3,180 research outputs found

    Redesigning OP2 Compiler to Use HPX Runtime Asynchronous Techniques

    Full text link
    Maximizing parallelism level in applications can be achieved by minimizing overheads due to load imbalances and waiting time due to memory latencies. Compiler optimization is one of the most effective solutions to tackle this problem. The compiler is able to detect the data dependencies in an application and is able to analyze the specific sections of code for parallelization potential. However, all of these techniques provided with a compiler are usually applied at compile time, so they rely on static analysis, which is insufficient for achieving maximum parallelism and producing desired application scalability. One solution to address this challenge is the use of runtime methods. This strategy can be implemented by delaying certain amount of code analysis to be done at runtime. In this research, we improve the parallel application performance generated by the OP2 compiler by leveraging HPX, a C++ runtime system, to provide runtime optimizations. These optimizations include asynchronous tasking, loop interleaving, dynamic chunk sizing, and data prefetching. The results of the research were evaluated using an Airfoil application which showed a 40-50% improvement in parallel performance.Comment: 18th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2017

    Dynamic Control Flow in Large-Scale Machine Learning

    Full text link
    Many recent machine learning models rely on fine-grained dynamic control flow for training and inference. In particular, models based on recurrent neural networks and on reinforcement learning depend on recurrence relations, data-dependent conditional execution, and other features that call for dynamic control flow. These applications benefit from the ability to make rapid control-flow decisions across a set of computing devices in a distributed system. For performance, scalability, and expressiveness, a machine learning system must support dynamic control flow in distributed and heterogeneous environments. This paper presents a programming model for distributed machine learning that supports dynamic control flow. We describe the design of the programming model, and its implementation in TensorFlow, a distributed machine learning system. Our approach extends the use of dataflow graphs to represent machine learning models, offering several distinctive features. First, the branches of conditionals and bodies of loops can be partitioned across many machines to run on a set of heterogeneous devices, including CPUs, GPUs, and custom ASICs. Second, programs written in our model support automatic differentiation and distributed gradient computations, which are necessary for training machine learning models that use control flow. Third, our choice of non-strict semantics enables multiple loop iterations to execute in parallel across machines, and to overlap compute and I/O operations. We have done our work in the context of TensorFlow, and it has been used extensively in research and production. We evaluate it using several real-world applications, and demonstrate its performance and scalability.Comment: Appeared in EuroSys 2018. 14 pages, 16 figure

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    Program transformations using temporal logic side conditions

    Get PDF
    This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program

    Microgrid - The microthreaded many-core architecture

    Full text link
    Traditional processors use the von Neumann execution model, some other processors in the past have used the dataflow execution model. A combination of von Neuman model and dataflow model is also tried in the past and the resultant model is referred as hybrid dataflow execution model. We describe a hybrid dataflow model known as the microthreading. It provides constructs for creation, synchronization and communication between threads in an intermediate language. The microthreading model is an abstract programming and machine model for many-core architecture. A particular instance of this model is named as the microthreaded architecture or the Microgrid. This architecture implements all the concurrency constructs of the microthreading model in the hardware with the management of these constructs in the hardware.Comment: 30 pages, 16 figure
    • ā€¦
    corecore