4,589 research outputs found

    Efficient Discovery of Ontology Functional Dependencies

    Full text link
    Poor data quality has become a pervasive issue due to the increasing complexity and size of modern datasets. Constraint based data cleaning techniques rely on integrity constraints as a benchmark to identify and correct errors. Data values that do not satisfy the given set of constraints are flagged as dirty, and data updates are made to re-align the data and the constraints. However, many errors often require user input to resolve due to domain expertise defining specific terminology and relationships. For example, in pharmaceuticals, 'Advil' \emph{is-a} brand name for 'ibuprofen' that can be captured in a pharmaceutical ontology. While functional dependencies (FDs) have traditionally been used in existing data cleaning solutions to model syntactic equivalence, they are not able to model broader relationships (e.g., is-a) defined by an ontology. In this paper, we take a first step towards extending the set of data quality constraints used in data cleaning by defining and discovering \emph{Ontology Functional Dependencies} (OFDs). We lay out theoretical and practical foundations for OFDs, including a set of sound and complete axioms, and a linear inference procedure. We then develop effective algorithms for discovering OFDs, and a set of optimizations that efficiently prune the search space. Our experimental evaluation using real data show the scalability and accuracy of our algorithms.Comment: 12 page

    Mining data quality rules based on T-dependence

    Get PDF
    Since their introduction in 1976, edit rules have been a standard tool in statistical analysis. Basically, edit rules are a compact representation of non-permitted combinations of values in a dataset. In this paper, we propose a technique to automatically find edit rules by use of the concept of T-dependence. We first generalize the traditional notion of lift, to that of T-lift, where stochastic independence is generalized to T-dependence. A combination of values is declared as an edit rule under a t-norm T if there is a strong negative correlation under T-dependence. We show several interesting properties of this approach. In particular, we show that under the minimum t-norm, edit rules can be computed efficiently by use of frequent pattern trees. Experimental results show that there is a weak to medium correlation in the rank order of edit rules obtained under T_M and T_P, indicating that the semantics of these kinds of dependencies are different

    Approximation Measures for Conditional Functional Dependencies Using Stripped Conditional Partitions

    Get PDF
    Conditional functional dependencies (CFDs) have been used to improve the quality of data, including detecting and repairing data inconsistencies. Approximation measures have significant importance for data dependencies in data mining. To adapt to exceptions in real data, the measures are used to relax the strictness of CFDs for more generalized dependencies, called approximate conditional functional dependencies (ACFDs). This paper analyzes the weaknesses of dependency degree, confidence and conviction measures for general CFDs (constant and variable CFDs). A new measure for general CFDs based on incomplete knowledge granularity is proposed to measure the approximation of these dependencies as well as the distribution of data tuples into the conditional equivalence classes. Finally, the effectiveness of stripped conditional partitions and this new measure are evaluated on synthetic and real data sets. These results are important to the study of theory of approximation dependencies and improvement of discovery algorithms of CFDs and ACFDs

    Discovering robust dependencies from data

    Get PDF
    Science revolves around forming hypotheses, designing experiments, collecting data, and tests. It was not until recently, with the advent of modern hardware and data analytics, that science shifted towards a big-data-driven paradigm that led to an unprecedented success across various fields. What is perhaps the most astounding feature of this new era, is that interesting hypotheses can now be automatically discovered from observational data. This dissertation investigates knowledge discovery procedures that do exactly this. In particular, we seek algorithms that discover the most informative models able to compactly “describe” aspects of the phenomena under investigation, in both supervised and unsupervised settings. We consider interpretable models in the form of subsets of the original variable set. We want the models to capture all possible interactions, e.g., linear, non-linear, between all types of variables, e.g., discrete, continuous, and lastly, we want their quality to be meaningfully assessed. For this, we employ information-theoretic measures, and particularly, the fraction of information for the supervised setting, and the normalized total correlation for the unsupervised. The former measures the uncertainty reduction of the target variable conditioned on a model, and the latter measures the information overlap of the variables included in a model. Without access to the true underlying data generating process, we estimate the aforementioned measures from observational data. This process is prone to statistical errors, and in our case, the errors manifest as biases towards larger models. This can lead to situations where the results are utterly random, hindering therefore further analysis. We correct this behavior with notions from statistical learning theory. In particular, we propose regularized estimators that are unbiased under the hypothesis of independence, leading to robust estimation from limited data samples and arbitrary dimensionalities. Moreover, we do this for models consisting of both discrete and continuous variables. Lastly, to discover the top scoring models, we derive effective optimization algorithms for exact, approximate, and heuristic search. These algorithms are powered by admissible, tight, and efficient-to-compute bounding functions for our proposed estimators that can be used to greatly prune the search space. Overall, the products of this dissertation can successfully assist data analysts with data exploration, discovering powerful description models, or concluding that no satisfactory models exist, implying therefore new experiments and data are required for the phenomena under investigation. This statement is supported by Materials Science researchers who corroborated our discoveries.In der Wissenschaft geht es um Hypothesenbildung, Entwerfen von Experimenten, Sammeln von Daten und Tests. Jüngst hat sich die Wissenschaft, durch das Aufkommen moderner Hardware und Datenanalyse, zu einem Big-Data-basierten Paradigma hin entwickelt, das zu einem beispiellosen Erfolg in verschiedenen Bereichen geführt hat. Ein erstaunliches Merkmal dieser neuen ra ist, dass interessante Hypothesen jetzt automatisch aus Beobachtungsdaten entdeckt werden k nnen. In dieser Dissertation werden Verfahren zur Wissensentdeckung untersucht, die genau dies tun. Insbesondere suchen wir nach Algorithmen, die Modelle identifizieren, die in der Lage sind, Aspekte der untersuchten Ph nomene sowohl in beaufsichtigten als auch in unbeaufsichtigten Szenarien kompakt zu “beschreiben”. Hierzu betrachten wir interpretierbare Modelle in Form von Untermengen der ursprünglichen Variablenmenge. Ziel ist es, dass diese Modelle alle m glichen Interaktionen erfassen (z.B. linear, nicht-lineare), zwischen allen Arten von Variablen unterscheiden (z.B. diskrete, kontinuierliche) und dass schlussendlich ihre Qualit t sinnvoll bewertet wird. Dazu setzen wir informationstheoretische Ma e ein, insbesondere den Informationsanteil für das überwachte und die normalisierte Gesamtkorrelation für das unüberwachte Szenario. Ersteres misst die Unsicherheitsreduktion der Zielvariablen, die durch ein Modell bedingt ist, und letztere misst die Informationsüberlappung der enthaltenen Variablen. Ohne Kontrolle des Datengenerierungsprozesses werden die oben genannten Ma e aus Beobachtungsdaten gesch tzt. Dies ist anf llig für statistische Fehler, die zu Verzerrungen in gr  eren Modellen führen. So entstehen Situationen, wobei die Ergebnisse v llig zuf llig sind und somit weitere Analysen st ren. Wir korrigieren dieses Verhalten mit Methoden aus der statistischen Lerntheorie. Insbesondere schlagen wir regularisierte Sch tzer vor, die unter der Hypothese der Unabh ngigkeit nicht verzerrt sind und somit zu einer robusten Sch tzung aus begrenzten Datenstichproben und willkürlichen-Dimensionalit ten führen. Darüber hinaus wenden wir dies für Modelle an, die sowohl aus diskreten als auch aus kontinuierlichen Variablen bestehen. Um die besten Modelle zu entdecken, leiten wir effektive Optimierungsalgorithmen mit verschiedenen Garantien ab. Diese Algorithmen basieren auf speziellen Begrenzungsfunktionen der vorgeschlagenen Sch tzer und erlauben es den Suchraum stark einzuschr nken. Insgesamt sind die Produkte dieser Arbeit sehr effektiv für die Wissensentdeckung. Letztere Aussage wurde von Materialwissenschaftlern best tigt
    corecore