishing. Our translation supports the entire XQuery language, except for functions, if statements and upwards navigation axes. The system has three important properties. First, it preserves the correct XQuery semantics. This is accomplished by first translating XQuery into core-XQuery, using a complete XQuery implementation, Galax. Second, we optimize the resulting SQL queries. We develop a comprehensive framework for optimizing the XQuery to SQL translation, which is effective for a wide range of XQuery workloads. Third, our translation is platform independent. Our system achieves high degree of efficiency on a wide range of relational systems. This paper reports an extensive experimental validation on several XQuery workloads, using MySQL, PostgreSQL, and SQL Server, and compares this approach with five native XQuery engines: Galax (the newer, optimized version), Saxon, QizOpen, IMDB and Quexo

    Lazy XSL transformations

    Get PDF
    • ā€¦
    corecore