67 research outputs found

    Measurement, modeling and perception of painted surfaces : A Multi-scale analysis of the touch-up problem

    Get PDF
    Real-world surfaces typically have geometric features at a range of spatial scales. At the microscale, opaque surfaces are often characterized by bidirectional reflectance distribution functions (BRDF), which describes how a surface scatters incident light. At the mesoscale, surfaces often exhibit visible texture - stochastic or patterned arrangements of geometric features that provide visual information about surface properties such as roughness, smoothness, softness, etc. These textures also affect how light is scattered by the surface, but the effects are at a different spatial scale than those captured by the BRDF. Through this research, we investigate how microscale and mesoscale surface properties interact to contribute to overall surface appearance. This behavior is also the cause of the well-known touch-up problem in the paint industry, where two regions coated with exactly the same paint, look different in color, gloss and/or texture because of differences in application methods. At first, samples were created by applying latex paint to standard wallboard surfaces. Two application methods- spraying and rolling were used. The BRDF and texture properties of the samples were measured, which revealed differences at both the microscale and mesoscale. This data was then used as input for a physically-based image synthesis algorithm, to generate realistic images of the surfaces under different viewing conditions. In order to understand the factors that govern touch-up visibility, psychophysical tests were conducted using calibrated, digital photographs of the samples as stimuli. Images were presented in pairs and a two alternative forced choice design was used for the experiments. These judgments were then used as data for a Thurstonian scaling analysis to produce psychophysical scales of visibility, which helped determine the effect of paint formulation, application methods, and viewing and illumination conditions on the touch-up problem. The results can be used as base data towards development of a psychophysical model that relates physical differences in paint formulation and application methods to visual differences in surface appearance

    BRDF representation and acquisition

    Get PDF
    Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real-world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re-produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state-of-the-art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials

    BRDF Representation and Acquisition

    Get PDF
    Photorealistic rendering of real world environments is important in a range of different areas; including Visual Special effects, Interior/Exterior Modelling, Architectural Modelling, Cultural Heritage, Computer Games and Automotive Design. Currently, rendering systems are able to produce photorealistic simulations of the appearance of many real-world materials. In the real world, viewer perception of objects depends on the lighting and object/material/surface characteristics, the way a surface interacts with the light and on how the light is reflected, scattered, absorbed by the surface and the impact these characteristics have on material appearance. In order to re-produce this, it is necessary to understand how materials interact with light. Thus the representation and acquisition of material models has become such an active research area. This survey of the state-of-the-art of BRDF Representation and Acquisition presents an overview of BRDF (Bidirectional Reflectance Distribution Function) models used to represent surface/material reflection characteristics, and describes current acquisition methods for the capture and rendering of photorealistic materials

    Systems evaluation for computer graphics rendering of the total appearance of paintings

    Get PDF
    One of the challenges when imaging paintings is recording total appearance, that is, the object\u27s color, surface microstructure (gloss), and surface macrostructure (topography). In this thesis, various systems were used to achieve this task, and a psychophysical paired comparison experiment was conducted to evaluate their performance. A pair of strobe lights arranged at 60° from the normal on either side of the painting captured color information where the strobes produced either directional or diffuse illumination geometry. By adding a third strobe, arranging them 120° apart annularly, and cross polarizing, diffuse color and surface normal maps were measured. A fourth strobe was added and the four lights were rearranged 90° apart annularly, capturing similar data. This system was augmented by two scanning linear light sources arranged perpendicularly, facilitating the measurement of spatially varying BRDF and specular maps. A laser scanner was used to capture surface macrostructure and was combined with the diffuse color maps from the four-light configuration. Finally, a dome illumination system was used with software developed by Conservation Heritage Imaging to produce color maps. In all, eight different configurations were achieved and used to image three small paintings with a range of appearance attributes. Twenty-five naive observers compared computer-graphic renderings to the actual painting and judged similarity in terms of total appearance, gloss/shininess, texture, and color. Although the rankings varied with painting, two general trends emerged. First, the four-light configuration with or without the independent laser scanning produced images visually equivalent to conventional strobe illumination. Second, diffuse illumination was always ranked lowest

    Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica

    Get PDF
    The surface reflection of solar radiation comprises an important boundary condition for solar radiative transfer simulations. In polar regions above snow surfaces, the surface reflection is particularly anisotropic due to low Sun elevations and the highly anisotropic scattering phase function of the snow crystals. The characterization of this surface reflection anisotropy is essential for satellite remote sensing over both the Arctic and Antarctica. To quantify the angular snow reflection properties, the hemispherical-directional reflectance factor (HDRF) of snow surfaces was derived from airborne measurements in Antarctica during austral summer in 2013/14. For this purpose, a digital 180∘ fish-eye camera (green channel, 490–585 nm wavelength band) was used. The HDRF was measured for different surface roughness conditions, optical-equivalent snow grain sizes, and solar zenith angles. The airborne observations covered an area of around 1000 km × 1000 km in the vicinity of Kohnen Station (75∘0′ S, 0∘4′ E) at the outer part of the East Antarctic Plateau. The observations include regions with higher (coastal areas) and lower (inner Antarctica) precipitation amounts and frequencies. The digital camera provided upward, angular-dependent radiance measurements from the lower hemisphere. The comparison of the measured HDRF derived for smooth and rough snow surfaces (sastrugi) showed significant differences, which are superimposed on the diurnal cycle. By inverting a semi-empirical kernel-driven bidirectional reflectance distribution function (BRDF) model, the measured HDRF of snow surfaces was parameterized as a function of solar zenith angle, surface roughness, and optical-equivalent snow grain size. This allows a direct comparison of the HDRF measurements with the BRDF derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite product MCD43. For the analyzed cases, MODIS observations (545–565 nm wavelength band) generally underestimated the anisotropy of the surface reflection. The largest deviations were found for the volumetric model weight fvol (average underestimation by a factor of 10). These deviations are likely linked to short-term changes in snow properties

    Modelling the total appearance of gonio-apparent surfaces using stereo vision

    Get PDF
    Over recent decades, the textured coating provided by metallic surfaces has been an important factor in attracting customers of the automobile industry. This has meant that quantifying the appearance of coating products is essential for product development and quality control. The appearance of these coated products strongly depends on the viewing geometry, giving rise to a variety of properties of perceptual attributes such as texture, colour and gloss. Due to the visually-complex nature of such coatings, there remains an unsatisfied demand to develop techniques to measure the total appearance of metallic coatings. This study describes which aims to define the total appearance of metallic coatings and then objectively characterise it. Total appearance here refers to the combination of three properties of perceptual attributes of the surface: glint, coarseness and brightness. A number of metallic panels were visually scaled and a computational model capable for predicting three perceptual attributes was developed. A computational model was developed to relate the results from this psychophysical experiment to data obtained from a stereo image capture system. This is a new alternative technique aimed at solving one of the most challenging problems in computer vision: stereo matching. In the system, two images are captured by a same camera under two different lighting conditions to mimic stereoscopic vision. This not only addresses the problem of stereo matching (i.e. to find the corresponding pixels between two images) but also enhances the effect of perceptual attributes. After linearisation of camera response, spatial uniformity correction was performed to minimise the effect of uneven illumination. A characterisation method was then used to transfer the RGB to device-independent values. Two images captured under different lighting conditions were merged to obtain stereo data. In glint feature extraction, the pixels in the final image were segmented into two regions: bright spots and dark background. Next, statistical analyses were applied to extract features. Finally a model was created to predict the glint attribute of the metallic coating panels based on an image captured by the stereo capture system. In coarseness feature extraction, the merged image transformed to frequency domain using a discrete Fourier Transform. An octave bandpass filter was then applied to the Fourier Spectra image and data analysis was carried out to achieve the “image variance value” for each band. In similar to final step of glint, a model was created to predict the coarseness attribute

    Affordable spectral measurements of translucent materials

    Get PDF
    We present a spectral measurement approach for the bulk optical properties of translucent materials using only low-cost components. We focus on the translucent inks used in full-color 3D printing, and develop a technique with a high spectral resolution, which is important for accurate color reproduction. We enable this by developing a new acquisition technique for the three unknown material parameters, namely, the absorption and scattering coefficients, and its phase function anisotropy factor, that only requires three point measurements with a spectrometer. In essence, our technique is based on us finding a three-dimensional appearance map, computed using Monte Carlo rendering, that allows the conversion between the three observables and the material parameters. Our measurement setup works without laboratory equipment or expensive optical components. We validate our results on a 3D printed color checker with various ink combinations. Our work paves a path for more accurate appearance modeling and fabrication even for low-budget environments or affordable embedding into other devices

    A Comparative Study of the Bidirectional Reflectance Distribution Function of Several Surfaces as a Mid-wave Infrared Diffuse Reflectance Standard

    Get PDF
    The Bi-Directional Reflectance Distribution Function (BRDF) has a well defined diffuse measurement standard in the ultraviolet, visible, and near infrared (NIR), Spectralon(trade name). It is predictable, stable, repeatable, and has low surface variation because it is a bulk scatterer. In the mid-wave IR (MWIR) and long-wave IR (LWIR), there is not such a well-defined standard. There are well-defined directional hemispherical reflectance (DHR) standards, but the process of integrating BRDF measurements into DHR for the purpose of calibration is problematic, at best. Direct BRDF measurement standards are needed. This study use current calibration techniques to ensure valid measurements and then systematically investigates the BRDF and its variation for eight potential MWIR diffuse BRDF standards. Diffuseness, repeatability, and reflectance are all considered as required parameters necessary for a di use MWIR BRDF standard. This document shows comparatively that Spectralon is an excellent candidate for a diffuse MWIR BRDF standard

    Acquisition, Modeling, and Augmentation of Reflectance for Synthetic Optical Flow Reference Data

    Get PDF
    This thesis is concerned with the acquisition, modeling, and augmentation of material reflectance to simulate high-fidelity synthetic data for computer vision tasks. The topic is covered in three chapters: I commence with exploring the upper limits of reflectance acquisition. I analyze state-of-the-art BTF reflectance field renderings and show that they can be applied to optical flow performance analysis with closely matching performance to real-world images. Next, I present two methods for fitting efficient BRDF reflectance models to measured BTF data. Both methods combined retain all relevant reflectance information as well as the surface normal details on a pixel level. I further show that the resulting synthesized images are suited for optical flow performance analysis, with a virtually identical performance for all material types. Finally, I present a novel method for augmenting real-world datasets with physically plausible precipitation effects, including ground surface wetting, water droplets on the windshield, and water spray and mists. This is achieved by projecting the realworld image data onto a reconstructed virtual scene, manipulating the scene and the surface reflectance, and performing unbiased light transport simulation of the precipitation effects

    Appearance synthesis of fluorescent objects with mutual illumination effects

    Get PDF
    We propose an approach for the appearance synthesis of objects with matte surfaces made of arbitrary fluorescent materials, accounting for mutual illumination. We solve the problem of rendering realistic scene appearances of objects placed close to each other under different conditions of uniform illumination, viewing direction, and shape, relying on standard physically based rendering and knowledge of the three-dimensional shape and bispectral data of scene objects. The appearance synthesis model suggests that the overall appearance is decomposed into five components, each of which is expanded into a multiplication of spectral functions and shading terms. We show that only two shading terms are required, related to (a) diffuse reflection by direct illumination and (b) interreflection between two matte surfaces. The Mitsuba renderer is used to estimate the reflection components based on the underlying Monte Carlo simulation. The spectral computation of the fluorescent component is performed over a broad wavelength range, including ultraviolet and visible wavelengths. We also address a method for compensating for the difference between the simulated and real images. Experiments were performed to demonstrate the effectiveness of the proposed appearance synthesis approach. The accuracy of the proposed approach was experimentally confirmed using objects with different shapes and fluorescence in the presence of complex mutual illumination effects
    corecore