
Approximative Filtering of XML Documents
in a Publish/Subscribe System

Annika Hinze1 Yann Michel2 Torsten Schlieder

1University of Waikato, New Zealand
2Freie Universitaet Berlin, Germany

a.hinze@cs.waikato.ac.nz
ymichel@inf.fu-berlin.de
torsten.schlieder@gmx.net

Abstract

Publish/subscribe systems filter published documents
and inform their subscribers about documents match-
ing their interests. Recent systems have focussed on
documents or messages sent in XML format. Sub-
scribers have to be familiar with the underlying XML
format to create meaningful subscriptions. A service
might support several providers with slightly differ-
ing formats, e.g., several publishers of books. This
makes the definition of a successful subscription al-
most impossible. This paper proposes the use of an
approximative language for subscriptions. We intro-
duce the design of our ApproXFilter algorithm for
approximative filtering in a publish/subscribe system.
We present the results of our performance analysis of
a prototypical implementation.

1 Introduction

The recent years have seen a new generation of ap-
plications based on the principle of publish/subscribe
(pub/sub): distribution of stock quotes, news articles,
or library alerts. A publish/subscribe system is a (dis-
tributed) middleware implementing the event-based
communication paradigm: A source or publisher pub-
lishes event messages that announce the occurrence
of events, i.e., the occurrence of something of interest
within the system. Examples are the publication of a
new book or CD. Subscribers can subscribe to events
that are of interest to them; these subscriptions are
called profiles. The system filters the incoming mes-
sages according to the profiles and forwards matched
messages to their subscribers.

Publish/susbscribe systems have their origin in
alerting services for digital libraries (Salton 1968). In
the first generation of alerting systems, event mes-
sages contained the full text of documents, such as a
newly published scientific paper (e.g., in SIFT (Yan
& Garćıa-Molina 1995)). A profile would equal a sim-
ple Information Retrieval (IR) query using keywords.
Note that the concept of filtering documents against
a set of profiles has been explored earlier in infor-
mation filtering by the Information Retrieval com-
munity. However, the focus there is on information
quality, whereas we are looking at efficiency for large
scale settings with high numbers of profiles. The fo-
cus of publish/subscribe systems lies more on the ef-
ficient filtering of structured data sets. Thus, earlier
pblish/subscribe systems supported either attribute-

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

value pairs (e.g., in Siena (Carzaniga 1998)) or SQL-
like queries (e.g., in CQ (Liu, Pu & Tang 1999)).

Recently, XML-based messages or documents have
been used to encode the event messages (e.g., in Ni-
agaraCQ (Chen, DeWitt, Tian & Wang 2000), XFil-
ter (Altinel & Franklin 2000)). Applications are
eBusinesses such as online catalogs or digital libraries.
Here, a profile is a XML query expressed in XML-
QL (NiagaraCQ) or Xpath (XFilter); the definition
of which is a rather demanding task for a user who
is not familiar with XML query languages. In ad-
dition, almost all existing systems assume that the
users are well informed about the structure of the
event messages and that they are therefore able to
create meaningful profiles.

The task of creating a meaningful profile is even
more demanding if the system supports different
providers of information, e.g., different publishers of
music CDs or books, which may use slightly differing
catalogue structures. Currently, no system supports
filtering over varying structures. In addition, current
filter mechanisms detect only documents that con-
tain the exact values a subscription specifies, but it
is not possible to detect documents that contain syn-
onymous values.

Typical solutions for this kind of searches in
digital libraries are extensions or replacements of
search terms with synonyms using a thesaurus or
a dictionary (e.g., in the DejaVu system (Gordon
& Domeshek 1998)). Other techniques that have
been used to explore semantic relationships between
terms include user feedback and enriched search inter-
faces (Rao, Pedersen, Hearst, Mackinlay, Card, Mas-
inter, Halvorsen & Robertson 1995). For substruc-
tured data, the problem of approximative results has
been extensively addressed for XML search queries
(e.g., in (Schlieder 2003, Theobald & Weikum 2002)).

For publish/subscribe systems, the problem of how
to extend the profiles and how to efficiently filter using
approximations remains open. Note that the issue
of how to create thesauri or cost-enriched term lists
remains the same problem as for searching. We see
this as a separate problem that is not addressed. In
this paper, we focus on an efficient filter algorithm for
approximate publish/subscribe. We show later that
also for algorithms, inspiration may be found in IR
solutions, but it is not possible to simply copy these
algorithms.

In this paper, we propose an approximative filter-
ing algorithm ApproXFilter to address the problem
of approximate filtering. The main challenge for filter
algorithms in a publish/subscribe context is efficient
filtering of large numbers of profiles. We introduce
two forms of an approximative algorithms for filter-
ing XML documents: a time optimized version and a
space optimized version. We present a performance
analysis of our prototypical implementation and show
the usefulness of our approach.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This paper is structured as follows: Section 2 in-
troduces an example scenario that is used to illustrate
the concepts throughout the paper and discusses re-
lated approaches. In Section 3, we propose the de-
sign of an approximative filter and illustrate the de-
sign by example. Two implementation variants are
introduced in Section 4. We give details about our
prototypical implementation in Section 5. Section 6
presents and discusses the results of our analysis of
the algorithms and shows the usefulness of our ap-
proach. In Section 7, we discuss complementary ap-
proaches. The final section summarizes the contribu-
tions and indicates future work.

2 Motivation

This section introduces an illustrative example sce-
nario. We show that existing approaches in pub-
lish/subscribe systems are not sufficient and discuss
related approaches from information retrieval. We ex-
plain why the principles of approximative IR cannot
be simply copied for filtering.

Assume an online warehouse offers a pub-
lish/subscribe mechanism for its books. A user may
know in advance that author Smith will publish a
book in the near future. But unfortunately, nothing
about the final title or other information is known
other than it deals with XML.

Publish/subscribe systems supporting keyword
subscriptions (e.g., SIFT) would notify about all doc-
uments that contain at least one of the values “XML”
and “Smith”. The user cannot specify that she prefers
books with the title “XML” over books containing a
chapter title “XML”. Similarly, the user cannot prefer
the author Smith over the editor Smith. Current sys-
tems supporting structured XML queries (e.g., XFil-
ter) would result in the contrary: Only exactly match-
ing documents are considered. The XPath query

/catalog/book[title = “XML” and author = “Smith”]

will neither allow for books with a chapter title
“XML” nor books of the category “XML” nor books
edited by “Smith”, nor other media formats than
books (e.g., articles or tutorials) with the appropriate
information.

Of course, the user can create a subscription that
exactly matches the cases mentioned, but she must
know that similar results may exist and how they are
represented. Since all results of her expanded query
are treated equally, the user still cannot express her
preferences. It is important to note that different to
a search query, a user of a publish/subscribe system
cannot simply reformulate their subscription query
until it gives the desired results - false negatives will
occur and the subscriber misses information without
being aware of it.

For search engines, solution have been proposed to
cope with the approximative searches. For example,
ApproXQL (Schlieder 2003) is an approximative filter
language with corresponding search algorithm. While
common query languages will only match on exact
values that were requested, ApproXQL also supports
the matching on similar values or structures. This is
achieved by skipping or rewriting parts of the query
using synonyms. ApproXQL supports hierarchical,
Boolean-connected query patterns. The interpreta-
tion of ApproXQL queries is founded on cost-based
query transformations: The total cost of a sequence
of transformations measures the similarity between a
query and the data and is used to rank the results.
All results of an ApproXQL query can be computed
in polynomial time with respect to the database size.

Here, we will follow the concept of ApproXQL and
re-use the syntax of its language for filtering purposes.

Similar to the case of searching, we follow the ap-
proach of using cost-based query transformation. For
publish/subscribe systems, we have to develop a new
filter algorithm; it is not possible to use the under-
lying approximative search algorithm: The concept
of filtering is the reverse to the concept of searching.
In searching, a set of documents forms the founda-
tion; they are indexed and the incoming search query
is compared to the index keys. In filtering, a set of
subscription queries exists; they are indexed and the
incoming document is compared to the indexed query
keys. Similarly, the concept of ranking does not have
an exact equivalent in filtering. For filtering, the doc-
uments are sent to the user or not.

3 The ApproXFilter Algorithm

This section describes the principle of the ApproX-
Filter algorithm. We start by describing the concept
of the algorithm and then move on to discuss each of
its steps.

ApproXFilter supports the matching of similar
values or structures in addition to direct matches.
This is achieved by profile query transformations us-
ing skipping, inserting, or renaming parts of the query
using synonyms. Whenever a profile query is rewrit-
ten for a certain document, each of these transforma-
tions may create costs. We introduce the concept of
costs to judge the quality of a document regarding
a given query. A cost of zero means highest quality,
i.e., the document exactly matches the profile query
as defined by the subscriber. The greater the costs,
the lower the matching quality of a document.

Document filtering may be seen as a comparison
of the document tree to the set of profile query trees
(which are combined in a single directed acyclic graph
(DAG)). The more similar a document tree is to a
given profile tree, the better the match. That is, the
better the match the lower the costs. If all possible
transformations are supported for a query, each doc-
ument will match. The costs describe the amount of
transformation necessary to reach that match (simi-
lar to relevance in Information Retrieval). If only se-
lected transformations are allowed, not all documents
will match a given profile. The costs can be seen as a
(reverse) measure for the similarity between the docu-
ments and the matched profiles. For profiles that are
not matched using transformations, and for profiles
that are matched creating high costs, the similarity
between the profiles and the document is low.

We now introduce the overall structure of the al-
gorithm. Subsequently, we illustrate the algorithm by
using our example scenario.

Step 1 - Normalization: After the definition of
the subscriptions, transform all ApproXFilter
subscriptions into their conjunctive normal form
(i.e., Boolean disjunctions combined by conjunc-
tions)

Step 2 - Profile Extension: Extend all subscrip-
tions using the allowed predefined transforma-
tions (renaming, skipping, insertion)

Step 3 - Tree-building: Build a subscription
match DAG containing all extended subscrip-
tions

Step 4 - Filtering: For each incoming document:
Go sequentially through document; concurrently
traverse the match DAG depth-first; whenever
moving upwards in the match DAG accumulate
the costs

book [title ["XML"] and author ["Smith"]]

title

author

"XML"

"Smith"
book

ApproXFilter Query:

Query Tree:

Figure 1: ApproxFilter sample profile query and its
query tree (Query 1)

Step 5 - Notification: If the accumulated costs for
the matching document are less than a prede-
fined threshold, inform the subscriber about the
document

We will now illustrate these steps by applying the
algorithm to our example scenario introduced in Sec-
tion 2. We will use two example subscriptions and
one incoming XML document to show the principle
of the filtering algorithm.

Normalization Consider the warehouse’s pub-
lish/subscribe service from the previous section: Our
user is still interested in works about XML by author
Smith. Based on her interest, she builds the following
subscription written in ApproXFilter:

Query 1 : book[title[′′XML′′]
and author[′′Smith′′]]

The subscription query and its query tree repre-
sentation are shown in Figure 1. Another user is inter-
ested in all database books that also consider XML,
are published in 2005. He defines the following query:

Query 2 : book[title[′′DB′′ and ′′XML′′]
and year[′′2005′′]]

ApproxFilter’s syntax is introduced in detail in
Section 4. Note that in this paper, we refer to “XML”,
“Smith”, and “2005” as values and to ‘book’, ‘title’,
‘year’ , and ‘author’ as structures; both structures
and values are referred to as terms in a subscription
query. Both subscription queries are already normal-
ized.

Profile Extension Using ApproXQL, it is possi-
ble to define synonyms or renamings, deletions or
skippings, and insertions. For example, the admin-
istrators of the warehouse’s system may have defined
sets of possible transformations for queries regarding
print media. In addition, experienced users may de-
fine possible transformations. For simplicity, we use
very basic transformations as given in Table 1 for pro-
file extensions in our example Query 1.

Method Changes Costs

Rename
book → article 4
title → abstract 4

“XML” → “RDF” 7

Skip
title 10

“XML” 20
Insert optional 0

Table 1: Example profile transformations for Query 1

"2005"

book

article

*

title

abstract

"XML"

Match DAG:

book
author

title "XML"

"Smith"

Query Trees:

*

"RDF"

author "Smith"

(1)

(2)

"DB"

"2005"year

book

title
"DB"

"XML"

year

Figure 2: Concept of Match DAG and original query
tree. Solid lines for normal edges (cost = 0) and
dashed lines for additional edges (cost > 0)

Tree-building The match graph is built as a di-
rected acyclic graph (DAG) for the user profiles as
shown in Figure 2. For simplicity, the mapping be-
tween the match DAG and the queries is shown only
for Query 1; all data regarding Query 2 is shown in a
lighter colour. Every term (values and structures) in
the extended query is interpreted as a graph vertex.

Figure 2 shows the original profile query (at the
bottom) which was extended using the transforma-
tions from Table 1: Solid lines between query tree
and match DAG represent normal edges, i.e., direct
copies from the query tree into the match DAG with
no additional costs. Dashed lines represent additional
edges, i.e., references created by synonymous struc-
tures (e.g., article instead of book) or values (“RDF”
instead of “XML”) as defined in the transformations
table (see Table 1). Additional edges might carry
additional costs for the filtering, e.g., as defined as
‘Insert’ in Table 1. Note that the cost values are
chosen arbitrarily. We are aware of the implications
of choosing costs, either as a requirement for the
user/administrator as well as the challenge of auto-
matic cost assignments. Here, we focus on the per-
formance issues of our approach. In our future work,
we plan to address the issues of cost functions and
quality.

Note the asterisks in the match DAG in Figure 2:
these denote possible skippings of vertices, e.g., the
structure ‘title’ or the value “XML” might be skipped
in the filtering. By default, any vertex in the match
DAG may be skipped except the root. Skipping ver-
tices may also result in additional costs. The costs
for transformations may be defined by system ad-
ministrators (who should be domain experts) or sub-
scribers.

Filtering Event messages passed into the system
are assumed to be well-formed XML documents, such
as the simple one in Figure 3. Author Smith has
named his book “Storing RDF models in Databases”,
which is a book about XML technology. The word
“XML” does not appear in the title. Conventional
publish/subscribe systems would not be able to no-
tify about the book. However, ApproXFilter supports
approximative matches and can therefore cover this
book by using the appropriate synonyms for values
and structures.

The filter algorithm parses the document sequen-
tially and traverses the match DAG in depth-first or-

(14) </doc>
(13)

<doc>

 <author> Smith </author>

 <book>

 <year> 2005 </year>

 </book>
 <article>

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

 <abstract> RDF ... XML </abstract>

 <title> Storing RDF ... DB </title>

 <year> 2005 </year>
 <title> RDF ... DB ... </title>
 <author> Smith </author>

 </article>
 <comment> ... XML </comment>

Figure 3: Example document submitted to the pub-
lish/subscribe system for filtering

der. Every difference to the original query is scored
with additional costs. For simplicity, the costs are not
shown in the example DAG but only in Table 1. For
each visited node in the match DAG, the correspond-
ing costs are calculated.

The assignment of costs to each filter step and the
final computation of the costs is a non-trivial task.
Subsequently, we therefore explain the filtering algo-
rithm and its cost assignments in detail using the
example document shown in Figure 3 and the two
subscriptions defined earlier that have been processed
into the match DAG in Figure 2.

The filter starts parsing the example document
(see Figure 3) following the XML tree structure. Each
found tag is compared to the match DAG (see Fig-
ure 2). Recognizing the tag <book> in Line 2 it finds
the first matching tag in its internal match DAG (in-
troduced to the DAG by Query 1). It also finds the
term ‘article’ in the DAG as possible renaming for
‘book’ (introduced by Query 2); here we mainly con-
centrate on the matchings of Query 1. It then finds
the tag <abstract> and since this is allowed as a re-
naming of ‘title’, it follows this route. Note that the
renaming costs (4) are not yet added up but noted
in the DAG. In the next step, it compares the words
“RDF ... XML” of the abstract to the ones speci-
fied in the query for title. First, the filter detects a
match of “RDF” and notes the additional costs (7)
for this level. When continuing comparing the words,
the algorithm detects that “XML” matches the same
vertex but with no additional cost (0).

A document is successfully parsed if the profile
query (using allowed transformation) was completely
executed. An unsuccessful document could have, for
example, a mismatching root node such as CD instead
of book or article in our example. After a document is
successfully parsed, its costs are evaluated by ascend-
ing the match graph. Whenever two branches meet,
i.e., whenever a forest of subgraphs finds a common
root, the lowest branch-cost is taken as the cost to
be accumulated upwards. Therefore, the algorithm
always takes the “best sub-match” to compute the
match-quality of the parsed sub-document for a given
query.

After finishing the comparison for the abstract
and reaching the closing tag </abstract>, the al-
gorithm moves upwards in the DAG, calculating the
costs as the sum of insertions, deletions and renam-
ings (i+d+r): On the leaf level (Level 3) it computes
the minimum of the costs for “RDF” (0+0+7) and
“XML” (0+0+0) as (min(7; 0)) and decides on the
match of “XML”. On Level 2 of the DAG, the ab-
stract is now closed and the algorithm moves forward
to the next tag in the document.

Next, the two tags <author> and <year> are

processed. They do not add additional costs for
Queries 1 or 2 because both terms are matched, re-
spectively. We do not go into detail for these tags
but concentrate on the subsequent tag <title> in
Line 6. The filter algorithm follows the tag <title>
as requested in the profile and tests the title content.
As when filtering the abstract, it computes the costs
for the “RDF”. The occurrence of “DB” is consid-
ered for Query 2, but we will not go into detail for
that query. The costs for the leaf level for Query 1
are only the renaming costs for “RDF” = 0 + 0 + 7.
Moving upwards in the DAG, two branches meet on
the next level: ‘abstract’ and ‘title’. Their costs are
calculated as the sum of their individual costs and
the costs of their children resulting in 0 + 0 + 4 + (0)
for ‘abstract’ and in 0 + 0 + 0 + (7) for ‘title’. The
algorithm computes the minimum costs for Level 2
(min(4; 7)) and decides on the match of ‘abstract’
(Level 2) followed by “XML” (Level 3). On detect-
ing the close-tag </book>, the overall costs regarding
Query 1 for the book structure in the given document
are summarized as 4. The costs for Query 2 are also
calculated now.

The XML document in this example contains ref-
erences to two works, i.e., two events are published.
This is not necessarily required but it is allowed. The
filter algorithm continues parsing the document, now
concentrating on the article (starting in Line 8). By
detecting the close-tag </article>, the overall costs
regarding Query 1 for the article structure in the given
document are calculated as 4 + 7 = 11 (renaming
‘book’, renaming “XML”).

Notification A threshold should be defined by the
subscriber or a domain expert for limiting the costs
that are allowed for results regarding a given profile.
Let’s assume a threshold of 10 for our example. Doc-
uments with costs lower than the threshold are then
forwarded to the subscriber of the profile. In our case
of Query 1, the reference for the book (cost 4) is se-
lected and the reference for the article (cost 11) is
discarded. Consequently, subscriber for Query 1 will
receive a notification about Smith’s book.

4 Technical Design

In this section, we propose two alternative implemen-
tations for the ApproXFilter algorithm: a time op-
timized and a space optimized variant (in Sects. 4.1
and 4.2).

4.1 Time-optimized Algorithm

This variant of the algorithm’s implementation aims
at minimizing the time for filtering a given document.
To optimize query evaluation, a permutation of all
possible vertex compositions is created (see Figure 4).
This includes composition of missing vertices as well
as the full query structure as defined by the user’s
profile. Any vertex may be missing except the root
vertex.

Each block of boxes in the figure represents a hash
set. For each level in the graph, several hash sets can
exist. Each hash set but the root has at least one
incoming solid arrow (e.g., book and article point to
the middle hash-set). The origins of these arrows are
all on the same level, which we refer to as the ‘current
level’. So, for the middle hash-set, the current level
equals the root level. A hash-set directly below the
current level contains all combinations of terms that
can be found anywhere below the current level in the
match DAG (when starting from the points of origins
of the solid arrows). For our example, the middle
hash-set has its origins in the root node; from Figure 2

"XML"

abstractarticle

book

"RDF"

"XML"

*

"Smith"

"Smith"

7

4 4

7

10

10

20

book
author

title "XML"

"Smith"

Query Tree:

Match DAG Implementation:

"RDF"

author

title

Figure 4: Implementation structure for time-
optimized filter algorithm. Solid lines for normal
edges (cost = 0) and dashed lines for additional edges
(cost > 0). Dotted lines for skippings of hash sets;
Costs greater zero given in circles.

Match DAG Implementation:

article

book

abstract

author

title

"RDF"

"XML"

*

"Smith"

4

4
10

20

7

book
author

title "XML"

"Smith"

Query Tree:

*

Figure 5: Implementation structure for space-
optimized filter algorithm. Solid lines for normal
edges (cost = 0) and dashed lines for additional edges
(cost > 0). Dotted lines for skippings of hash sets

we see that below the root node, 6 terms may occur.
That means, that the skipping of the title tag has
been directly encoded by offering all possibilities of
the lower levels also on this level. For this reason, the
key “XML” on the middle level carries a cost of 10.

Considering the second level as the current level,
below ‘abstract’ and ‘title’ in the match DAG, two
possible terms can occur (“RDF” or “XML”) or the
term could be skipped. The skipping has to be made
explicit here on the leaf level; the costs for skipping
are denoted as 20 as defined.

The dashed arcs in Figure 4 are references to
the profile’s vertices providing transformation costs
whereas the full arcs represent zero costs. Taking
our example from above, the arrow pointing from key
“RDF” (in the middle hash-set) is annotated with
costs for renaming “XML” to “RDF” (7).

Using the structure shown here, the time for evalu-
ating a document is O(n); the space required is O(n2)
where n is the number of vertices in the match DAG
as shown in Figure 2. The number of vertices in the
DAG could vary considerably depending on the num-
ber of profiles p and the number of terms, structures,
synonyms. A good estimate would be to assume that
n is in the same order of p.

4.2 Space-Optimized Algorithm

This version of the algorithm aims at optimizing space
consumption by using smaller data structures. As in
the time optimized version, we use hashes to repre-

sent the extended query graph. This time, no redun-
dant node entries are allowed in the structure (see
Figure 5). Therefore, each hash key is put into the
graph only once and in the exact position for repre-
senting the original profile structure. All costs are
encoded only once.

To skip nodes, we provide wildcard keys (shown as
“*” in the dotted box in Figure 5). These keys must
be traversed if no hash value matches (using transitive
traversal if necessary). For example, the arrow leav-
ing the lowest key in the middle hash-set (with key
“*”) and pointing to the right upper hash-set (i.e., the
hash set with all possible values in title) is annotated
with costs for deleting ‘title’. If also the author tag
would be allowed for deletion, the arrow would also
refer to the hash set with the possible author values.

The filter time for this variant is O(n2), where n
refers to the number of vertices. The space required
is O(n).

5 Implementation

This section describes the prototype implementation
of ApproXFilter. We briefly sketch the prototype’s
architecture as well as its modules and internal data
structures. In addition, we discuss the ApproXFilter
language and explain its use for creating a profile.

5.1 Components

The prototype of ApproXFilter is written in Java. We
use Xerxes1 for parsing XML documents. There are
three main modules in our implementation as shown
in Figure 6:

Profile Service The profile service receives and
parses the user-defined profiles that are incom-
ing via the network. It then creates an internal
data structure for storing the incoming profiles.
The profile service consists of the profile server
and the profile worker. When a connection to the
profile server is established, a new profile worker
is started. The profile processing incorporates
the following steps: worker initialization, pro-
file parsing, profile extension, profile storage, and
worker termination.
The profile worker receives and parses the incom-
ing profiles (see upper part in Figure 6). The pro-
file is added to the profile repository. The profile
queries are expressed using ApproXFilter; these
are translated into an internal profile represen-
tation. The profile server manages the list of al-
lowed transformations and their assigned costs.
Out of profiles and transformations, the profile
server creates the profile match DAG for filter-
ing the profiles.

Document Service The document server receives
and parses XML documents; it filters them ac-
cording to the users’ profiles. If profiles match,
the profile owners are notified. The central docu-
ment server dispatches the incoming documents
to (distributed) worker threads. The server pro-
cess is responsible for establishing the connection
and passing the work to a dedicated thread.
We regard the matching data structure of profiles
as relatively static2. Therefore, every document
worker obtains a local copy of the global data
structure. This copy is only updated when the
global profile match DAG changes, i.e, whenever

1http://xml.apache.org/xerces2-j
2This is a viable assumption, e.g., for digital libraries where user

profiles describe more long-lived user interests, such as research
topics and colleagues.

document

service
profile

service

profile

profile
repository

worker

document
worker

profile
server

document
server

match
DAG

document

notifications

profiles

transformations
and costs

Figure 6: Components of the ApproXFilter engine
and their interactions for a set of profiles and a single
incoming XML document

the local time-stamp of the match DAG differs
from the global time-stamp due to changes by
any profile workers. The event processing incor-
porates the following steps: worker initialization,
document parsing, profile evaluation, and worker
recycling.
While traversing the incoming XML document,
the local data structure is updated with the
found vertices and values. The costs of the de-
tected vertices are calculated using local copies of
all profiles. To reduce the performance load for
updating or initialization, we use time-stamps to
detect if the vertex was matched during the cur-
rent process. If so, we recalculate the costs for
this vertex, i.e., we only update the vertex if the
new costs are less than the current ones. At last,
the complete document costs are calculated by
summarizing the costs of all vertices processed in
this sequence, i.e., affected by the current docu-
ment. If a requested vertex was not found in
the current sequence, additional costs are added.
Additional costs are calculated for insertions as
required (i.e., for vertices found in the document
that are not mentioned in the profiles). After fil-
tering the document and calculating the costs of
the document for all profiles, the costs are com-
pared to the thresholds set for the profiles. Noti-
fications are sent to those subscribers where the
document costs are lower than the profile thresh-
old.

Internal Data Structures Effective internal data
structures are important for efficient filtering. As
seen in Figure 6, a number of internal data struc-
tures are held: compact profile trees (bottom), a
match structure for filtering document structures
(left), and a content-synonym set (top). For the
structural matches, we implemented a simplified
version of the space optimized DAG; see Figure 7.
For the value synonyms (e.g., “RDF” instead of
“XML”) we use an additional content-synonym
set. For simplicity, in this proof-of-concept im-
plementation we support stricter filtering than
the two versions introduced in Section 4 (i.e.,
fewer skippings). Consequently, the algorithm
is more efficient.
For the match-DAG, we maintain a list of all ver-
tices and their synonyms and a compact profile
tree structure (see left and bottom in Figure 7).

author

book

"Smith"
author

title
"XML"

4

4

"XML"
7

"RDF"article

book

abstract

title

Figure 7: Implemented data structure for matching
profile queries; top: value renamings, left: structural
renamings, bottom: profile

Each of the vertices refers to all respective profile
vertices. For example, ‘article’ and ‘book’ both
refer to the profile term ‘book’. This structure
facilitates an efficient document parsing process.
In addition, every profile-vertex can automati-
cally detect whether it was filtered via the orig-
inal path or via a transformed one. The latter
case results in additional costs.
The profile vertices (bottom of Figure 7) store
the profile-defined values within the same ver-
tex (e.g., ‘title’ and “XML” together), and not
in a separate vertex as initially proposed in Sec-
tion 4.2. This merging of content vertices with
their parent structural vertices prevents false
positives. In our example, the profile would oth-
erwise also match documents containing “Smith”
in arbitrary vertices and not only in the ones
specified directly in profiles and by allowed trans-
formations. Renamings of values are supported
by using the additional content-synonym set
(shown in the upper part of Figure 7).

The implemented data structure requires less
space than the structure for the space-optimized al-
gorithm version (due to more densely stored profiles);
and it’s performance is between the performance of
the space-optimized and the time-optimized version.
The performance is O(m2 + p) and the space require-
ment is O(m+p) where m is the number of structural
vertices in the match DAG (i.e., structures ad their
synonyms) and p is the number of value vertices in
the match DAG (i.e., values and their synonyms).

Element Content
query lexpr
expr lexpr (AND lexpr)* -

content (AND content)*
lexpr label LPAREN expr RPAREN
label LNAME
content LITERAL
LPAREN [
RPAREN]
LNAME (‘a’..‘z’-‘A’..‘Z’)

(‘a’..‘z’-‘A’..‘Z’-‘ ’-‘0’..‘9’)
LITERAL ‘ ” ’ (∼ ‘ ” ’)* ‘”’

Table 2: ApproXFilter profile definition language

5.2 ApproXFilter Language

As already described, we use a subset of the Ap-
proXQL query language for expressing subscriptions
in ApproXFilter. Our profile language defines a tree-
shaped query string. In our current implementation,
we only support conjunctive expressions. The lan-
guage components used in our implementation are
shown in Table 2 as the abstract syntax tree that we
used for creating the profile parser using ANTLR 3.

Every profile query consists at least of a labelled
expression, “lexpr”, having a expression “expr”,
which is a “content” element. Labels define struc-
tural filters, where the label name may consists of any
combination of alphanumeric values (see LNAME).
“Content” refers to value filters, where a value may
be any string enclosed in inverted commas without
containing the inverted commas itself (LITERAL).

Translated into our graph profile representation,
this describes a single vertex with some content. The
query language supports the specification of query
strings in which at least one vertex‘s content-element
has to be specified, whereas the parent vertices may
be described as simple containers. That is, at least
one value filter has to be defined; an arbitrary number
of structural filters is allowed.

6 Evaluation of ApproXFilter

In this section, we present the results of the evaluation
of our implementation of the ApproXFilter algorithm.
We performed functional and quantitative analyses,
which are discussed the next two sections.

It is beyond the scope of this paper to reason
about the quality of the filter results using struc-
tural and/or term-based synonyms; this would reach
far into a discussion of IR methodologies and cri-
teria. Therefore, we like to refer instead to simi-
lar work done for approximative querying on XML:
the quality of the results is the same, since only the
filter direction is changed (documents on profiles vs
queries on documents). For an extensive discussion
see (Schlieder 2003).

The quantitative tests have been performed on a
local installation. For a distributed approach, we refer
to the multitude of literature for routing algorithms
for publish/subscribe, which could be applied here,
such as the profile and event forwarding strategies
proposed in (Carzaniga 1998).

6.1 Functional Analysis

The functional analysis evaluated the influence of the
use of renamings and skippings on the size of the re-
sult set. In the first version of the evaluation, the
match-DAG was build using the original profiles as
defined by the users. In the second version, the pro-
files were extended using the mentioned transforma-
tions.

We tested with a cost-setting for structural con-
servation, i.e., structural changes cause higher costs
then value changes. The costs for this test were de-
fined as follows: skip structure – 15, skip value – 5,
rename – 1, insertions – 0. Note that these values are
arbitrarily chosen and variable. The results for the fil-
tering of a selection of 50 test documents (using both
test versions) are shown in Figure 8. The document
IDs appear on the x-axis; the percentage of matched
profiles for each document is shown on the y-axis.

The solid boxes represent the proportion of
matched profiles for a certain document without
transformations. The patterned boxes show the
match benefit due to the use of transformations, i.e.,

3http://www.antlr.org/doc/index.html

Figure 8: Functional evaluation of the ApproXFilter
prototype, matchings with and without transforma-
tions

the patterned boxes show the added percentage of
matched documents based on transformations. Most
documents find more matches after profile transfor-
mations. Thus, more users are notified about these
documents.4

Note that some documents are not matched by
any profiles when evaluated strictly, but are matched
when approximate matches are allowed (e.g., Docu-
ments 15 – 17). These documents originally do not
trigger any notifications. On the other hand, for some
documents the results are not affected by filter trans-
formations, such as Documents 1 – 3. This means
that the similarity between these documents and the
profiles was not changed by extending the profiles.
Some documents are not matched at all (Documents
37 – 41). For these documents, the similarity be-
tween the documents and original profile queries is
extremely low, and no similarity is gained by ex-
tending the profiles. The algorithms output matched
the profile specifications (for details see (Michel &
Hinze 2005)). The results of the functional analysis
show that the algorithm works as designed: increas-
ing the number of profile matches using approximate
filtering.

6.2 Quantitative Analysis

The quantitative analysis evaluates the influence of
varying profile numbers on the performance and the
space requirements of the algorithm. We present here
initial results from a series of tests run on ApproXFil-
ter. This information will assist comparison of later
implementations of approximative XML filtering en-
gines.

The test setting used here was similar to that in
the qualitative test as described above. For every set
of profiles tested, 1000 unique documents were cre-
ated and filtered. Figure 9 shows both the space us-
age and performance of our implemented prototype.
The left hand side of the figure shows a scale for the
time and the right hand side a scale for the space. As
argued in Section 5, the space requirement directly
depends on the number of vertices in the match DAG.
For our test setting, that means that it directly de-
pends on the number of profiles.

For each profile set, we show the mean value for
the filter time for one document. The maximum and
minimum values indicated show the variation between
documents. Note that the variations are stronger for
small profile sets. This is due to the stronger influ-
ence of single terms on the the filter outcome: both

4The stepwise pattern in the results is due to the selection of
documents and not inherent to the algorithm.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5000 10000 15000 20000 25000
 0

 50

 100

 150

 200

 250

 300

 350

tim
e

[m
se

c]

sp
ac

e
[M

B
]

profile count

time for profile evaluation
space for internal data structures

Figure 9: Quantitative evaluation of the ApproXFil-
ter prototype, performance and space requirements
depending on number of profiles

documents’ structures and profile queries interact to
determine the time taken for a filter on one document.
Larger samples dampen the effect of this variation.

The performance-related results shown in Figure 9
support our theoretical hypothesis that the algo-
rithm’s performance is related to the square of the
number of structural vertices.

7 Related Work

Research that is directly related to our approach has
been discussed in Section 2. In this section, we look at
areas of research that are related but complementary
to our work. These areas are flexible queries for semi-
structured data, information-retrieval extensions for
XML query languages, and filter algorithms for XML
documents.

The problem of similarity between keyword queries
and text documents has been investigated in informa-
tion retrieval (Baeza-Yates & B.Ribeiro-Neto 1999).
We believe, these models cannot be directly applied
to XML documents, since they (1) mostly ignore the
structure of XML documents and may therefore lower
the retrieval precision, and (2) use models based on
term distribution that are of little use for data-centric
XML documents. For a discussion of these aspects,
see (Fuhr, Lalmas, Malik & Szlavik 2005).

As discussed in Section 2, XML query languages
incorporate the document structure and are there-
fore well suited for applications that query and trans-
form XML documents (Bonifati & Ceri 2000). Al-
most all query languages for XML support regu-
lar path expressions, which allow to specify alter-
native paths through the data graph and to skip
certain subgraphs. Although regular path expres-
sions give some additional flexibility, they also re-
quire a considerable knowledge about the data. The
user must at least know that some subgraphs must
be skipped, that alternative paths exist, and how
they look like. Consequently, the user needs sub-
stantial knowledge of the data structure to for-
mulate queries. XML query languages that sup-
port result ranking are XXL (Theobald & Weikum
2002), ELIXIR (Chinenyanga & N.Kushmerick
2002), XIRQL (Fuhr & Großjohann 2000), Ap-
proXQL (Schlieder 2003).

For event notification systems, we distinguish
event centered approaches from document-centered
approaches. An example for an event-centered sys-
tem is A-mediAS (Hinze 2003). In document-centered
systems, the events are the publication of a new doc-
ument. Some publish/subscribe systems use XML-
encoded the documents, e.g., NiagaraCQ (Chen et al.

2000) and XFilter (Altinel & Franklin 2000). Pro-
files are expressed using XML query languages such as
XML-QL or Xpath. None of these systems supports
approximative filtering of XML documents based on
similarity measures.

To the best of our knowledge, the only pub-
lish/subscribe system addressing approximate match-
ings is A-ToPSS (Liu & Jacobsen 2002). Its approach
is in sharp contrast to our own. A-ToPSS supports
approximate matching for attribute-values pairs us-
ing probabilistic measures for both documents and
profiles. For each attribute, a possibility distribution
may be used to express the confidence that the at-
tribute has a given value. This approach is funda-
mentally different to the one proposed in this paper.
We believe it would be of only limited suitability for
text-centered structures; the definition for probability
distributions for texts is questionable; it would need
substantial knowledge and would unnecessarily bur-
den the users. This approach would map particularly
poorly onto XML documents, e.g., because structural
changes are not supported and the system works on
numerical values only.

8 Discussion and Future Work

Recent publish/subscribe systems increasingly focus
on documents send in XML format; subscribers to
these systems have to be familiar with the underlying
XML format to create meaningful subscriptions. In
this paper, we proposed the use of an approximative
language for subscriptions.

We introduced the design our ApproXFilter
algorithm for approximative filtering in a pub-
lish/subscribe system. We discussed two implemen-
tation variations that optimized the space usage and
the filter performance, respectively. We implemented
a proof of concept ApproXFilter prototype that we
subjected to qualitative and quantitative testing. The
results of our analyses have shown the effectiveness of
our approach. To the best of our knowledge, no other
filter algorithm for approximative filtering of XML
documents exists.

Having proven the concept of approximative filter-
ing, we have a number of open challenges to address:
The definition of cost values is a non-trivial problem.
Although there are only five cost-related parameters
in our prototype, the adjustments have to be done
very carefully. The importance of a missing term de-
pends on the filter application. Using low structure-
costs results in a more content-based filtering, while
lowering the value-cost parameters will result in a
more structural filter. We plan to explore the use
of user relevance feedback to adjust the costs. A sim-
ilar dependence on the application domain exists for
the definition of synonyms. For this, we would like to
explore the use of domain ontologies and personalised
ontologies.

One of the next steps will be an extension of our
prototype to also support disjunctions. We plan to
further analyse and refine the proposed algorithms.
In the future, we would like to explore how ApproX-
Filter could be used in the context of digital library
software (internally using XML document represen-
tations). It would also be worthwhile to explore a
combination of ApproXQL with the Lucene search en-
gine5 for querying XML documents with subsequent
ongoing filtering queries using the ApproXFilter al-
gorithm.

5http://jakarta.apache.org/lucene/docs/index.html

References

Altinel, M. & Franklin, M. (2000), Efficient filtering
of XML documents for selective dissemination
of information, in ‘Proceedings of International
Conference on Very Large Data Bases (VLDB
’00)’, Cairo, Egypt.

Baeza-Yates, R. & B.Ribeiro-Neto (1999), Modern In-
formation Retrieval, Addison-Wesley.

Bonifati, A. & Ceri, S. (2000), ‘Comparative analy-
sis of 5 XML query languages’, SIGMOD Record
29(1), 68–79.

Carzaniga, A. (1998), Architectures for an Event
Notification Service Scalable to Wide-area Net-
works, PhD thesis, Politecnico di Milano, Mi-
lano, Italy.

Chen, J., DeWitt, D., Tian, F. & Wang, Y. (2000),
NiagaraCQ: A scalable continuous query system
for internet databases, in ‘Proceedings of ACM
SIGMOD’, Dallas, Texas.

Chinenyanga, T. & N.Kushmerick (2002), ‘An expres-
sive and efficient language for XML information
retrieval’, JASIST 53(6), 438–453.

Fuhr, N. & Großjohann, K. (2000), XIRQL: An exten-
sion of XQL for Information Retrieval, in ‘Pro-
ceedings of ACM SIGIR Workshop On XML and
Information Retrieval’, Athens, Greece.

Fuhr, N., Lalmas, M., Malik, S. & Szlavik, Z., eds
(2005), Advances in XML Information Retrieval:
Third International Workshop of the Initiative
for the Evaluation of XML Retrieval, INEX
2004, Germany, December 6-8, 2004, Vol. 3493
of LNCS.

Gordon, A. S. & Domeshek, E. A. (1998), Deja Vu: a
knowledge-rich interface for retrieval in digital li-
braries, in ‘Proceedings of 3rd International Con-
ference on Intelligent User Interfaces (IUI ’98)’,
San Francisco, California, United States.

Hinze, A. (2003), A-MEDIAS: Concept and Design of
an Adaptive Integrating Event Notification Ser-
vice, PhD thesis, Freie Universität Berlin.

Liu, H. & Jacobsen, H.-A. (2002), A-topss - a pub-
lish/subscribe system supporting approximate
matching, in ‘Proceedings of International Con-
ference on Very Large Data Bases (VLDB’02)’,
Hong Kong, China.

Liu, L., Pu, C. & Tang, W. (1999), ‘Continual queries
for internet scale event-driven information deliv-
ery’, IEEE Tranactions on Knowledge and Data
Engineering 11(4), 610–628. Special issue on
Web Technologies.

Michel, Y. & Hinze, A. (2005), ApproxFilter - an Ap-
proximative XML-based Filter Engine, Techni-
cal Report CS-06/2005, University of Waikato,
New Zealand.

Rao, R., Pedersen, J. O., Hearst, M. A., Mackinlay,
J. D., Card, S. K., Masinter, L., Halvorsen, P.-K.
& Robertson, G. G. (1995), ‘Rich interaction in
the digital library’, Communications of the ACM
38(4), 29–39.

Salton, G. (1968), Automatic Information Organiza-
tion and Retrieval, McGraw-Hill, New York.

Schlieder, T. (2003), Fast Similarity Search in XML
Data, PhD thesis, Freie Universität Berlin.

Theobald, A. & Weikum, G. (2002), The index-based
XXL search engine for querying XML data with
relevance ranking, in ‘Proceedings of Advances
in Database Technology (EDBT ’2002)’, Prague,
Czech Republic.

Yan, T. W. & Garćıa-Molina, H. (1995), SIFT -
a tool for wide-area information dissemination,
in ‘Proceedings of the USENIX’1995’, New Or-
leans, Louisiana, USA.

