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ABSTRACT
We introduce a lazy XSLT interpreter that provides ran-
dom access to the transformation result. This allows effi-
cient pipelining of transformation sequences. Nodes of the
result tree are computed only upon initial access. As these
computations have limited fan-in, sparse output coverage
propagates backwards through the pipeline.

In comparative measurements with traditional eager im-
plementations, our approach is on par for complete coverage
and excels as coverage becomes sparser. In contrast to eager
evaluation, lazy evaluation also admits infinite intermediate
results, thus extending the design space for transformation
sequences.

To demonstrate that lazy evaluation preserves the seman-
tics of XSLT, we reduce XSLT to the lambda calculus via a
functional language. While this is possible for all languages,
most imperative languages cannot profit from the confluence
of lambda as only one reduction applies at a time.

Categories and Subject Descriptors
D.3.4 [SOFTWARE ENGINEERING]: Processors—In-
terpreters; D.1.1 [SOFTWARE ENGINEERING]: Ap-
plicative (Functional) Programming; I.1.3 [SYMBOLIC
AND ALGEBRAIC MANIPULATION]: Languages
and Systems—Evaluation strategies

General Terms
Languages, Theory, Measurement, Performance

1. INTRODUCTION
Document transformation is a staple of information tech-

nology. As early as 1973, special-purpose transformation
languages like sed and awk processed line-oriented text doc-
uments with regular expressions. In the 1990s, such texts
were increasingly replaced by semi-structured, or hypertext
documents. As traditional HTML is hard to parse and nav-
igate, corresponding transformation languages like php and
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JSP are usually embedded in a source document to gener-
ate variants of it. The advent of the fixed and unambigu-
ous XML syntax in 1998 made stand-alone transformation
languages feasible again. Today, Extensible Stylesheet Lan-
guage Transformations, or XSLT, is the predominant XML
transformation language.

Every transformation is both a consumer and a producer
of documents. The line-oriented transformation languages
both consume input and produce output sequentially. A
sequence of transformations can be pipelined using fixed-size
buffers. Individual pipeline stages may execute in parallel.
Lags are small: the assembly can start producing output
before its entire input has been consumed. Fig. 1 illustrates
this using a list of species annotated by size and as being
real or mythical.

Aardvardk;18;TRUE
Behemoth;12;FALSE
Centaur;41;FALSE
Dingo;38;TRUE
Emu;15;TRUE

Discard
mythical,
keep real
species

Aardvardk;18;TRUE
Dingo;38;TRUE
...

Dingo;38;TRUE
...Discard

small, keep
populous
species

Figure 1: Pipelining line-oriented transformations

Because the XSLT data model contains a plethora of nav-
igation steps on XML trees, XSLT transformations effec-
tively consume the input document using random access.
In contrast, the output document is produced sequentially
in depth-first order, also called document order.

Traditional implementations follow the XSLT data model
literally. Because they cannot produce output out of or-
der, every intermediate result in a sequence of transforma-
tions must be produced completely into an unbounded buffer
before the subsequent transformation may begin random-
access consumption. These barriers eliminate coarse-grained
parallelism. As all intermediate steps must complete before
the first output is produced, large lags are introduced (see
fig. 2).
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Figure 2: Eager XSLT prevents pipelining

To admit pipelining, a novel XSLT implementation must
be capable of producing partial outputs in reply to random-
access requests from consumers. This mode of operation
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accrues an additional benefit: partial coverage of a transfor-
mation output can propagate backwards to its input, and
thus along an entire transformation sequence. Because they
cannot skip input, traditional line-oriented tools are inca-
pable of this (see fig. 3).
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Figure 3: Random-access XSLT allows pipelining

How to provide such random access? Essentially, docu-
ment trees are nested lists, a well-known concept in func-
tional programming. Functional languages achieve the goal
of omitting unnecessary intermediate results by lazy evalu-
ation.

In contrast to eager evaluation, lazy evaluation computes
the value of an expression not as it occurs, but when it is
used. A necessary and sufficient condition for lazy evalu-
ation is confluence of the programming language — i.e., it
must be possible to reduce expressions in arbitrary order
without changing their result.

According to the Church-Turing thesis, all languages can
ultimately be reduced to the confluent lambda calculus. For
lazy evaluation to be profitable, however, multiple alterna-
tive reductions must actually exist. Consider the following
example in Java:

class A {

public A l,r;

public A(A l,A r) { this.l=l; this.r=r; }

public A() { System.out.println(num++); }

static int num=0;

}

Evaluating the expression new A(new A(),new A()).r yields
an instance of A whose fields are both null. However, be-
cause the leaf constructor has side effects, it also produces
the output "0\n1\n" and increments num to a value of 2.

Java, and thus the example, can be reduced to the lambda
calculus. To preserve semantics in such a model, all method
invocations must pass and return a global state parame-
ter encapsulating memory updates and I/O. This imposes
a strict sequential order on method invocations. While lazy
evaluation is possible, it must produce the same method
invocation sequence as eager evaluation. Alternative reduc-
tion paths do not exist.

Where reduction alternatives abound, benefits from lazy
evaluation are threefold: Due to its adaptive nature, lazy
evaluation routinely surpasses static optimizations in sce-
narios with stochastic access profiles. Lazy evaluation of
a composition of programs jointly optimizes them for the
given usage scenario by propagating the effects of low cov-
erage. And finally, lazy evaluation extends the design space
for programs by allowing the use of infinite intermediate
structures.

We reap these benefits for XSLT. After reviewing the state
of the art in XSLT processing and optimization in section 2,
we give denotational semantics for XSLT in terms of a func-
tional language and examine the constraints on reductions in
section 3. For readability, we refrain from breaking things
down to lambda. In section 4, we introduce our architec-
ture for a lazy XSLT interpreter that allows random-access

on partial results and propagates sparse coverage. Section
5 presents and discusses performance comparisons between
lazy and traditional XSLT processors. The final section,
6, summarizes our results and outlines directions for future
work.

2. STATE OF THE ART
In this section, we briefly cover the relevant XML stan-

dards, then we focus on optimizations for XSLT transfor-
mations, which can be subclassed into static and dynamic
ones.

2.1 XML Processing
The World Wide Web Consortium (W3C) is a forum de-

veloping specifications, guidelines and tools to facilitate in-
teroperability on the web. One of the W3C’s main con-
tributions is the Extensible Markup Language (XML) [27,
28], a simple yet flexible markup language derived from
SGML. Since its standardization as a W3C Recommendation
in 1998, XML has become the predominant data exchange
and document format on the web.

Well-formed XML documents are depth-first serializations
of unranked, ordered, labelled trees. Inner tree nodes are
called elements. They can be decorated with attributes and
namespace information. Leaf nodes come in greater variety.
Besides elements, text nodes, comments or processing in-
structions are also admissible. All of these are essentially
atomic. Although initially specified on character sequences,
the XML Information Set (Infoset) [7] recommendation for-
mally models the information content of an XML document
as a tree consisting of so-called information items.

Subsets of the well-formed XML documents can be defined
using document type languages, like XML Document Type
Declaration (DTD) [27] or XML Schema [30]. A document
belonging to the subset defined by a specification is called
valid according to that specification. In XML parlance, the
process of type checking against a specification is called val-
idation.

Actual programs can access well-formed or valid XML
documents via one of several APIs, each of which slightly
enriches the underlying information set model. The Doc-
ument Object Model (DOM) [26] is a tree-based interface,
providing a standard set of node objects for representing the
document tree as well as a model of how these objects can
be combined and methods for accessing and manipulating
them.

However, there is no requirement that the XML Informa-
tion Set be made available through a tree structure. Whereas
text-based interfaces abandon the document’s hierarchical
structure and operate on its plain XML source only, event-
based interfaces like Simple API for XML Processing (SAX)
[17] decompose the structure into a stream of parse events.

Query-based interfaces form the highest level of abstrac-
tion. They interpret query strings to select arbitrary frag-
ments of the document tree. XML Path Language (XPath)
[29] is a regular path language that has become the acknowl-
edged query language for addressing and selecting parts of
an XML document. Besides its primary purpose, it also
provides basic facilities for manipulation of strings, numbers
and booleans. The underlying XPath data model represents
an XML document as a tree of nodes and allows random
access via navigation steps.



XPath was primarily designed to provide a data model
and a query sublanguage for node sets and primitive values
to be used by other W3C languages such as XQuery [3] or
XSL Transformations (XSLT) [31]. The latter is a declara-
tive programming language for the transformation of XML
documents. An XSLT program is also called a stylesheet.
It consists of rules mapping a source tree to a result tree.
As rule bodies can contain mathematical variables, recur-
sive rule invocations and case differentiations, XSLT is a
Turing-complete language.

2.2 Static Optimization of XSLT
Currently, more than a dozen implementations of XSLT

are available. Several of them aim at optimizing XSLT pro-
grams to decrease their execution time. All of them rely on
static preprocessing.

2.2.1 Lowering
A common approach to language implementation is com-

pilation to a lower-level intermediate code for a virtual ma-
chine. The benefits from this approach over direct interpre-
tation of high-level language instructions are well known.
The VM need not perform semantic analysis, which is pre-
computed at compile-time. Because only relatively few low-
level instructions must be supported, instead of a language
defined to ease the work of the programmer, the VM de-
creases in complexity and possibly exhibits better caching
behavior.

XSLT Virtual Machine (XSLTVM) [20] is the software
implementation of a stack-based “CPU” for compiled XSLT
code. Both instruction set and data types are tailored to
processing XSLT instructions and XPath expressions. Un-
fortunately, the authors confine themselves to presenting the
architecture. They fail to mention whether it has been im-
plemented, and which practical results could be obtained
from this approach.

However, compilation to Java Virtual Machine (JVM)
bytecode [9, 2] tends to achieve promising performance [14].

2.2.2 Static evaluation
In [16], one of us introduced static evaluation of XSLT

programs over known input types. Similar to abstract in-
terpretation, this approach evaluates transformations over a
set of input trees rather than one specific tree.

Static evaluation can simplify cascades of XSLT steps by
taking constraints due to later steps into account early on.
It can resolve apply-template calls into call-template calls,
effectively removing polymorphism. And finally, it can de-
tect dead rules as well as dead portions of the input.

Work to validate these theoretical results in practice is
approaching completion.

2.2.3 Static type checking
Static type checking also exploits known document types.

Given a transformation and a type specification for its in-
puts, this optimization statically verifies the possible out-
put types. When compliance with the input type of the
next stage can be statically verified, the respective run-time
check can be omitted.

This approach aims to eliminate validation steps rather
than to speed up interpretation itself. Although the general
problem is undecidable, several authors have succeeded at

defining subsets of XSLT for which static type checking is
feasible [18, 1, 25].

2.2.4 Query optimization
Recent research in the database community concentrates

on XPath query optimization. They have been motivated
by the observation that querying the source tree tends to
be the most time-critical part in XML processing standards
such as XSLT or XQuery.

By experimental analysis, [11, 12] reveal query evaluation
in several popular XPath processors to require a worst-case
execution time that is exponential in the size of the query.
The authors propose a main-memory evaluation algorithm
for XPath 1.0 with guaranteed polynomial-time combined
complexity, i.e., its execution time is polynomial in both the
input data size and the query size. Moreover, they iden-
tify some practically relevant fragments of XPath for which
query evaluation can be optimized even further, obtaining
linear-time processing algorithms in the best case.

XPath takes a navigational approach to node selection.
Its navigational axes basically allow random access to XML
trees. This requires an in-memory representation of the en-
tire XML document, which poses problems when document
sizes exceed main memory capacity.

This issue can be evaded by embracing a stream-based
strategy for XML processing, which avoids in-memory stor-
age of the data as much as possible. Of particular concern
for SAX-like processing are the reverse axes of XPath, e.g.,
parent:: and preceding::, which select nodes occurring
before the context node in document order. [21, 22] de-
veloped a rewriting algorithm which transforms XPath ex-
pressions with reverse axes into equivalent ones containing
forward axes only.

Another approach is the optimization of XPath queries us-
ing document type information [15]. The paper makes sev-
eral restrictions to enable classical relational database query
optimization techniques. These restrictions and the omis-
sion of an XSLT context for the XPath expressions make
our symbolic execution approach the more general one.

2.3 Dynamic Optimization and Laziness
All optimization methods discussed so far share one com-

mon property: they are static, i.e., they are performed prior
to runtime. This means that transformations and type spec-
ifications must always be known a priori. With dynamic
approaches, all optimizations must first and foremost repay
the time consumed by performing them.

In addition, static optimizations fail to take dynamic ac-
cess profiles into account, which have been employed to great
success in other application domains.

2.3.1 Functional Programming
Functional programming languages are generally classi-

fied according to their evaluation strategy. Strict languages
perform call by value function application, i.e., argument
expressions are evaluated in advance and the resulting val-
ues are passed to the function. In contrast to this, lazy
languages evaluate argument expressions on demand, i.e.,
they pass references to yet unevaluated argument expres-
sions (call by name) and evaluation is delayed until the value
of the expression is required. This strategy avoids the eval-
uation of argument expressions which are irrelevant to the
function result.



In theory, all functional languages can be mapped to ex-
pressions in the lambda calculus. Program execution then
corresponds to a reduction of the lambda expression to nor-
mal form by graph reduction. This process is confluent, so
reductions can be applied in arbitrary order.

The main difference between lazy and strict functional
languages is the selection strategy for the next subexpression
to reduce (reducible expression,redex). Normal order reduc-
tion selects the leftmost outermost redex first. This results
in lazy evaluation and guarantees termination, if a normal
form exists. Strict evaluation is performed by applicative or-
der reduction, selecting the rightmost redex for reduction. In
this case, termination cannot be guaranteed.

Implementations of lazy evaluation can be subclassed into
direct and caching approaches. The latter aim to increase
performance further by tracking shared expressions and re-
sults.

2.3.2 Just-in-time Compilation
High-performance virtual machine implementations usu-

ally rely on just-in-time compilation (JIT), where source or
intermediate code is translated into native machine code on
the fly, removing the interpretation overhead. Like all dy-
namic approaches, JIT compilation increases the total ex-
ecution time of the program. Because compilation time is
added to execution time, the savings in execution time must
outweigh the compilation overhead. Therefore, all JITs em-
phasize compilation speed at the expense of complex opti-
mizations.

Consequently, it is more reasonable to compile methods as
they are executed, rather than compiling the complete pro-
gram in advance. More sophisticated JITs gather profiling
information during the program run and base the decision
whether to interpret or compile a method upon these data.
Hence, just-in-time compilers embrace the concept of lazy
processing by dynamically adapting to execution profiles in
order to perform as little work as possible.

2.3.3 Lazy XML Parsing
In our previous work [19, 23], we applied lazy processing to

XML parsing. Our lazy parser extracts the basic document
structure during a preprocessing phase. Actual parsing and
document tree construction are deferred until the nodes are
queried by the consumer. To him, our parser presents a
normal DOM interface.

Our implementation outperforms eager DOM parsers for
partial traversals with 0% to 80% document coverage. For
full coverage, the overhead imposed upon by the lazy pro-
cessing strategy remains acceptable.

All in all, the lazy processing strategy has been success-
fully applied to a variety of domains where dynamic access
or execution profiles can be profited by. Considering this,
it seems promising to adopt this strategy for partial XSLT
transformations as well.

3. MODEL
We introduce a model for XSLT using denotational se-

mantics, then we establish a map from standard XSLT to
the model. Then we examine its potential for lazy evalua-
tion.

Several authors give denotational semantics for XPath ex-
pressions [32, 10]. As path expressions are peripheral to this
paper, any of these semantics is sufficient. We refer to the

semantics of set and primitive path expressions e in pro-
cessor state SP by P[[ e ]] SP . Set expressions return node
sets, whereas primitive expressions return numbers, strings
or booleans.

3.1 Formal Processing Model
The model consists of three parts: structures, state and

statements. We address each of them in turn.
Let U be the Unicode alphabet [6] and I ⊂ U∗ be a set of

identifiers. Let V be the set of admissible variable values in
the XPath model used, with at least U∗ ⊂ V.

Processor structures consist of documents, transforma-
tions, modi and template rules. A document D is a node,
D = (n, A, C), where n ∈ I is an identifier, the name,
A : I → U∗ is a partial finite map of attributes and C
is a finite sequence of nodes, the children.

A transformation X = {M0, . . . , Mn} is a set of modi
accessible by their index. A mode M = {R0, . . . , Rn} is
an ordered set of template rules Ri. A template rule R =
(n, e, b) consists of a name n, a primitive path expression e,
the guard, and a statement b, the rule body.

The processor execution state SP = (SG, SL) consists of
invariant global state SG and variant local state SL.

Invariant global state forms a tuple SG = (X, D, VG),
where X is a transformation, D is the source document and
VG : B → V is partial finite map of global variable assign-
ments.

Variant local state consists of a tuple SL = (m, VL), where
m is the current node (a reference into the source document
D), and VL : B → V is a partial finite map of local variable
assignments, with def VG ∩ def VL = ∅.

We now introduce statements x and their denotational se-
mantics S[[ x ]] (SG, SL). As SG is constant, we write S[[ x ]] SL

and assume SG to be implicitly available.
Statements either have side effects, or they do not. Only

variable definitions have side effects. They come in two fla-
vors, set and primitive variables. A set variable definition
$n = b consists of an identifier n, the variable name, and a
set path expression, the initializer. Primitive variable defi-
nitions #n = b are similar, except that the initializer b is a
statement.

S[[ $n = b ]] SL =

{
n /∈ def VL ∪ def VG S[[ $n := b ]] SL

n ∈ def VL ∪ def VG ⊥

S[[ $n := b ]] SL = VL ∪ {(n,P[[ b ]] SP )}

S[[#n = b ]] SL =

{
n /∈ def VL ∪ def VG S[[#n := b ]] SL

n ∈ def VL ∪ def VG ⊥

S[[#n := b ]] SL = VL ∪ {(n,S[[ b ]] SL)}

Every definition adds exactly one variable to the set. It is
an error to overwrite already assigned variables (single static
assignment (SSA) within a given scope). Statements free of
side effects are either groupings, local flow control, global
flow control or output constructors. Groupings are either
blocks or renamings.



A block {x1; x2; . . . ; xn; } establishes sequential order on
its constituent statements xi.

S[[ {} ]] SL = ε

S[[ {x1; . . . ; xn; } ]] SL =



x1 ∈ = S[[ {x2; . . . ; xn; } ]] S′
L

where S′
L = (m, V ′

L)

V ′
L = S[[ x1 ]] SL

x1 /∈ = S[[ x1 ]] SL

S[[ {x2; . . . ; xn; } ]] SL

A variable renaming mapA b; consists of a partial function
A : (I \ def VG) → def VL, and a statement b.

S[[ mapA b ]] SL =S[[ b ]] (m, V ′
L)

where V ′
L = {n 7→ VL(A(n)) |n ∈ def A}

It changes the names of local variables for the purpose of
evaluating b. Because this has no effect on preceding or
following statements, it preserves the SSA property in the
statically surrounding block.

Local flow control comprises case differentiations or loops.
An if statement if(e) b1 else b2 consists of a primitive

path expression e, the condition and two statements b1,2,
the mutually exclusive bodies. If the condition applies, the
first body is executed, otherwise the second.

S[[ if(e) b1 else b2 ]] SL =

{
e′ S[[ b1 ]] SL

¬e′ S[[ b2 ]] SL

where e′ = P[[ e ]] SP

A for-each statement foreach(e) b consists of a set path ex-
pression e, the selection, and a statement b, the body. The
body is applied to every node in the set M ′ obtained by
evaluating the expression e. ≤ denotes document order.

S[[ foreach(e) b ]] SL =S[[ for b M ′ ]] SL

where M ′ = P[[ e ]] SP

S[[ for b ∅ ]] SL =ε

S[[ for b M ′ ]] SL =S[[ b ]] (m′, VL)

S[[ for b M ′\{m′} ]] SL

where m′ = min
≤

M ′

Global flow control consists of monomorphic and polymor-
phic rule invocations, which differ only in the selection of
the invoked rule.

A monomorphic rule invocation n :: i() consists of an iden-
tifier n, the template name, and a mode index i. The first
template named n in mode Mi is executed.

S[[ n :: i() ]] SL =S[[ X.Mi.Rj .b ]] SL

where j = min{j |X.Mi.Rj .n = n}

Polymorphic rule invocations i() consist only of a mode in-
dex i. They execute the first template in mode Mi whose
guard admits the current node.

S[[ i() ]] SL =S[[ X.Mi.Rj .b ]] SL

where j = min{j | P[[ X.Mi.Rj .e ]] SL 6= ∅}

There are two kinds of output constructors, node and at-
tribute constructors.

Node constructors newn(ba, bc) consist of an identifier n,
the node name, and two statements ba, bc, the initializers for

node attributes and node children. They create exactly one
node, whose attributes and children are determined by the
respective constructors dynamically contained in ba, bc.

S[[ newn(ba, bc) ]] SL =(n, A, C)

where A =
⋃

S[[ ba ]] SL

C = S[[ bc ]] SL

Attribute constructors new@n(b) consist of an identifier n,
the attribute name, and a statement b, the initializer. They
create an attribute map that projects the given name on the
evaluated initializer.

S[[ new @n(b) ]] SL = {n 7→ S[[ b ]] SL}

Primitive path expressions e are statements.

S[[ e ]] SL = P[[ e ]] SP

3.2 Mapping Standard to Model
Our document model consists of named, attributed nodes

with possibly empty child sequences. This corresponds ex-
actly to XML elements. XML additionally defines unnamed,
unattributed, childless text and comment nodes, as well
as named, unattributed, childless processing instructions.
Each of these variants can be represented in our model by
using reserved identifers as names and encoding the payload
as attributes. Thus, our document model captures XML.

Stylesheets, modi, rules and templates in our model cor-
respond directly to their homonyms in XSLT. The only dif-
ference is perceptual: XSLT treats modi as rule attributes,
whereas we consider them rule containers. Thus, all model
structures capture the corresponding standard.

State additionally encompasses variable assignments VL

and VG and the context node m. The variable assignments
and the context node correspond directly to their homonyms
in XSLT. XSLT additionally knows context positions and
sizes, which can be modelled with variables.

Note that XSLT operates on a context node list instead
of a context node set. This list is ordered either in doc-
ument order or in reverse document order, depending on
the direction of the preceding XPath step. Only two op-
erations exploit this order: determining the position() of
a node in an XPath expression, and iterating over results
in a <for-each> statement. We express this by composing
simpler model operations to form static replacements.

Given a position() implementation that implicitly as-
sumes document order and the standard count() operation,
we can implement the original position() behavior. Re-
place all position() calls preceded by an inverse document
order step with (count()− position()).

Now we model <for-each> statements whose final XPath
step has inverse document order. Replace the model b of the
original <for-each> body with n :: i($cur = ”.”), where i, n
are a previously unused mode index and identifier, respec-
tively. Then introduce a new rule R = (n, e, b) in Mi:

(n, ∗, {foreach ($cur/[position() = last()]) b;

$next = $cur/[position()! = last()];

map {cur 7→ next}n :: i();

})



In sum, our model structures capture the main XSLT struc-
tures1. Now, we consider XSLT statements.

Variable definitions in XSLT carry both a path expression
e and a statement body b. If e is present, it takes precedence
over b. We can construct this behavior from atomic opera-
tions: $n = if(e) e else b;.

XSLT knows another form of variable definition, the pa-
rameter definition. It may supply default values v for pa-
rameters not passed to a rule. For all such parameters n,
we introduce new variables $n′ = if($n) $n else $v; and re-
place all occurrences of $n inside the rule body with $n′.

The <call-template> statement and its <with-param>

children in XSLT differ from our monomorphic rule invo-
cations in allowing parameter assignments. These can be
modelled with surrounding variable maps.

The other rule invocation variant in XSLT is dynamic.
<apply-templates select="s" mode="i"/>, constructs the
node set matching s, then invokes matching rules for each
member of that set. This translates to foreach s i(A);.
<if> statements in XSLT are devoid of an else branch. We

simply fill the else branch in our model with an empty block
{}. XSLT additionally allows cascaded case differentiations
via <choose> and <when> statements. We represent them as
if cascades in the model.

The XSLT <value-of> statement is absent from our model,
because primitive expressions are statements.

For any known input type, the <copy-of> and <copy>

statements can be expanded to an if cascade, constructor
invocations and recursion. We cannot represent these state-
ments for the rare case of unknown input schemata.

Our model thus captures the main XSLT statements2.
Summing up, most of XSLT has direct correspondences in
the model or can be constructed from simpler parts.

3.3 Model Evaluation Strategies
In a confluent language, reducible expressions, or redexes,

can be reduced in any order without changing the normal
form. Normal forms consist only of irreducible expressions.

Eager evaluation always reduces the leftmost innermost
redex. Lazy evaluation always reduces the leftmost outer-
most redex. As lazy evaluation is guaranteed to terminate
if any sequence of reductions does, it is also called normal
order evaluation. This does not hold for eager evaluation.

Our model expresses all statements as pure functions free
of side effects, which have direct correspondences in the
lambda calculus. Lambda is confluent due to the Church-
Rosser-Property [4], therefore so is our model.

Everything that occurs on a left hand side S[[ x ]] SL of
a semantics definition, that is, every pair of statement and
state, is a redex. Only nodes occur solely on right hand
sides. Therefore, nodes and node trees are in normal form.

The XSLT standard proscribes eager evaluation: it pro-
ceeds in document order by applying leftmost reductions.
Due to confluence, our interpreter can employ lazy evalua-
tion without changing the result.

1XSLT admits several other top-level declarations, e.g.,
<xsl:key>, <xsl:output>, <xsl:preserve-space> and
<xsl:skip-space>. Because the global nature of keys in-
hibits lazy evaluation, we exclude them from consideration.
The other declarations are peripheral to our approach.
2Some additional XSLT statements, like the <xsl:message>
debugging facility, make the evaluation order externally vis-
ible. As they inhibit lazy evaluation, we exclude them from
consideration.

Do multiple alternative reductions exist? Yes, and they
offer high potential for optimization. E.g., statements in a
block without variables can be reduced in any order:

S[[ {x1; . . . ; xn; } ]] = S[[ x1 ]] SLS[[ {x2; . . . ; xn; } ]] SL = . . .

= S[[ x1 ]] SL . . . S[[ xn ]] SL

If variables are present, they must be evaluated first, but
the remaining statements can also be reduced in any order.
Similarly, in node constructors, the attribute initializer can
be reduced independently of the child initializer.

This allows us to provide random access to the transfor-
mation result via a standard result tree interface. The actual
tree is initially virtual. When a node is first accessed, we par-
tially reduce the creating constructor S[[ newn(ba, bc) ]] SL to
a local node (n, A,S[[ bc ]] SL). When node children are first
accessed, we partially reduce the child initializer S[[ bc ]] SL

to a sequence of constructor calls S[[ newni(bai, bci) ]] SLi. As
constructors create exactly one node, child names and order
are now known, and navigation is possible.

4. DESIGN
Here, we describe our implementation of lazy XML trans-

formations in more detail. We call our approach demand-
driven interpretation.

The idea behind demand-driven interpretation is based on
the observation that the consumer has to access the result
tree via interface operations anyway. This allows to mask a
virtual result tree behind that interface and to pretend that
the complete result tree exists in reality. Besides some inner
fragments of the final result tree, the virtual result tree may
contain bound instructions at its leaves. Bound instructions
are pairs of instruction and execution state, thereby carry-
ing all information necessary to restart the transformation
process for yet virtual fragments of the result tree.

Resuming and suspending the transformation process is
handled transparently by the interface methods. When the
consumer enters yet virtual regions of the result tree, the
respective portions have to be materialized on demand. For
this purpose, the transformation process is restarted at the
bound instruction and continued until the required portions
of the result tree have been produced. This can of course
only happen by executing output instructions, because flow
control instructions and variable definitions do not produce
any parts of the result tree by themselves. After creating
the required node, computation can be suspended again by
storing a bound instruction that represents the remaining
fragment.

All of this happens transparently, i.e., the consumer does
not notice that yet unvisited portions of the result tree pos-
sibly do not exist but are computed on demand instead. For
him, the complete result tree appears to exist right from the
start.

In our prototype implementation, we decided to adhere
strictly to the XPath data model. This means that the inter-
nal representation of our tree complies with the abstractions
and relationships defined by the XPath model. Our external
interface consists of a collection of atomic navigation primi-
tives and access methods, which constitute a qualified basis
for the construction of a sophisticated XPath engine on top
of it. Adaptation to other standard interfaces like DOM or
SAX for example can be accomplished by straightforward
wrappers.



More specifically, the transformation process is driven by
the navigation steps retrieving the first child, and the subse-
quent sibling, i.e., getFirstChild() and getNextSibling().

Each time one of these methods is called with respect to
a context node, they have to check whether the requested
node has already been materialized or whether the result
tree along this axis is merely virtual and computation is still
pending. In the latter case, the transformation process must
be reactivated and continued until the requested node has
been created by an output instruction. Then, computation
can be suspended again.

As lazy transformation has to proceed from the root node
of the result tree downward, accessing the parent of a given
a node is always safe, i.e., the getParent() method is guar-
anteed to access a real node and thus does not have to check
for bound instructions.

The same is true for the getPrevSibling() method be-
cause construction of child nodes proceeds form the first
child node to the following siblings. Needless to say, meth-
ods accessing local node properties are inherently safe be-
cause one of the navigation methods must have reached that
node before.

Our interpreter complies strictly with the W3C recom-
mendation for the XSLT 1.0 language. Except for result
tree fragments, which are currently unsupported as vari-
able types, our implementation fully supports all XSLT data
types.

5. MEASUREMENTS
How does the performance of our lazy XSLT interpreter

compare to traditional interpreters?
Because we avoid to construct parts of the result tree that

are never accessed, we expect our performance to be superior
for sparse coverage. However, as demand-driven suspension
and resumption of the transformation process requires ad-
ditional bookkeeping, we expect these overheads to worsen
performance for increasing coverage.

To validate these expectations, we have to measure exe-
cution times for a full range of coverage. In these data, we
are particularly looking for the following three figures.

The setup time is the execution time for 0% coverage. It
captures the interval until the root node of the transforma-
tion result becomes available for the first time.

The break-even point is characterized by the coverage where
the lazy and traditional approaches show equal performance.

The runtime difference for full coverage indicates the over-
head that is imposed upon by the lazy evaluation strategy.

5.1 Experimental Setup
We want to compare performance for lazy and traditional

interpretation over a full range of coverage. As human in-
teraction is unsuitable for exactly repeatable measurement
runs, we chose to generate test cases automatically. Fig. 4
illustrates our setup that automates access to the transfor-
mation result by employing a second transformation instead.
For this purpose, we use a partial identity copy that can be
parameterized by the fraction of the source tree that is to
form the result tree. The transformation is computationally
simple and traverses only the fragment of the source tree
that it actually copies. In this way access profiles over a full
range of coverage can be simulated.
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Figure 4: Measurement setup

5.2 Competitors
Benchmarking the lazy approach requires a set of com-

petitors that correspond closely to our implementation with
respect to all performance-critical properties except the eval-
uation strategy itself. For this purpose we are looking for
traditional XSLT interpreters written in Java. We confine
ourselves to freely available open-source implementations in
order to be able to verify their internal workings.

There are three widely known interpreters that meet our
criteria. XT [5], written by James Clark, was the first XSLT
interpreter available, and is known to be the fastest Java
implementation available [14]. Unfortunately, we could not
determine whether it supports chaining of transformations
without serializing intermediate results to files. As this ad-
ditional step would unfavorably distort the measurements
for XT, we excluded it from consideration as a candidate.
Michael Kay’s Saxon [13] is known for its strict coverage
of the language recommendation and also shows very good
performance. Xalan Java [8] is a part of the Apache Soft-
ware Foundation’s XML Project. It also sticks strictly to the
language specification, but offers rather poor performance.
Both interpreters support event-based chaining of transfor-
mations via the Java API for XML Processing (JAXP) [24]
interface. Therefore, our reference candidates are Saxon
Version 6.5.2 from Michael Kay and Xalan Java Version
2.2.D11, the latter being part of Sun’s J2SE 1.4.0 platform
distribution.

5.3 Test Cases
Our benchmark comprises three test cases. The first,

identity, performs an identity copy of a large source doc-
ument. It is computationally simple with respect to the size
of the result tree. We therefore expect a moderate growth in
runtime for increasing coverage. On the other hand, parsing
a 2.4 MB source document should account for a significant
share of the total runtime and for comparatively high setup
times.

The second test case, generated, contrasts these properties
by producing a large result tree from a comparatively small
source document. It unfolds the element names found in
the source document by constructing a binary tree thereof.
In this way the result tree is produced primarily by compu-



tation whereas parsing costs remain negligible. We there-
fore expect the setup time for lazy interpretation to be near
zero and the slope for increasing coverage to be significantly
steeper than in the first test case.

The last test case, infinite, produces a binary branching
result tree with infinite depth, thereby providing for a refer-
ence transformation that can be performed by lazy evalua-
tion only whereas traditional depth-first evaluation fails. It
merely serves as a proof of concept by demonstrating that
lazy evaluation is inherently more powerful due to the po-
tential to operate on infinite data structures.

5.4 Test Environment
All measurements were taken on a 2 GHz Pentium IV with

512 MB memory, running Java 2 SDK, Standard Edition,
Version 1.4.0 under Windows XP Home Edition.

5.5 Results
The runtime figures given here are mean values over five

subsequent runs as measured by the system clock. The Java
Virtual Machine’s just-in-time compilation was triggered by
an initial blind run prior to the actual measurements, the
coverage could be computed from the lazy processing chain
by recording the number of created nodes.

Fig. 5 shows the runtimes for the first test cases, identity.
The results confirm our expectations. In both cases, the
traditional interpreters show the same characteristics with
Saxon being substantially faster than Xalan Java. We there-
fore consider Saxon representative for traditional interpreta-
tion in the following. Lazy transformations were performed
in combination with both a traditional and a lazy parser
respectively. The best setup-times were measured for lazy
parsing, but even for traditional parsing, Saxon requires two
times the setup time of our lazy interpreter. This advantage
declines continuously for increasing coverage, with a break-
even point at around 95% coverage and a slight overhead for
full coverage.

Fig. 6 shows the runtimes from test case 2, generated. Due
to the fact that there are nearly no parsing costs in this case,
either parsing strategy yields the same results and setup
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time is negligible for lazy interpretation. For full coverage,
lazy interpretation is roughly on a par with Saxon and there
is neither a break-even point nor an overhead. Xalan Java
is again the slowest competitor.

Traditional processors enter an infinite loop for the third
test case, infinite. Although the subsequent transformation
only queries a depth-limited fraction of its input, the initial
transformation descends forever, spewing out copies of the
original tree in depth-first order. In contrast, our lazy pro-
cessor generates only those nodes actually requested by the
second transformation. It therefore terminates.

We do not give runtime figures for the last test case, as the
resulting graph is rather uninteresting. Infinite execution
time does not fit on the scale, and visiting a finite number
of nodes from an infinite tree would yield 0% coverage no
matter how many nodes are visited. However, for our lazy
processor, plotting execution time over the absolute number
of nodes visited instead of percentual coverage yields a figure
identical to fig. 6.

5.6 Summary
Lazy interpretation of XSLT is not a purely theoretical

concept. Our implementation profits extremely well from
low coverages. Especially when paired with a lazy parser,
our setup time is negligible. Execution time increases lin-
early with coverage. Break-even with the baseline estab-
lished by Saxon occurs near 95% coverage. The overhead at
full coverage appears to be small.

6. CONCLUSIONS
Traditional XSLT interpreters consume input documents

using random access, but produce output strictly in docu-
ment order. In cascaded transformations, this means that
the previous processing step must terminate completely be-
fore the next may begin. To that end, the intermediate
result must be stored in an unbounded buffer.

Rooted in a theoretical foundation of confluence and mul-
tiple reduction alternatives, our lazy XSLT breaks this mould.
We support random access on partial transformation results.
In pipeline fashion, this allows later processing steps to pro-
duce output before their predecessors have terminated.



Traditional transformation languages for line-oriented text
can do the same. However, they cannot skip data because
they both consume and produce sequentially. In contrast,
our approach propagates partial input coverage backwards
through the processing pipeline. That is, if later processing
steps disregard parts of an intermediate result, those parts
are never produced by the earlier processing steps.

Measurements confirm that this propagation of coverage
yields performance benefits. While our implementation is
competitive with traditional ones for full coverage, we realize
significant performance gains as coverage decreases.

Transitive queries on a transformation result, e.g., .//p,
remain expensive because the entire subtree must be tra-
versed, which destroys coverage propagation. In many cases,
the desired nodes are confined to distinct portions of the sub-
tree. However, lazy evaluation for one input document can-
not generate such assertions over all input documents. Prop-
agating and using such assertions to simplify queries lies in
the domain of static evaluation for known input types [16],
whose implementation is currently approaching completion.

For low-coverage scenarios, purely lazy pipelines seem promis-
ing. They would combine lazy transformation with lazy
parsing [19], and conceivably with lazy type checking. The
latter is a subject for future research.

As human access profiles are probably the most common
source of partial coverage, lazy viewers are an interesting
continuation of our approach. Current browsers can format
and display the available document fragment while down-
loading the remainder. This is essentially sequential pro-
cessing, which imposes full coverage. A lazy viewer could
propagate partial coverage to the pipeline on the server.

Beyond performance, lazy evaluation also extends the de-
sign space for XSLT programs. As in functional program-
ming, composed XSLT programs may create conceptually
infinite intermediate structures, provided that later process-
ing stages only access a finite part of them. Our implemen-
tation already supports this flexible paradigm today.

Currently, composed XSLT transformations are still con-
fined to content management systems, which handle rather
finite data. It remains to be seen wether the evolving usage
of XSLT will result in as important a role for infinite inter-
mediate structures in XSLT programming as they enjoy in
contemporary functional programming.
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