
An XML representation of DAE systems obtained from
continuous-time Modelica models

Roberto Parrotto1 Johan Åkesson2,4 Francesco Casella3
1Master’s student - Politecnico di Milano, Italy

roberto.parrotto@gmail.com
2Department of Automatic Control, Lund University and Modelon AB, Sweden

johan.akesson@control.lth.se
3Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

casella@elet.polimi.it
4Modelon AB, Lund, Sweden

Abstract
This contribution outlines an XML format for representa-
tion of differential-algebraic equations (DAE) models ob-
tained from continuous time Modelica models and possibly
also from other equation-based modeling languages. The
purpose is to offer a standardized model exchange format
which is based on the DAE formalism and which is neutral
with respect to model usage. Many usages of models go be-
yond what can be obtained from an execution interface of-
fering evaluation of the model equations for simulation pur-
poses. Several such usages arise in the area of control en-
gineering, where dynamic optimization, Linear Fractional
Transformations (LFTs), derivation of robotic controllers,
model order reduction, and real time code generation are
some examples. The choice of XML is motivated by its de
facto standard status and the availability of free and effi-
cient tools. Also, the XSLT language enables a convenient
specification of the transformation of the XML model rep-
resentation into other formats.

Keywords DAE representation, XML design

1. Introduction
Equation-based, object-oriented modeling languages have
become increasingly popular in the last 15 years as a de-
sign tool in many areas of systems engineering. These lan-
guages allow to describe physical systems described by dif-
ferential algebraic equations (DAE) in a convenient way,
promoting re-use of modeling knowledge and a truly mod-
ular approach. The corresponding DAEs can be used for
different purposes: simulation, analysis, model reduction,
optimization, model transformation, control system synthe-

3rd International Workshop on Equation-Based Object-Oriented
Languages and Tools. October, 2010, Oslo, Norway.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/047/

EOOLT 2010 website:
http://www.eoolt.org/2010/

sis, real-time applications, and so forth. Each one of these
activities involves a specific handling of the correspond-
ing differential algebraic equations, by both numerical and
symbolic algorithms. Moreover, specialized software tools
which implement these algorithms may already exist, and
only require the equations of the model to be input in a
suitable way.

The goal of this paper is to define an XML-based rep-
resentation of DAE systems obtained from object-oriented
models written in Modelica [16], which can then be easily
transformed into the input of such tools, e.g. by means of
XSLT transformations.

The first requirement of this system representation is
to be as close as possible to a set of scalar mathematical
equations. Hierarchical aggregation, inheritance, replace-
able models, and all kinds of complex data structures are a
convenient means for end-users to build and manage mod-
els of complex, heterogeneous physical systems, but they
are inessential for the mathematical description of its be-
havior. They will therefore be eliminated by the Model-
ica compiler in the flattening process before the genera-
tion of the sought-after XML representation. However, the
semantics of many Modelica models is in part defined by
user-defined functions described by algorithms working on
complex data structures. It is therefore necessary to de-
scribe Modelica functions conveniently in this context.

The second requirement of the representation is to be
as general as possible with respect to the possible usage of
the equations, which should not be limited to simulation. A
few representative examples include:

• off-line batch simulation;
• on-line real-time simulation;
• dynamic optimization [3];
• transformation of dynamic model with nonlinearities

and/or uncertain parameters into Linear Fractional Rep-
resentation formalism [7];

• linearization of models and computation of transfer
functions for control design purposes;

91

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55213349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• model order reduction, i.e., obtaining models with a
smaller number of equations and variables, which ap-
proximate the input-output behavior around a set of ref-
erence trajectories [8];

• automatic derivation of direct/inverse kinematics and
advanced computed torque and inverse dynamics con-
trollers in robotic systems [6].

From this point of view, the proposed XML representa-
tion could also be viewed as a standardized interface be-
tween multiple Modelica front-end compilers and multiple
symbolic/numerical back-ends, each specialized for a spe-
cific purpose.

In addition, the XML representation could also be very
useful for treating other information concerning the model,
for example using an XML schema (DTD or XSD) for rep-
resenting the simulation results, or the parameter settings.
In those cases, using a well accepted standard will result in
great benefits in terms of interoperability for a very wide
spectrum of applications.

Previous efforts have been registered to define standard
XML-based representations of Modelica models. One idea,
explored in [14, 11], is to encode the original Modelica
model using an XML-based representation of the abstract
syntax tree, and then process the model through, e.g., XSLT
transformations. Another idea is to use an XML database
for scalable and database-friendly parameterization of li-
braries of Modelica models [17, 15].

The goal of this paper is instead to use XML to represent
the system equations at the lowest possible level for further
processing, leaving the task of handling aggregated models,
reusable libraries etc. to the object-oriented tool that will
eventually generate the XML representation of the system.
In particular, this paper extends and complements ideas and
concepts first presented in [5]. A similar approach has been
followed earlier by [4], but has apparently remained limited
to the area of chemical engineering applications.

The paper is structured as follows: in Section 2, a defini-
tion of the XML schema describing a DAE system is given.
Section 3 briefly describes a test case in which a model is
exported from JModelica.org platform and imported in the
tool ACADO in order to solve an optimization problem.
Section 4 ends the paper with concluding remarks and fu-
ture perspectives.

2. XML schema representation of DAE
systems

The goal of the present work is to define a representation
of a DAE system which can be easily transformed into the
input format of different purpose tools and then reused.
A representation as close as possible to the mathematical
formulation of equations is a solution general enough to
be imported from the most of the tools and neutral with
respect of the possible usage. For this reason concepts
such as aggregation and inheritance proper of equation
based object-oriented models have to be avoided in the
representation.

A DAE system consists of a system of differential al-
gebraic equations and it can be expressed in vector form
as:

F (ẋ, x, u, w, t, p) = 0 (1)

where ẋ are the derivatives of the states, x are the states, u
are the inputs, w are the algebraic variables, t is the time
and p is the set of the parameters.

The schema does not enforce the represented DAEs to
have index-1, but this would be the preferable case, so
that the x variables can have the proper meaning of states,
i.e., it is possible to arbitrarily select their initial values.
Preferring the representation of models having index 1 is
acceptable considering that most of the applications for
DAE models require an index-1 DAE as input. In addition,
in case the equations of the original model have higher
index, usually an index-1 DAE can be obtained by index
reduction, so the representation of index-1 DAEs doesn’t
drastically restrict the possible applications range.

The formulation provided in equation (1) is very gen-
eral and useful for viewing the problem as one could see it
written on the paper, but it is not directly usable for inter-
tools exchange of models. It is then necessary to provide a
standardized mathematical representation of the DAE sys-
tems that relies on a standard technology: this justifies the
choice of the XML standard as a base for our representa-
tion. Hence, a formulation that better suits with our goal is
proposed.

Given the sets of the involved variables

• ẋ ∈ Rn: vector of time-varying state derivative vari-
ables

• x ∈ Rn: vector of time-varying state variables
• u ∈ Rm: vector of time-varying input variables
• w ∈ Rr: vector of time-varying algebraic variables
• p ∈ Rk: vector of bound time invariant variables (pa-

rameters and constants)
• q ∈ Rl: vector of unknown time invariant variables

(unknown parameters)
• t ∈ R: time variable

it is possible to define the three following different subsets
for the equations composing the system. The system of
dynamic equations is given by

F (x, ẋ, u, w, p, q, t) = 0 (2)

where F ∈ Rn+r. These equations determine the values
of all algebraic variables w and state variable derivatives ẋ,
given the states x, the inputs u, the parameters p and q, and
the time t. The parameter binding equations are given by

p = G(p) (3)

where G ∈ Rk. The system of parameter binding equations
is assumed to be acyclic, so that it is possible to compute all
the parameters by suitably re-ordering these equation into a
sequence of assignments, e.g. via topological sorting. The

92

DAE initialization equations are given by

H(x, ẋ, u, w, p, q) = 0. (4)

Ideally, for index-1 systems, H ∈ Rn+l, i.e., H provides
n+ q additional equations, yielding a well posed initializa-
tion problem with 2n + r + l unknowns and 2n + r + l
equations. The initialization system is thus obtained by ag-
gregating the dynamic equations (2) and the initialization
equations (4) and determines the values of the states, state
derivatives, algebraic variables and free parameters at some
initial time t0.

2.1 General design issues
The main goal is to have a schema:

• neutral with respect of the model usage;
• easy to use, read and maintain;
• easy to extend.

To achieve the first goal a representation as close as pos-
sible to the mathematical one of the DAE is required, as
discussed in the previous section. To achieve the other re-
quired properties, a design based on modularity yields a
result easier to read and extend. The proposed design pro-
vides one different vocabulary (namespace) for every sec-
tion of the schema. In this way, if a new section will be
required, for example to represent information useful for a
special purpose, and a new module can be added without
modify the base schema.

The Functional Mock-up Interface for Model Exchange
1.0 (FMI 1.0)[12] has been chosen as a starting point for
the schema, with the main advantage of basing the work
on an already accepted standard for model exchange. The
FMI 1.0 specification already provides a schema containing
a representation of the scalar variables involved in the sys-
tem. This schema has been extended according to our goals
by adding a qualified name representation for the variable
identifiers, and by appending a specification of the DAE
system.

The new modules composing the schema with the cor-
responding namespace prefixes are:

• expressions module (exp)
• equations module (equ)
• functions module (fun)
• algorithms module (fun)

All these modules, whose detailed information are given in
the next paragraphs, are imported in the FMI schema, to
construct the composite schema.

2.2 FMI schema and variable definitions
The FMI standard is a result of the ITEA2 project MOD-
ELISAR. The intention is that dynamic system models of
different software systems can be used together for sim-
ulation. The FMI defines an interface to be implemented
by an executable called FMU (Functional Mock-up Unit).
The FMI functions are called by a simulator to create one or
more instances of the FMU, called models, and to run these

models, typically together with other models. An FMU
may either be self-integrating (co-simulation) or require the
simulator to perform numerical integration. Alternatively,
tools may be coupled via co-simulation with network com-
munication. The intention is that a modeling environment
can generate C-code of a dynamic system model that can
be utilized by other modeling and simulation environments.
The model is then distributed in packages containing the
C-code of the dynamic system, an XML-file containing the
definition of all variables in the model, and other model
information. For the present work, the FMI XML schema
for description of model variables has been reused and ex-
tended.

The FMI XML schema already provides elements and
attributes to represent general information about the model,
such as name, author, date, generating tool, vendor annota-
tions, but the core is the representation of the scalar vari-
ables defined in the model. It is important to notice that the
FMI project is developed for the exchange of models for
simulation purpose only, and not all the information present
in the schema should be used in our case. Thus it is neces-
sary to point out how to correctly use it for the purposes
of this work. Firstly, the FMI schema allows the definition
of Real, Integer, Boolean, String and Enumeration scalar
variables. In our case, the equations (2) - (4) are all real-
valued, and all time varying variables are real variables.
The scalar variables definition provided by the FMI XML
schema also includes attributes describing the causality (in-
put, output, internal) and variability (constant, parameter,
discrete, continuous) of the variable. Since our represen-
tation is concerned with continuously time varying DAEs
only, then the definition of discrete variables should not be
allowed. A full documentation of the FMI XML schema is
available in [12].

The proposed representation should be neutral with re-
spect to the application context. This also means that vari-
able identifiers should be represented in a general way. It
may happen that the tool exporting the model accepts iden-
tifiers with special characters that the importing tool does
not allow. Furthermore, in the definition of user-defined
functions (see a detailed discussion in Section 2.4) more
complex types than scalar variables, such as array and
records, are allowed. The index of an array can be a gen-
eral expression, and representing the array’s element by a
string, e.g. "x[3*5]", would require to write an ad-hoc
parsing module in the importing tools. In the same man-
ner the exporting tool can support a notation to describe
array subscripts or record fields that is different from the
one used by the importing tool.

For all these reasons a structured representation for
qualified names, that includes only the necessary infor-
mation and avoid language dependent notations is intro-
duced. A complex type QualifiedName is then de-
fined and it will be used as a standard representation for
names in all the schema. The QualifiedName com-
plex type expects that the identifier is broken in a list of
parts, represented by QualifiedNamePart elements.
QualifiedNamePart holds a string attribute "name"

93

and an optional element ArraySubscripts, to repre-
sent the indices of the array element. ArraySubscripts
elements provide a list of elements, one for each index of
the array (e.g. a matrix has an ArraySubscripts ele-
ment with two children). Each index is generally an expres-
sion, represented by IndexExpression, but usually
languages support definition of array variables with unde-
fined dimensions, represented by an UndefinedIndex
element. Conventionally, the first element of an array has
index 1. In the proposed representation, definition of array
variables is allowed only in user-defined functions.

Hence, the original representation of scalar variables
provided by the FMI XML schema is extended in order to
support the definition of variable names as qualified names,
that will be the standard representation of identifiers in the
whole schema.

Figure 1. Scalar variable definition extended from the
original FMI definition

2.3 Expressions
All the expressions are collected in the exp namespace.
The elements in the exp namespace represent all the math-
ematical scalar expressions of the system:

• basic algebraic operators like Add, Mul, Sub, Div and
the factor function Pow.

• Basic logical comparison operators like >, >=, <, <=,
==.

• Basic logical operators like And, Or and Not.
• Built-in trigonometric functions (Sin, Cos, Tan, Asin,
Acos, Atan, Atan2), hyperbolic functions (Sinh,
Cosh, Tanh), the exponential function (Exp), the log-
arithmic functions (Log, Log10), the square root func-
tion (Sqrt), the absolute value function Abs, the sign
function Sign, the Min and the Max function.

• The derivative operator Der.
• Function calls referring to user-defined functions.
• Variable identifiers, including the time variable.
• Real, integer, boolean, string literals.

In addition to the previous basic expressions, some
special non-scalar expressions are included in the exp
namespace: Range, Array, UndefinedDimension
and RecordConstructor.

The Range element defines an interval of values and it
can be used only in for loop definitions, inside algorithms
of user-defined functions or as an argument of array con-
structors.

Array variable definitions and uses are allowed only
within user-defined functions. It is possible to use the el-
ement UndefinedDimension in array variable defi-
nitions when the dimension is not known a priori. The
Array element can be used as a constructor of an array of
scalar variables in the left hand side of user-defined func-
tion call equations. Multidimensional arrays can be built by
iteratively applying the one-dimensional array constructor.

As for arrays, record variables can be defined and used
only in user-defined functions. The RecordConstructor
element can be used in the left hand side of user-defined
function calls, where it should be seen as a collection of
scalar elements. Both record variables used in functions
and record constructors used in the left hand side of equa-
tions should be compatible with a given definition of record
type. The RecordList element, that is referenced in
the main schema, should contains the definition of all the
records used in the XML document, each one stored in
a different Record element. All the elements and com-
plex types relevant to records definition are stored in the
fun namespace, since they are mostly related to the use of
functions.

The detailed explanation of how to use Array and
RecordConstructor in the left hand side of a user-
defined function call equations is given in Section 2.4.

In the design of the schema, whenever a valid element is
supposed to be a general expression, a wildcard element in
the exp namespace is used, in order to simplify the repre-
sentation extensibility. As a result, when a new expression
is needed, it is sufficient to create a new element in the exp
vocabulary and it will be automatically available in all the
rest of the schema.

2.4 Functions
A function is a portion of code which performs a procedural
computation and is relatively independent of the remaining
model. A function is defined by:

• input variables, possibly with default values
• output variables
• protected variables (i.e. variables visible only within the

context of the function)
• an algorithm that computes outputs from the given in-

puts, possibly using protected variables.

The algorithm can operate on structured variables such as
arrays and records, e.g. by means of for loops. Differently
from the variables used in equations, which can always be
expressed as scalars, it is then required that input, output
and protected variables of a function can also be arrays or

94

records, so that the algorithm can keep its original struc-
ture.

Whereas in the formulation of the equations (2) - (4)
only scalar variables are involved, a detailed discussion on
the use of calls for any possible cases in which the function
involves non-scalar inputs or outputs is then required.

Function calls with non-scalar inputs
If an input of a function is not a scalar, it will be represented
by keeping its structure, possibly using array or record
constructors, but populating it with its scalar elements. In
this way, it is possible to keep track of the structure of
the arguments, which can then be mapped to efficient data
structures in the target code.

For example, given the following definition of a record
R and a function F1:

Record R
Real X;
Real Y[3];

End R;

Function F1
Input R X;
Output Real Y;

End F1;

A function call to F1 may be used as an expression in this
case, since the function has only one scalar output.

F(R(x,{y[1], y[2], y[3]})) - 3 = 0

where x, y[1], y[2], y[3] are real scalar variables, R(args)
denotes a constructor for the R record type, and {var1,
var2,...,varN} represents an array constructor.

Function calls with a single non-scalar output
Auxiliary variables can be introduced to handle this case,
making it possible to always have scalar equations and at
the same time avoiding unnecessary duplicated function
calls.

Considering the following definition of the function F2:

Function F2
Input Real X;
Output Real Y[3];

End F2;

The equation x + F (y) ∗ F (z) = 0 (a scalar product) can
be mapped to:

({aux1, aux2, aux3}) = F(y);
({aux4, aux5, aux6}) = F(z);
x + aux1*aux4 + aux2*aux5 + aux3*aux6 = 0

where y and z are real scalar variables.
Similarly the equation y+F (x)−F (−3∗x) = 0, where

y is an array of three real elements is mapped to:

({aux1, aux2, aux3}) = F(x);
({aux4, aux5, aux6}) = F(-3*x);
y[1] + aux1 - aux4 = 0;
y[2] + aux2 - aux5 = 0;
y[3] + aux3 - aux6 = 0;

This strategy also applies to arguments using records, or
combinations of arrays and records.

Auxiliary variables are here treated as all the other scalar
variables, including their declaration.

Function calls with multiple outputs
In this case, the function calls can be invoked in the follow-
ing form:

(out1, out2, ..., outN) = f(in1, in2, ...inM) (5)

where out1, out2, ..., outN can be scalar vari-
able identifiers, array or record constructors populated with
scalar variables identifiers, empty arguments, or any possi-
ble combination of these elements. So, it is not possible to
write any expression on the left-hand side, nor to put the
equation in residual form. Rather, this construct is used as
a mechanism dedicated to handle function calls with mul-
tiple outputs while preserving the scalarized structure of
system of equations.

Function with multiple outputs, cannot be used in ex-
pressions.

Given the following definition of a record type R1 and a
function F3:

Record R1
Real X;
Real Y[2,2];

End R1;

Function F3
input Real x;
output Real y;
output R1 r;

End F3;

an example of call to the function F3 is

(var1,R1(var2,{{var3,var4},{var5,var6}}))
= F1(x)

where x, var1, var2, var3, var4, var5, var6, var7
are real scalar variables.

The proposed representation of function calls is prefer-
able to a full scalarization of the arguments,which does not
preserve any structure, and thus would require multiple im-
plementations for the same function, e.g. if it is called in
many places with different array sizes of the inputs. This
solution would lead to less efficient implementations in
most target languages.

Concerning the XML schema implementation, all the el-
ements and complex types regarding user-defined function
are collected in the fun namespace.

The main element of the fun namespace is Function,
which contains the whole definition of the function, in-
cluding the name, three lists of variables (respectively
outputs, inputs and protected variables), the algorithm
and, optionally, the definition of inverse and derivative
functions. OutputVariable, InputVariable and
ProtectedVariable elements are defined by means
of the FunctionVariable complex type.

It is allowed, but not mandatory, to embed the defi-
nition of possible inverse and derivative functions in the
InverseFunction and DerivativeFunction el-
ements of a function definition. The information stored in

95

these two elements could be used for optimization purposes
by the importing tool.

The elements and complex types used in the descrip-
tion of algorithms are defined in a different schema mod-
ule than the Function element, but also under the fun
namespace. The allowed statements are:

• assignments
• conditional if statements with elseif and else

branches
• while and for loops
• function calls of user-defined functions

2.5 Equations
Complex types and elements related to the equations of the
DAE system are collected under the equ namespace.

Once the expressions have been defined, mapping the
mathematical formulation of the binding equations (3) to
the XML schema is straightforward. In the equ names-
pace a complex type BindingEquation is defined. It
provides an element Parameter of QualifiedName
type that represents the left hand side of the equation, and a
BindingExp element that represents the right hand side
of the equation. An element BindingEquations rep-
resents the set of all the binding equations and it accepts
a list, possibly empty, of BindingEquation elements
defined as BindingEquation complex type.

Equations in residual form are represented by the com-
plex type AbstractEquation. This type of equations
provide a subtraction node to represent an equation in
exp1− exp2 = 0 form.

The initial equations set (4) is represented by the ele-
ment InitialEquation, that collects a list, possibly
empty, of Equation elements defined as Abstract-
Equation complex type.

The set of dynamic equations (2) is mapped to the
DynamicEquation element. According to the con-
siderations expressed in Section 2.4, equations resulting
from a call to a function with multiple outputs are not
suitable for representation in residual form. Thus a com-
plex type for mapping an equation of the form (5) is
given by the complex type FunctionCallEquation.
The left hand side of the equation (5) is represented by
a set of OutputArgument elements, defined by the
FunctionCallLeft complex type, that can have as
children scalar variable identifiers, array or record con-
structors populated with scalar variables identifiers, empty
arguments, or any combination thereof. The right hand side
is a FunctionCall element. It is important to notice that
this element represents a set of scalar equations, one for
each scalar variable in the left hand side (except for empty
arguments).

Hence, the DynamicEquations elements contain a
list of Equation elements of AbstractEquation
type, which represent equations in residual form, and
FunctionCallEquation elements, which represent
equations on the form (5).

The BindingEquation, DynamicEquations and
InitialEquations elements are directly referenced
and used in the main schema.

2.6 Overall result and extensibility
Having defined the new modules, they are imported in the
FMI XML schema. The elements required to be visible in
the main schema are then directly referenced. The resulting
overall DAE representation is given in Figure 2. In the same
way, the schema could be extended by adding new informa-
tion, possibly according to special purposes, developing a
new separate module and referencing the main element in
the XML schema, without changing the current definitions.
An extension of the schema representing the formulation of
optimization problems has been already developed.

Figure 2. Overall structure of the DAE XML schema

3. Test implementation
As a first implementation, an XML export module has been
implemented in the JModelica.org platform [13, 1], in or-
der to generate XML documents representing DAE systems
derived from Modelica models valid with respect of the
proposed schema. In addition, an extension of the XML
schema for representing optimization problems has been
developed and the XML code export has been implemented
in the Optimica compiler, which is part of the JModel-
ica.org compiler.

The extension for optimization problems provides ele-
ments for the representation of the objective function, the
interval of time on which the optimization is performed and
the constraints. The boundary values of the optimization in-
terval, t0 and tf , can either be fixed or free. The constraints

96

Figure 3. XML schema extension for optimization prob-
lems

include inequality and equality path constraints, but also
point constraints are supported. Point constraints are typi-
cally used to express initial or terminal constraints, but can
also be used to specify constraints for time points in the
interior of the interval. An overall view of the extension is
given in Figure 3.

Before exporting a Modelica model in XML format, a
pre-processing phase is necessary. Firstly, the model should
be "flattened" in order to have the system resulting from
both equations of every single component and the connec-
tion equations. In this system the variables should all be
scalarized. Parameters that are used to define array sizes,
sometimes referred to as structural parameters, are evalu-
ated in the scalarization and can not be changed after gen-
eration of the XML code.

Furthermore, the functions should be handled as ex-
plained in section 2.4. If the system is a higher index DAE,
an index reduction operation can be performed, to obtain
the final index-1 DAE.

It is interesting to notice how the XML schema has been
easily implemented in the compiler. In fact, the structured
representation of an XML schema is suitable to be mapped
to the abstract syntax tree of the flattened model. A func-
tion that writes the corresponding XML representation has
been implemented in each node class exploiting the aspect-
oriented design allowed by JastAdd, used for the JMod-
elica.org compiler construction [2]. Hence, traversing the
abstract syntax tree of the flattened model is equivalent
to traversing the XML document representing the same
model. In the same way, importing an XML representa-
tion of the model could be done traversing the XML docu-
ment and building a node of the syntax tree corresponding
to each XML node. This remains to be done.

For the test case, the ACADO toolkit [10] has been cho-
sen as importing tool. ACADO Toolkit is a software en-
vironment, not specifically related to Modelica, that col-
lects algorithms for automatic control and dynamic opti-
mization. It provides a general framework for using a great
variety of algorithms for direct optimal control, including

model predictive control, state and parameter estimation
and robust optimization.

The Van der Pol oscillator model (it can be found with
further explanations in [13]) has been exported from the
JModelica.org platform and imported into ACADO. The
goal is to solve an optimal control problem with respect
to the constraint u <= 0.75 acting on the control signal
while minimizing a quadratic cost function in the interval
t ∈ [0, 20].

The optimal control problem has been parameterized as
an non-linear problem using direct multiple shooting (with
condensing) and solved by an SQP method (sequential
quadratic programming) based on qpOASES [9] as a QP
solver.

The results are given in Figure 4. The same results
can be obtained by solving the problem by means of a
collocation method available in JModelica.org.

Figure 4. Van der Pol optimization problem results from
ACADO

4. Conclusions and future perspectives
In this paper, an XML representation of continuous time
DAEs obtained from continuous-time Modelica models has
been proposed. The test implementation on the JModel-
ica.org platform has shown the possibility to use the XML
representation to export Modelica models and then reuse
them in another non-Modelica tool. In the same manner,
many other possible applications could be considered [6].

A future version of the schema could extend the rep-
resentation to hybrid DAE systems. In this case the con-
cept of discontinuous expressions, discrete variables, dis-
crete equations and events should be introduced.

An interesting perspective could be to explore to which
extent the proposed DAE representation could be used to
describe flattened models written using other equation-
based, object-oriented languages, possibly by introducing
additional features that are not needed to handle models
obtained from Modelica, in the same spirit of the CapeML
initiative [4].

Finally, it would also be interesting to investigate the
possibility to aggregate models represented by different
XML documents. In this case every XML document would

97

represent a sub-model and an interface to allow more sub-
models to be connected should be designed.

References
[1] Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove

Bergdahl, and Hubertus Tummescheit. Modeling and
optimization with Optimica and JModelica.org—languages
and tools for solving large-scale dynamic optimization
problem. Computers and Chemical Engineering, January
2010. Doi:10.1016/j.compchemeng.2009.11.011.

[2] Johan Åkesson, Torbjörn Ekman, and Görel Hedin. Imple-
mentation of a Modelica compiler using JastAdd attribute
grammars. Science of Computer Programming, 75(1):21–
38, 2010.

[3] L.T. Biegler, A.M. Cervantes, and A. Wächter. Advances in
simultaneous strategies for dynamic process optimization.
Chemical Engineering Science, 57(4):575–593, 2002.

[4] Christian H. Bischof, H. Martin Bücker, Wolfgang Mar-
quardt, Monika Petera, and Jutta Wyes. Transforming
equation-based models in process engineering. In H. M.
Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris,
editors, Automatic Differentiation: Applications, Theory,
and Implementations, Lecture Notes in Computational Sci-
ence and Engineering, pages 189–198. Springer, 2005.

[5] F. Casella, F. Donida, and Åkesson. An XML representation
of DAE systems obtained from Modelica models. In 7th
Modelica conference, September, 20-22 2009.

[6] F. Casella, F. Donida, and M. Lovera. Beyond simulation:
Computer aided control system design using equation-
based object oriented modelling for the next decade. In
2nd International Workshop on Equation-Based Object-
Oriented Languages and Tools, July, 8 2008.

[7] F. Casella, F. Donida, and M. Lovera. Automatic generation
of LFTs from object-oriented non-linear models with un-
certain parameters. In 6th Vienna International Conference
on Mathematical Modeling, February, 11-13 2009.

[8] Francesco Casella, Filippo Donida, and Gianni Ferretti.
Model order reduction for object-oriented models: a control
systems perspective. In Proceedings MATHMOD 09
Vienna, pages 70–80, Vienna, Austria, Feb. 11–13 2009.

[9] H.J. Ferreau, H.G. Bock, and M. Diehl. An online active
set strategy to overcome the limitations of explicit MPC.
International Journal of Robust and Nonlinear Control,
18(8):816–830, 2008.

[10] KU Leuven. ACADO toolkit Home Page. http:
//www.acadotoolkit.org/.

[11] J. Larsson. A framework for simulation-independent
simulation models. Simulation, 82(9):563–379, 2006.

[12] Modelisar. Functional Mock-up Interface for Model Ex-
change, 2010. http://www.functional-mockup-interface.
org.

[13] Modelon AB. JModelica.org Home Page, 2010. http:
//www.jmodelica.org.

[14] A. Pop and P. Fritzson. ModelicaXML: A Modelica
XML representation with applications. In 3rd Modelica
conference, November, 3-4 2003.

[15] U. Reisenbichler, H. Kapeller, A. Haumer, C. Kral, F. Pirker,
and G. Pascoli. If we only had used XML... In 5th Modelica

conference, September, 4-5 2006.

[16] The Modelica Association. Modelica - a unified
object-oriented language for physical systems modeling,
2009. http://www.modelica.org/documents/
ModelicaSpec32.pdf.

[17] M. Tiller. Implementation of a generic data retrieval API for
Modelica. In 4th Modelica conference, March, 7-8 2005.

98

 HistoryItem_V1
 AddNumbers

 Range: all pages
 Font: Times-Roman 10.0 point
 Origin: bottom centre
 Offset: horizontal 11.34 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BC

 91
 TR
 1
 0
 1690
 285

 0
 10.0000

 Both
 8
 1
 AllDoc

 CurrentAVDoc

 11.3386
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 0
 8
 7
 8

 1

 HistoryList_V1
 qi2base

