16,085 research outputs found

    An XML Representation of DAE Systems Obtained from Modelica Models

    Get PDF
    This contribution presents an XML format for representation of flat Modelica models. The purpose is to offer a standardized model exchange format which is based on the DAE formalism and wich is neutral with respect to model usage. Many usages of models goes beyond what can be obtained from an execution interface offering evaluation of the model equations. Several such usages arises in the area of control engineering, where LFT transformations, derivation of robotic controllers, optimization, and real time code generation are some examples. The choice of XML is motivated by its defacto standard status and the availability of free and efficient tools. Also, the XSLT language enables specification of transformation of the XML model representation into other formats

    An XML representation of DAE systems obtained fromcontinuous-time Modelica models

    Get PDF
    This contribution outlines an XML format for representation of differential-algebraic equations (DAE) models obtained from continuous time Modelica models and possibly also from other equation-based modeling languages. The purpose is to offer a standardized model exchange format which is based on the DAE formalism and which is neutral with respect to model usage. Many usages of models go beyond what can be obtained from an execution interface offering evaluation of the model equations for simulation purposes. Several such usages arise in the area of control engineering, where dynamic optimization, Linear Fractional Transformations (LFTs), derivation of robotic controllers, model order reduction, and real time code generation are some examples. The choice of XML is motivated by its de facto standard status and the availability of free and efficient tools. Also, the XSLT language enables a convenient specification of the transformation of the XML model representation into other formats

    An XML representation of DAE systems obtained from continuous-time Modelica models

    Get PDF
    This contribution outlines an XML format for representation of differential-algebraic equations (DAE) models obtained from continuous time Modelica models and possibly also from other equation-based modeling languages. The purpose is to offer a standardized model exchange format which is based on the DAE formalism and which is neutral with respect to model usage. Many usages of models go beyond what can be obtained from an execution interface offering evaluation of the model equations for simulation purposes. Several such usages arise in the area of control engineering, where dynamic optimization, Linear Fractional Transformations (LFTs), derivation of robotic controllers, model order reduction, and real time code generation are some examples. The choice of XML is motivated by its de facto standard status and the availability of free and efficient tools. Also, the XSLT language enables a convenient specification of the transformation of the XML model representation into other formats

    An XML Representation of DAE Systems Obtained from Continuous-Time Modelica Models

    Get PDF
    This contribution outlines an XML format for representation of differential-algebraic equations (DAE) models obtained from continuous time Modelica models and possibly also from other equation-based modeling languages. The purpose is to offer a standardized model exchange format which is based on the DAE formalism and which is neutral with respect to model usage. Many usages of models go beyond what can be obtained from an execution interface offering evaluation of the model equations for simulation purposes. Several such usages arise in the area of control engineering, where dynamic optimization, Linear Fractional Transformations (LFTs), derivation of robotic controllers, model order reduction, and real time code generation are some examples. The choice of XML is motivated by its de facto standard status and the availability of free and efficient tools. Also, the XSLT language enables a convenient specification of the transformation of the XML model representation into other formats

    Approximative filtering of XML documents in a publish/subscribe system

    Get PDF
    Publish/subscribe systems filter published documents and inform their subscribers about documents matching their interests. Recent systems have focussed on documents or messages sent in XML format. Subscribers have to be familiar with the underlying XML format to create meaningful subscriptions. A service might support several providers with slightly differing formats, e.g., several publishers of books. This makes the definition of a successful subscription almost impossible. This paper proposes the use of an approximative language for subscriptions. We introduce the design of our ApproXFilter algorithm for approximative filtering in a publish/subscribe system. We present the results of our performance analysis of a prototypical implementation

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Data Model and Query Constructs for Versatile Web Query Languages

    Get PDF
    As the Semantic Web is gaining momentum, the need for truly versatile query languages becomes increasingly apparent. A Web query language is called versatile if it can access in the same query program data in different formats (e.g. XML and RDF). Most query languages are not versatile: they have not been specifically designed to cope with both worlds, providing a uniform language and common constructs to query and transform data in various formats. Moreover, most of them do not provide a flexible data model that is powerful enough to naturally convey both Semantic Web data formats (especially RDF and Topic Maps) and XML. This article highlights challenges related to the data model and language constructs for querying both standard Web and Semantic Web data with an emphasis on facilitating sophisticated reasoning. It is shown that Xcerpt’s data model and querying constructs are particularly well-suited for the Semantic Web, but that some adjustments of the Xcerpt syntax allow for even more effective and natural querying of RDF and Topic Maps

    The DeepThought Core Architecture Framework

    Get PDF
    The research performed in the DeepThought project aims at demonstrating the potential of deep linguistic processing if combined with shallow methods for robustness. Classical information retrieval is extended by high precision concept indexing and relation detection. On the basis of this approach, the feasibility of three ambitious applications will be demonstrated, namely: precise information extraction for business intelligence; email response management for customer relationship management; creativity support for document production and collective brainstorming. Common to these applications, and the basis for their development is the XML-based, RMRS-enabled core architecture framework that will be described in detail in this paper. The framework is not limited to the applications envisaged in the DeepThought project, but can also be employed e.g. to generate and make use of XML standoff annotation of documents and linguistic corpora, and in general for a wide range of NLP-based applications and research purposes

    ApproXFILTER - an approximative XML filter

    Get PDF
    Publish/subscribe systems filter published documents and inform their subscribers about documents matching their interests. Recent systems have focussed on documents or messages sent in XML format. Subscribers have to be familiar with the underlying XML format to create meaningful subscriptions. A service might support several providers with slightly differing formats, e.g., several publishers of books. This makes the definition of a successful subscription almost impossible. We propose the use of an approximative language for subscriptions.We introduce the design our ApproXFILTER algorithm for approximative filtering in a pub/sub system. We present the results of our analysis of a prototypical implementation
    corecore