109 research outputs found

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    CoRD: Converged RDMA Dataplane for High-Performance Clouds

    Full text link
    High-performance networking is often characterized by kernel bypass which is considered mandatory in high-performance parallel and distributed applications. But kernel bypass comes at a price because it breaks the traditional OS architecture, requiring applications to use special APIs and limiting the OS control over existing network connections. We make the case, that kernel bypass is not mandatory. Rather, high-performance networking relies on multiple performance-improving techniques, with kernel bypass being the least effective. CoRD removes kernel bypass from RDMA networks, enabling efficient OS-level control over RDMA dataplane.Comment: 11 page

    Application-centric bandwidth allocation in datacenters

    Get PDF
    Today's datacenters host a large number of concurrently executing applications with diverse intra-datacenter latency and bandwidth requirements. Some of these applications, such as data analytics, graph processing, and machine learning training, are data-intensive and require high bandwidth to function properly. However, these bandwidth-hungry applications can often congest the datacenter network, leading to queuing delays that hurt application completion time. To remove the network as a potential performance bottleneck, datacenter operators have begun deploying high-end HPC-grade networks like InfiniBand. These networks offer fully offloaded network stacks, remote direct memory access (RDMA) capability, and non-discarding links, which allow them to provide both low latency and high bandwidth for a single application. However, it is unclear how well such networks accommodate a mix of latency- and bandwidth-sensitive traffic in a real-world deployment. In this thesis, we aim to answer the above question. To do so, we develop RPerf, a latency measurement tool for RDMA-based networks that can precisely measure the InfiniBand switch latency without hardware support. Using RPerf, we benchmark a rack-scale InfiniBand cluster in both isolated and mixed-traffic scenarios. Our key finding is that the evaluated switch can provide either low latency or high bandwidth, but not both simultaneously in a mixed-traffic scenario. We also evaluate several options to improve the latency-bandwidth trade-off and demonstrate that none are ideal. We find that while queue separation is a solution to protect latency-sensitive applications, it fails to properly manage the bandwidth of other applications. We also aim to resolve the problem with bandwidth management for non-latency-sensitive applications. Previous efforts to address this problem have generally focused on achieving max-min fairness at the flow level. However, we observe that different workloads exhibit varying levels of sensitivity to network bandwidth. For some workloads, even a small reduction in available bandwidth can significantly increase completion time, while for others, completion time is largely insensitive to available network bandwidth. As a result, simply splitting the bandwidth equally among all workloads is sub-optimal for overall application-level performance. To address this issue, we first propose a robust methodology capable of effectively measuring the sensitivity of applications to bandwidth. We then design Saba, an application-aware bandwidth allocation framework that distributes network bandwidth based on application-level sensitivity. Saba combines ahead-of-time application profiling to determine bandwidth sensitivity with runtime bandwidth allocation using lightweight software support, with no modifications to network hardware or protocols. Experiments with a 32-server hardware testbed show that Saba can significantly increase overall performance by reducing the job completion time for bandwidth-sensitive jobs

    Designing Scalable Networks for Future Large Datacenters

    Get PDF
    Modern datacenters require a network with high cross-section bandwidth, fine-grained security, support for virtualization, and simple management that can scale to hundreds of thousands of hosts at low cost. This thesis first presents the firmware for Rain Man, a novel datacenter network architecture that meets these requirements, and then performs a general scalability study of the design space. The firmware for Rain Man, a scalable Software-Defined Networking architecture, employs novel algorithms and uses previously unused forwarding hardware. This allows Rain Man to scale at high performance to networks of forty thousand hosts on arbitrary network topologies. In the general scalability study of the design space of SDN architectures, this thesis identifies three different architectural dimensions common among the networks: source versus hop-by-hop routing, the granularity at which flows are routed, and arbitrary versus restrictive routing and finds that a source-routed, host-pair granularity network with arbitrary routes is the most scalable
    • …
    corecore