11,462 research outputs found

    Non-Malleable Multi-Party Computation

    Get PDF
    We study a tamper-tolerant implementation security notion for general purpose Multi-Party Computation (MPC) protocols, as an analogue of the leakage-tolerant notion in the MPC literature. An MPC protocol is tamper-tolerant, or more specifically, non-malleable (with respect to a certain type of tampering) if the processing of the protocol under corruption of parties (and tampering of some ideal resource assumed by the protocol) can be simulated by an ideal world adversary who, after the trusted party spit out the output, further decides how the output for honest parties should be tampered with. Intuitively, we relax the correctness of secure computation in a privacy-preserving way, decoupling the two entangled properties that define secure computation. The rationale behind this relaxation is that even the strongest notion of correctness in MPC allows corrupt parties to substitute wrong inputs to the trusted party and the output is incorrect anyway, maybe the importance of insisting on that the adversary does not further tamper with the incorrect output is overrated, at least for some applications. Various weak privacy notions against malicious adversary play an important role in the study of two-party computation, where full security is hard to achieve efficiently. We begin with the honest majority setting, where efficient constructions for general purpose MPC protocols with full security are well understood assuming secure point-to-point channels. We then focus on non-malleability with respect to tampered secure point-to-point channels. (1) We show achievability of non-malleable MPC against the bounded state tampering adversary in the joint tampering model through a naive compiler approach, exploiting a known construction of interactive non-malleable codes. The construction is currently not efficient and should be understood as showing feasibility in a rather strong tampering model. (2) We show efficient constructions of non-malleable MPC protocols against weaker variants of bounded state tampering adversary in the independent tampering model, where the protocol obtained have the same asymptotic communication complexity as best MPC protocols against honest-but-curious adversary. These are all information-theoretic results and are to be contrasted against impossibility of secure MPC when secure point-to-point channels are compromised. Though general non-malleable MPC in no honest majority setting is beyond the scope of this work, we discuss interesting applications of honest majority non-malleable MPC in the celebrated MPC-in-the-head paradigm. Other than an abstract result concerning non-malleability, we also derive, in standard model where there is no tampering, that strong (ideal/real world) privacy against malicious adversary can be achieved in a conceptually very simple way

    Computer-aided proofs for multiparty computation with active security

    Get PDF
    Secure multi-party computation (MPC) is a general cryptographic technique that allows distrusting parties to compute a function of their individual inputs, while only revealing the output of the function. It has found applications in areas such as auctioning, email filtering, and secure teleconference. Given its importance, it is crucial that the protocols are specified and implemented correctly. In the programming language community it has become good practice to use computer proof assistants to verify correctness proofs. In the field of cryptography, EasyCrypt is the state of the art proof assistant. It provides an embedded language for probabilistic programming, together with a specialized logic, embedded into an ambient general purpose higher-order logic. It allows us to conveniently express cryptographic properties. EasyCrypt has been used successfully on many applications, including public-key encryption, signatures, garbled circuits and differential privacy. Here we show for the first time that it can also be used to prove security of MPC against a malicious adversary. We formalize additive and replicated secret sharing schemes and apply them to Maurer's MPC protocol for secure addition and multiplication. Our method extends to general polynomial functions. We follow the insights from EasyCrypt that security proofs can be often be reduced to proofs about program equivalence, a topic that is well understood in the verification of programming languages. In particular, we show that in the passive case the non-interference-based definition is equivalent to a standard game-based security definition. For the active case we provide a new NI definition, which we call input independence

    A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM

    Get PDF
    Oblivious Transfer (OT) is a fundamental cryptographic protocol that finds a number of applications, in particular, as an essential building block for two-party and multi-party computation. We construct a round-optimal (2 rounds) universally composable (UC) protocol for oblivious transfer secure against active adaptive adversaries from any OW-CPA secure public-key encryption scheme with certain properties in the random oracle model (ROM). In terms of computation, our protocol only requires the generation of a public/secret-key pair, two encryption operations and one decryption operation, apart from a few calls to the random oracle. In~terms of communication, our protocol only requires the transfer of one public-key, two ciphertexts, and three binary strings of roughly the same size as the message. Next, we show how to instantiate our construction under the low noise LPN, McEliece, QC-MDPC, LWE, and CDH assumptions. Our instantiations based on the low noise LPN, McEliece, and QC-MDPC assumptions are the first UC-secure OT protocols based on coding assumptions to achieve: 1) adaptive security, 2) optimal round complexity, 3) low communication and computational complexities. Previous results in this setting only achieved static security and used costly cut-and-choose techniques.Our instantiation based on CDH achieves adaptive security at the small cost of communicating only two more group elements as compared to the gap-DH based Simplest OT protocol of Chou and Orlandi (Latincrypt 15), which only achieves static security in the ROM

    Exploring Privacy Preservation in Outsourced K-Nearest Neighbors with Multiple Data Owners

    Full text link
    The k-nearest neighbors (k-NN) algorithm is a popular and effective classification algorithm. Due to its large storage and computational requirements, it is suitable for cloud outsourcing. However, k-NN is often run on sensitive data such as medical records, user images, or personal information. It is important to protect the privacy of data in an outsourced k-NN system. Prior works have all assumed the data owners (who submit data to the outsourced k-NN system) are a single trusted party. However, we observe that in many practical scenarios, there may be multiple mutually distrusting data owners. In this work, we present the first framing and exploration of privacy preservation in an outsourced k-NN system with multiple data owners. We consider the various threat models introduced by this modification. We discover that under a particularly practical threat model that covers numerous scenarios, there exists a set of adaptive attacks that breach the data privacy of any exact k-NN system. The vulnerability is a result of the mathematical properties of k-NN and its output. Thus, we propose a privacy-preserving alternative system supporting kernel density estimation using a Gaussian kernel, a classification algorithm from the same family as k-NN. In many applications, this similar algorithm serves as a good substitute for k-NN. We additionally investigate solutions for other threat models, often through extensions on prior single data owner systems

    Finding Safety in Numbers with Secure Allegation Escrows

    Full text link
    For fear of retribution, the victim of a crime may be willing to report it only if other victims of the same perpetrator also step forward. Common examples include 1) identifying oneself as the victim of sexual harassment, especially by a person in a position of authority or 2) accusing an influential politician, an authoritarian government, or ones own employer of corruption. To handle such situations, legal literature has proposed the concept of an allegation escrow: a neutral third-party that collects allegations anonymously, matches them against each other, and de-anonymizes allegers only after de-anonymity thresholds (in terms of number of co-allegers), pre-specified by the allegers, are reached. An allegation escrow can be realized as a single trusted third party; however, this party must be trusted to keep the identity of the alleger and content of the allegation private. To address this problem, this paper introduces Secure Allegation Escrows (SAE, pronounced "say"). A SAE is a group of parties with independent interests and motives, acting jointly as an escrow for collecting allegations from individuals, matching the allegations, and de-anonymizing the allegations when designated thresholds are reached. By design, SAEs provide a very strong property: No less than a majority of parties constituting a SAE can de-anonymize or disclose the content of an allegation without a sufficient number of matching allegations (even in collusion with any number of other allegers). Once a sufficient number of matching allegations exist, the join escrow discloses the allegation with the allegers' identities. We describe how SAEs can be constructed using a novel authentication protocol and a novel allegation matching and bucketing algorithm, provide formal proofs of the security of our constructions, and evaluate a prototype implementation, demonstrating feasibility in practice.Comment: To appear in NDSS 2020. New version includes improvements to writing and proof. The protocol is unchange

    MPC for MPC: Secure Computation on a Massively Parallel Computing Architecture

    Get PDF
    Massively Parallel Computation (MPC) is a model of computation widely believed to best capture realistic parallel computing architectures such as large-scale MapReduce and Hadoop clusters. Motivated by the fact that many data analytics tasks performed on these platforms involve sensitive user data, we initiate the theoretical exploration of how to leverage MPC architectures to enable efficient, privacy-preserving computation over massive data. Clearly if a computation task does not lend itself to an efficient implementation on MPC even without security, then we cannot hope to compute it efficiently on MPC with security. We show, on the other hand, that any task that can be efficiently computed on MPC can also be securely computed with comparable efficiency. Specifically, we show the following results: - any MPC algorithm can be compiled to a communication-oblivious counterpart while asymptotically preserving its round and space complexity, where communication-obliviousness ensures that any network intermediary observing the communication patterns learn no information about the secret inputs; - assuming the existence of Fully Homomorphic Encryption with a suitable notion of compactness and other standard cryptographic assumptions, any MPC algorithm can be compiled to a secure counterpart that defends against an adversary who controls not only intermediate network routers but additionally up to 1/3 - ? fraction of machines (for an arbitrarily small constant ?) - moreover, this compilation preserves the round complexity tightly, and preserves the space complexity upto a multiplicative security parameter related blowup. As an initial exploration of this important direction, our work suggests new definitions and proposes novel protocols that blend algorithmic and cryptographic techniques
    • …
    corecore