5 research outputs found

    Efficient Identification of Assembly Neurons within Massively Parallel Spike Trains

    Get PDF
    The chance of detecting assembly activity is expected to increase if the spiking activities of large numbers of neurons are recorded simultaneously. Although such massively parallel recordings are now becoming available, methods able to analyze such data for spike correlation are still rare, as a combinatorial explosion often makes it infeasible to extend methods developed for smaller data sets. By evaluating pattern complexity distributions the existence of correlated groups can be detected, but their member neurons cannot be identified. In this contribution, we present approaches to actually identify the individual neurons involved in assemblies. Our results may complement other methods and also provide a way to reduce data sets to the “relevant” neurons, thus allowing us to carry out a refined analysis of the detailed correlation structure due to reduced computation time

    Neuronal Assembly Detection and Cell Membership Specification by Principal Component Analysis

    Get PDF
    In 1949, Donald Hebb postulated that assemblies of synchronously activated neurons are the elementary units of information processing in the brain. Despite being one of the most influential theories in neuroscience, Hebb's cell assembly hypothesis only started to become testable in the past two decades due to technological advances. However, while the technology for the simultaneous recording of large neuronal populations undergoes fast development, there is still a paucity of analytical methods that can properly detect and track the activity of cell assemblies. Here we describe a principal component-based method that is able to (1) identify all cell assemblies present in the neuronal population investigated, (2) determine the number of neurons involved in ensemble activity, (3) specify the precise identity of the neurons pertaining to each cell assembly, and (4) unravel the time course of the individual activity of multiple assemblies. Application of the method to multielectrode recordings of awake and behaving rats revealed that assemblies detected in the cerebral cortex and hippocampus typically contain overlapping neurons. The results indicate that the PCA method presented here is able to properly detect, track and specify neuronal assemblies, irrespective of overlapping membership

    Test Statistics for the Identification of Assembly Neurons in Parallel Spike Trains

    Get PDF
    In recent years numerous improvements have been made in multiple-electrode recordings (i.e., parallel spike-train recordings) and spike sorting to the extent that nowadays it is possible to monitor the activity of up to hundreds of neurons simultaneously. Due to these improvements it is now potentially possible to identify assembly activity (roughly understood as significant synchronous spiking of a group of neurons) from these recordings, which—if it can be demonstrated reliably—would significantly improve our understanding of neural activity and neural coding. However, several methodological problems remain when trying to do so and, among them, a principal one is the combinatorial explosion that one faces when considering all potential neuronal assemblies, since in principle every subset of the recorded neurons constitutes a candidate set for an assembly. We present several statistical tests to identify assembly neurons (i.e., neurons that participate in a neuronal assembly) from parallel spike trains with the aim of reducing the set of neurons to a relevant subset of them and this way ease the task of identifying neuronal assemblies in further analyses. These tests are an improvement of those introduced in the work by Berger et al. (2010) based on additional features like spike weight or pairwise overlap and on alternative ways to identify spike coincidences (e.g., by avoiding time binning, which tends to lose information)

    Proceedings. 24. Workshop Computational Intelligence, Dortmund, 27. - 28. November 2014

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 24. Workshops "Computational Intelligence" des Fachausschusses 5.14 der VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA), der vom 27. - 28. November 2014 in Dortmund stattgefunden hat. Die Schwerpunkte sind Methoden, Anwendungen und Tools für Fuzzy-Systeme, Künstliche Neuronale Netze, Evolutionäre Algorithmen und Data-Mining-Verfahren sowie der Methodenvergleich anhand von industriellen Anwendungen und Benchmark-Problemen
    corecore