895 research outputs found

    Efficient Image Retrieval via Decoupling Diffusion into Online and Offline Processing

    Full text link
    Diffusion is commonly used as a ranking or re-ranking method in retrieval tasks to achieve higher retrieval performance, and has attracted lots of attention in recent years. A downside to diffusion is that it performs slowly in comparison to the naive k-NN search, which causes a non-trivial online computational cost on large datasets. To overcome this weakness, we propose a novel diffusion technique in this paper. In our work, instead of applying diffusion to the query, we pre-compute the diffusion results of each element in the database, making the online search a simple linear combination on top of the k-NN search process. Our proposed method becomes 10~ times faster in terms of online search speed. Moreover, we propose to use late truncation instead of early truncation in previous works to achieve better retrieval performance.Comment: Accepted by AAAI 201

    Two-stage Discriminative Re-ranking for Large-scale Landmark Retrieval

    Full text link
    We propose an efficient pipeline for large-scale landmark image retrieval that addresses the diversity of the dataset through two-stage discriminative re-ranking. Our approach is based on embedding the images in a feature-space using a convolutional neural network trained with a cosine softmax loss. Due to the variance of the images, which include extreme viewpoint changes such as having to retrieve images of the exterior of a landmark from images of the interior, this is very challenging for approaches based exclusively on visual similarity. Our proposed re-ranking approach improves the results in two steps: in the sort-step, kk-nearest neighbor search with soft-voting to sort the retrieved results based on their label similarity to the query images, and in the insert-step, we add additional samples from the dataset that were not retrieved by image-similarity. This approach allows overcoming the low visual diversity in retrieved images. In-depth experimental results show that the proposed approach significantly outperforms existing approaches on the challenging Google Landmarks Datasets. Using our methods, we achieved 1st place in the Google Landmark Retrieval 2019 challenge and 3rd place in the Google Landmark Recognition 2019 challenge on Kaggle. Our code is publicly available here: \url{https://github.com/lyakaap/Landmark2019-1st-and-3rd-Place-Solution}Comment: 10 pages, 5 figure

    Compositional Servoing by Recombining Demonstrations

    Full text link
    Learning-based manipulation policies from image inputs often show weak task transfer capabilities. In contrast, visual servoing methods allow efficient task transfer in high-precision scenarios while requiring only a few demonstrations. In this work, we present a framework that formulates the visual servoing task as graph traversal. Our method not only extends the robustness of visual servoing, but also enables multitask capability based on a few task-specific demonstrations. We construct demonstration graphs by splitting existing demonstrations and recombining them. In order to traverse the demonstration graph in the inference case, we utilize a similarity function that helps select the best demonstration for a specific task. This enables us to compute the shortest path through the graph. Ultimately, we show that recombining demonstrations leads to higher task-respective success. We present extensive simulation and real-world experimental results that demonstrate the efficacy of our approach.Comment: http://compservo.cs.uni-freiburg.d

    Viewpoint Invariant Dense Matching for Visual Geolocalization

    Get PDF
    In this paper we propose a novel method for image matching based on dense local features and tailored for visual geolocalization. Dense local features matching is robust against changes in illumination and occlusions, but not against viewpoint shifts which are a fundamental aspect of geolocalization. Our method, called GeoWarp, directly embeds invariance to viewpoint shifts in the process of extracting dense features. This is achieved via a trainable module which learns from the data an invariance that is meaningful for the task of recognizing places. We also devise a new self-supervised loss and two new weakly supervised losses to train this module using only unlabeled data and weak labels. GeoWarp is implemented efficiently as a re-ranking method that can be easily embedded into pre-existing visual geolocalization pipelines. Experimental validation on standard geolocalization benchmarks demonstrates that GeoWarp boosts the accuracy of state-of-the-art retrieval architectures. The code and trained models are available at https://github.com/gmberton/geo_war

    Toward Data Efficient Online Sequential Learning

    Get PDF
    Can machines optimally take sequential decisions over time? Since decades, researchers have been seeking an answer to this question, with the ultimate goal of unlocking the potential of artificial general intelligence (AGI) for a better and sustainable society. Many are the sectors that would be boosted by machines being able to take efficient sequential decisions over time. Let think at real-world applications such as personalized systems in entertainment (content systems) but also in healthcare (personalized therapy), smart cities (traffic control, flooding prevention), robots (control and planning), etc.. However, letting machines taking proper decisions in real-life is a highly challenging task. This is caused by the uncertainty behind such decisions (uncertainty on the actual reward, on the context, on the environment, etc.). A viable solution is to learn by experience (i.e., by trial and error), letting the machines uncover the uncertainty while taking decisions, and refining its strategy accordingly. However, such refinement is usually highly data-hungry (data-inefficiency), requiring a large amount of application specified data, leading to very slow learning processes -- hence very slow convergence to optimal strategies (curse of dimensionality). Luckily, data is usually intrinsically structured. Identifying and exploiting such structure substantially improves the data-efficiency of sequential learning algorithms. This is the key hypothesis underpinning the research in this thesis, in which novel structural learning methodologies are proposed for decision-making strategies problems such as Recommendation System (RS), Multi-armed Bandit (MAB) and Reinforcement Learning (RL), with the ultimate goal of making the learning process more (data)-efficient. Specifically, we tackle such goal from the perspective of modelling the problem structure as graphs, embedding tools from graph signal processing into decision learning theory. As the first step, we study the application of graph-clustering techniques for RS, in which the curse of dimensionality is addressed by grouping data into clusters via graph-clustering techniques. Next, we exploit spectral graph structure for MAB problems, representing online learning problems. A key challenge is to learn sequentially the unknown bandit vector. Exploiting the smoothness-prior (i.e., bandit vector smooth on a given underpinning graph), we study theoretically the Laplacian-regularized estimator and provide both empirical evidences and theoretical analysis on the benefits of exploiting the graph structure in MABs. Then, we focus on the theoretical understanding of the Laplacian-regularized estimator. To this end, we derive a theoretical error upper bound on the estimator, which illustrates the impact of the alignment between the data and the graph structure as well as the graph spectrum on the estimation accuracy. We then move to RL problems, focusing on the specific problem of learning a proper representation of the state-action (representation learning problem). Motivated by the fact that a good representation should be informative of the value function, we seek a learning algorithm able to preserve continuity between the value function and the representation space. Showing that state values are intrinsically correlated to the state transition dynamic structure and the diffusion of the reward on the MDP graph, we build a new loss function based on the newly defined diffusion distance and we propose a novel method to learn state representation with such desirable property. In summary, in this thesis we address both theoretically and empirically important online sequential learning problems leveraging on the intrinsic data structure, showing the gain of the proposed solutions toward more data-efficient sequential learning strategies

    Deep Image Retrieval: A Survey

    Get PDF
    In recent years a vast amount of visual content has been generated and shared from various fields, such as social media platforms, medical images, and robotics. This abundance of content creation and sharing has introduced new challenges. In particular, searching databases for similar content, i.e.content based image retrieval (CBIR), is a long-established research area, and more efficient and accurate methods are needed for real time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the process of intelligent search. In this survey we organize and review recent CBIR works that are developed based on deep learning algorithms and techniques, including insights and techniques from recent papers. We identify and present the commonly-used benchmarks and evaluation methods used in the field. We collect common challenges and propose promising future directions. More specifically, we focus on image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure, deep features, feature enhancement methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, aiming to promote a global view of the field of instance-based CBIR.Comment: 20 pages, 11 figure

    Survey of Social Bias in Vision-Language Models

    Full text link
    In recent years, the rapid advancement of machine learning (ML) models, particularly transformer-based pre-trained models, has revolutionized Natural Language Processing (NLP) and Computer Vision (CV) fields. However, researchers have discovered that these models can inadvertently capture and reinforce social biases present in their training datasets, leading to potential social harms, such as uneven resource allocation and unfair representation of specific social groups. Addressing these biases and ensuring fairness in artificial intelligence (AI) systems has become a critical concern in the ML community. The recent introduction of pre-trained vision-and-language (VL) models in the emerging multimodal field demands attention to the potential social biases present in these models as well. Although VL models are susceptible to social bias, there is a limited understanding compared to the extensive discussions on bias in NLP and CV. This survey aims to provide researchers with a high-level insight into the similarities and differences of social bias studies in pre-trained models across NLP, CV, and VL. By examining these perspectives, the survey aims to offer valuable guidelines on how to approach and mitigate social bias in both unimodal and multimodal settings. The findings and recommendations presented here can benefit the ML community, fostering the development of fairer and non-biased AI models in various applications and research endeavors
    corecore