13 research outputs found

    Efficient path protection using Bi-directional WDM transmission technology

    Get PDF
    Bi-directional WDM transmission is a technique that allows wavelengths to be transmitted simultaneously in both directions in a single fiber. Compared with unidirectional WDM systems, it not only saves the cost of deploying extra fibers, but also allows more flexible bandwidth provisioning. To exploit the advantages brought by this flexibility, we investigate path protection based on bi-directional WDM transmission system in this paper. With path protection, a call is accepted if and only if an active data path together with a disjointed backup path can be found in the network. With bi-directional WDM, backup resources sharing in both directions of a fiber is possible. To encourage resources sharing, new cost functions are judiciously designed. Based on them, two original path protection schemes are proposed in this paper, BiPro and BiProLP, where BiProLP aims at further economizing the hardware cost incurred by BiPro. In contrast to the traditional unidirectional schemes, we show that both BiPro and BiProLP can yield noticeably lower call blocking probability, higher system capacity and snorter active/backup path length. © 2005 IEEE.published_or_final_versio

    Efficient Distributed Solution for MPLS Fast Reroute

    Get PDF
    As service providers move more applications to their IP/MPLS (Multiple Protocol Label Switching) networks, rapid restoration upon failure becomes more and more crucial. Recently MPLS fast reroute has attracted lots of attention as it was designed to meet the needs of real-time applications, such as voice over IP. MPLS fast reroute achieves rapid restoration by computing and signaling backup label switched paths (LSP) in advance and re-directing traffic as close to failure point as possible. To provide a guarantee of failure restoration, extra bandwidth has to be reserved on backup LSPs. To improve the bandwidth utilization, path-merging technique was proposed to allow bandwidth sharing on common links among a service LSP and its backup LSPs. However, the sharing is very limited. In this paper, we provide efficient distributed solution, which would allow much broader bandwidth sharing among any backup LSPs from different service LSPs. We also propose an efficient algorithm for backup path selection to further increase the bandwidth sharing. The associated signaling extension for additional information distribution and collection is provided. To evaluate our solution, we compare its performance with the MPLS fast reroute proposal in IETF via simulation. The key figure-of-merit for restoration capacity efficiency is restoration overbuild, i.e., the ratio of restoration capacity to service capacity. Our simulation results show that our distributed solution reduces restoration overbuild from 2.5 to 1, and our optimized backup path selection further reduces restoration overbuild to about 0.5

    Algorithms for Computing QoS Paths With Restoration

    Get PDF
    There is a growing interest among service providers to offer new services with Quality of Service (QoS) guarantees that are also resilient to failures. Supporting QoS connections requires the existence of a routing mechanism, that computes the QoS paths, i.e., paths that satisfy QoS constraints (e.g., delay or bandwidth). Resilience to failures, on the other hand, is achieved by providing, for each primary QoS path, a set of alternative QoS paths used upon a failure of either a link or a node. The above objectives, coupled with the need to minimize the global use of network resources, imply that the cost of both the primary path and the restoration topology should be a major consideration of the routing process. We undertake a comprehensive study of problems related to finding suitable restoration topologies for QoS paths. We consider both bottleneck QoS constraints, such as bandwidth, and additive QoS constraints, such as delay and jitter. This is the first study to provide a rigorous solution, with proven guarantees, to the combined problem of computing QoS paths with restoration. It turns out that the widely used approach of disjoint primary and restoration paths is not an optimal strategy. Hence, the proposed algorithms construct a restoration topology, i.e., a set of bridges, each bridge protecting a portion of the primary QoS path. This approach guarantees to find a restoration topology with low cost when one exists

    Holding time and delay tolerance aware, availability-guaranteed connection provisioning in WDM networks

    Get PDF
    Optik dalga boyu bölmeli çoğullama (Wavelength Division Multiplexing- WDM) ağlarında, yeni teknolojilerdeki ilerleme, yüksek bant genişliği isteyen uygulamalara yüksek kapasite sağlamak üzere kiralanabilir devrelerin dinamik ve kısa vadeli olarak kurulup serbest bırakılmasına olanak sağlamaktadır. Yüksek hızlı optik bağlantının kesilmesi, büyük veri kaybına neden olduğundan, bu bağlantıların arızalara karşı korunması gerekmektedir. Diğer yandan, veri, ses ve video gibi verilerin farklı trafik tiplerinin hızla artması, kullanılabilirliği garantili bant genişliğinin yanı sıra farklılaştırılmış hizmetler gerektirmektedir. Bu nedenle, ilerideki ağ taşıyıcılarının, HDA (Hizmet Düzeyi Anlaşması) (Service Level Agreement- SLA) ilkelerini karşılaması ve böylece belli bir hizmet düzeyi garantilemesi ve verimli kaynak kullanımı sağlaması gerekmektedir. Bu amaçla bu çalışmada farklı sürdürülebilir yol kurulum teknikleri bağlantı isteklerinin düzeyine göre tercih edilmektedir. Hizmet kalitesine bağlı olarak korunmasız, yol paylaşımlı korumalı ve yol atamalı korumalı bağlantı kurulumunun tercihli kullanımı sonucunda, isteklerin farklılaşmış kullanılabilirlik gereklilikleri karşılanmaktadır. Bu çalışmada yedek kapasite kullanım oranının ve bloke olma olasılığının düşürülmesi amacıyla farklı iki teknik tanıtılmıştır. Birinci teknik, yeni gelen isteğin bağlantısını kurmadan önce sistemde önceden kurulmuş bağlantıların hizmet sürelerinden yararlanarak paylaşımı artırma esasına dayanmaktadır. İkinci yöntem ise bloke olma olasılığını düşürmek amacıyla kullanıcı tarafından belirlenen zaman toleransı parametresinden yararlanmaktadır. Bu iki yöntem önceki benzer amaca yönelik algoritmalarla karşılaştırılmaktadır. Sonuç olarak önerilen algoritmaların kaynak kullanımını azalttığı, bloke olma oranını ise yeni kaynak eklenmesine gerek duyulmaksızın düşürdüğü gözlemlenmiştir.  Anahtar Kelimeler: Optik ağlar, dalga boyu bölmeli çoğullama, kullanılabilirlik, yol atama.With the development of agile optical switches, dynamic optical circuit switching has become possible and connections are set up and torn down on- demand basis. The explosive growth of different traffic types such as data, voice and video requires the support of differentiated services in terms of survivability measures and timing requirements. In order to guarantee a specific level of survivability, availability-guaranteed bandwidth provisioning is considered. On the other hand, connections are set up and released for specific time durations, with sliding or fixed set-up times. Connection requests arrive to the network provider with specified holding times, delay tolerances and availability requirements which need to be satisfied. Delay tolerance is defined as the maximum time which a request can tolerate before the connection is set up. Future network carriers need to meet strict SLA (Service Level Agreement) guidelines, thus guaranteeing a level of service, as well as achieving efficient resource utilization. Connection availability is an important metric to measure the quality of service (QoS) in a survivable network. It is defined as the probability that a connection will be found in the operating state at a random time in the future (Clouqueur et al., 2002). It is affected by many factors such as network component failure probabilities, failure repair times, etc. Usually, the availability target for a connection is specified in a Service Level Agreement (SLA), which is a contract between a service provider (e.g., a network operator) and one of its customers (e.g., a large institutional user of bandwidth). An SLA violation may result in a penalty to be paid by the network operator to the customer according to the contract (Grover, 1999). In order to provide the appropriate level of availability stated in the SLAs, different recovery mechanisms can be used to provision different connection requests. In this study, we consider unprotected, shared-path protected and dedicated-path protected provisioning mechanisms at the same time to satisfy different QoS requirements in a dynamic manner. Previous studies, while maximizing sharability by routing backup paths in a dynamic traffic environment, do not make any estimation on future sharability of resources. They take the current link states into consideration to choose sharable links. Reference (Tornatore et al., 2005a,b) shows that resource overbuild (RO) in shared-path protection can be decreased by exploiting the holding-time information of connections which have already been provisioned in the network. Since holding times of incoming traffic demands may be known in advance for a variety of applications, this information about the future states of the links makes the route decision more intelligent by allowing the choice of more sharable paths. In this paper, unprotected, shared-path, and dedicated-path protection techniques are used to meet the differentiated availability requirements. Recently, among the other Service Level Specifications (SLSs), many new applications are identified by known-in-advance holding-time and delay tolerance. So, in this paper, for dynamic provisioning of availability-guaranteed connections in an optical mesh network, we propose two new algorithms which exploit 1-the knowledge of connection holding times to accomplish minimum backup capacity allocation as compared to the previous holding-time-unaware approach and 2- the knowledge of delay tolerances to degrease the blocking probability in the conditions that the system resources are not available to satisfy the SLS demands of connection requests. Here we also propose a new routing mechanism for backup paths optimizing backup resources considering the future departure time of existing connections. In order to show the performance gain; the first proposal, AGSDP_HT (Holding-time aware Availability-Guaranteed Service-Differentiated Provisioning) is compared by a base line algorithm AGSDP. The second proposal ADT (Availability-guaranteed, service differentiated provisioning with Delay Tolerance) is compared by a base line approach which does not consider delay tolerance. For the second proposal, both algorithms dedicated protection is not used as a choice, since blocking is decreased by delay tolerance. Keywords: WDM Networks, availability aware provisioning, survivability

    CoShare: An Efficient Approach for Redundancy Allocation in NFV

    Full text link
    An appealing feature of Network Function Virtualization (NFV) is that in an NFV-based network, a network function (NF) instance may be placed at any node. On the one hand this offers great flexibility in allocation of redundant instances, but on the other hand it makes the allocation a unique and difficult challenge. One particular concern is that there is inherent correlation among nodes due to the structure of the network, thus requiring special care in this allocation. To this aim, our novel approach, called CoShare, is proposed. Firstly, its design takes into consideration the effect of network structural dependency, which might result in the unavailability of nodes of a network after failure of a node. Secondly, to efficiently make use of resources, CoShare proposes the idea of shared reservation, where multiple flows may be allowed to share the same reserved backup capacity at an NF instance. Furthermore, CoShare factors in the heterogeneity in nodes, NF instances and availability requirements of flows in the design. The results from a number of experiments conducted using realistic network topologies show that the integration of structural dependency allows meeting availability requirements for more flows compared to a baseline approach. Specifically, CoShare is able to meet diverse availability requirements in a resource-efficient manner, requiring, e.g., up to 85% in some studied cases, less resource overbuild than the baseline approach that uses the idea of dedicated reservation commonly adopted for redundancy allocation in NFV

    Survivability algorithms in MPLS and WDM optical networks

    Get PDF
    In modern ultra-wide bandwidth, high speed and high reliable communication networks, the failure of network components including equipment (such as routers) and transmission media (such as fibers) may cause a huge volume of data loss. Therefore network survivability mechanisms, by which the disrupted traffic upon failures can be restored, are crucial in network design and deserve thorough investigation. In this thesis, we propose some survivability approaches to survive failures in MPLS and WDM optical networks. MPLS is a promising technology that enables much faster failure recovery than conventional IP rerouting in IP networks. While the traditional MPLS path-based protection scheme is capacity efficient, it is relatively slow in restoration; on the other hand, while traditional MPLS link-based scheme has fast restoration speed, its capacity efficiency is low. In this thesis, we propose a new restoration scheme called UNIFR, which can provide fast restoration as link-based scheme while achieving better capacity efficiency than link-based scheme. We present a MPLS resilience framework that supports UNIFR and give two ILP formulations to solve the spare capacity optimization problem for UNIFR-based restoration model. Simulation study shows that the capacity efficiency of UNIFR-based model is much better than that of link-based model and close to that of path-based model. In WDM optical networks, although lots of pervious works have been done in both protection and restoration survivability techniques, to our best knowledge, little study focuses on improving the dynamic restoration success ratio. To address this problem, we first identify two restoration blocking types called primary holding and mutual competition. To address primary holding, we propose a dynamic routing and wavelength assignment algorithm for connection establishment that takes the future possible failures into consideration and choose route and wavelength for the working lightpath that could lead to higher chance of successful restoration for the potential failures. To address mutual competition, we present some heuristics ideas to increase restoration success ratio. Simulation shows that our algorithms can clearly reduce the restoration blocking probability while not affecting primary blocking probability and restoration speed much

    Link failure protection and restoration in WDM optical networks

    Get PDF
    In a wavelength-division-multiplexing (WDM) optical network, the failure of fiber links may cause the failure of multiple optical channels, thereby leading to large data loss. Therefore the survivable WDM optical networks where the affected traffic under link failure can be restored, have been a matter of much concern. On the other hand, network operators want options that are more than just survivable, but more flexible and more efficient in the use of capacity. In this thesis, we propose our cost-effective approaches to survive link failures in WDM optical networks. Dynamic establishment of restorable connections in WDM networks is an important problem that has received much study. Existing algorithms use either path-based method or link-based method to protect a dynamic connection; the former suffers slow restoration speed while the latter requires complicated online backup path computation. We propose a new dynamic restorable connection establishment algorithm using p-cycle protection. For a given connection request, our algorithm first computes a working path and then computes a set of p-cycles to protect the links on the working path so that the connection can survive any single link failure. The key advantage of the proposed algorithm over the link-based method is that it enables faster failure restoration while requires much simpler online computation for connection establishment. Tree-based schemes offer several advantages such as scalability, failure impact restriction and distributed processing. We present a new tree-based link protection scheme to improve the hierarchical protection tree (p-tree) scheme [31] for single link failure in mesh networks, which achieves 100% restorability in an arbitrary 2-connected network. To minimize the total spare capacity for single link failure protection, an integer linear programming (ILP) formulation is provided. We also develop a fast double-link failure restoration scheme by message signaling to take advantage of the scalable and distributed processing capability of tree structure

    Providing Survivability In Optical Wdm Mesh Networks Considering Adaptation

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Internet kullanımının artışı ile birlikte, hızla büyüyen bant genişliği isteklerini karşılayabilecek olan optik WDM ağları, gelecekteki en uygun Internet omurgaları haline gelmiştir. Oluşabilecek herhangi bir bağlantı hatası, o bağlantı üzerinden geçen tüm ışık yollarının başarısızlığına yol açabilir. Bu yüzden, optik WDM ağları etkili hata bağışıklığı yöntemlerine ihtiyaç duymaktadır.Optik WDM ağlarındaki hata bağışıklığı problemini etkili bir şekilde giderebilmek için son günlerde bir çok yöntem sunulmuştur. Bu yöntemler arasında paylaşılan yol ile koruma yöntemi etkin kaynak kullanımı sağlayabildiğinden, en umut verici yöntemlerden biri olarak görülmektedir. Bu yöntemde yedek ışık yolları, eğer ilişkili birincil ışık yolları karşılıklı olarak farklı ise yani ortak bağ kullanmıyor iseler, dalga boyu paylaşımı yapabilemekdirler. Bu özelliğinden dolayı paylaşılan yol ile koruma yöntemi, yedek ışık yollarına daha az kaynak ayrılmasını sağlar ve diğer koruma yöntemlerinden daha iyi performans gösterir. Bu çalışmada, bir optik WDM ağına dinamik olarak gelen bağlantı isteklerine cevap verilirken, paylaşılan yol ile koruma ve yeniden yönlendirme özelliğini kullanan etkili bir yöntem geliştirilmiştir. Adaptasyon sağlayan paylaşılan yol ile koruma yöntemi olarak adlandıralan yeni yaklaşım, dinamik trafik akışında yedek yolların yol açtığı fazla kaynak tüketimini azaltmak için zaman içinde ağı yeni durumlara adapte edebilen, etkili yani daha çok isteğe cevap verilebilen bir servis sağlayabilmektedir. Bağlantıların öncelik beklentisine göre yeniden yönlendirme yapma özelliğinden dolayı servis seviyesinde anlaşma sağlayabilen bir yaklaşımdır.WDM optical networks are able to meet the rapid growth of bandwidth demands and are considered to be the most appropriate choice of future Internet backbone. However, the failure of a network component such as a fiber link can lead to the failure of all the lightpaths that traverse the failed link. Therefore, the huge bandwidth of WDM also requires efficient survivability mechanisms. Recently, new techniques have been proposed to efficiently deal with this problem in mesh networks. Among them, shared-path protection is a promising candidate because of its desirable resource efficiency, which is a result from effective backup sharing. Backup paths can share wavelength channels, when their corresponding working paths are mutually diverse. Therefore, shared-path protection can outperform other protection techniques based on the dedicated reservation of backup capacity. In this work, we focus on rerouting feature to design an efficient algorithm, called Adaptable Shared Path Protection (ASPP), for dynamic provisioning of shared-path-protected connections in optical mesh networks employing WDM. In particular, backup-channel capacity reservation in shared-protection causes too much resource consumption parallel to network load. ASPP provides the adaptation of network against dynamic traffic, and decreases blocking probability thanks to rerouting capability of paths. Also, ASPP can present SLA by providing an uninterrupted traffic flow for connection requests come with a high priority.Yüksek LisansM.Sc
    corecore