375 research outputs found

    Survey on model-based manipulation planning of deformable objects

    Get PDF
    A systematic overview on the subject of model-based manipulation planning of deformable objects is presented. Existing modelling techniques of volumetric, planar and linear deformable objects are described, emphasizing the different types of deformation. Planning strategies are categorized according to the type of manipulation goal: path planning, folding/unfolding, topology modifications and assembly. Most current contributions fit naturally into these categories, and thus the presented algorithms constitute an adequate basis for future developments.Preprin

    Learning Physically Realizable Skills for Online Packing of General 3D Shapes

    Full text link
    We study the problem of learning online packing skills for irregular 3D shapes, which is arguably the most challenging setting of bin packing problems. The goal is to consecutively move a sequence of 3D objects with arbitrary shapes into a designated container with only partial observations of the object sequence. Meanwhile, we take physical realizability into account, involving physics dynamics and constraints of a placement. The packing policy should understand the 3D geometry of the object to be packed and make effective decisions to accommodate it in the container in a physically realizable way. We propose a Reinforcement Learning (RL) pipeline to learn the policy. The complex irregular geometry and imperfect object placement together lead to huge solution space. Direct training in such space is prohibitively data intensive. We instead propose a theoretically-provable method for candidate action generation to reduce the action space of RL and the learning burden. A parameterized policy is then learned to select the best placement from the candidates. Equipped with an efficient method of asynchronous RL acceleration and a data preparation process of simulation-ready training sequences, a mature packing policy can be trained in a physics-based environment within 48 hours. Through extensive evaluation on a variety of real-life shape datasets and comparisons with state-of-the-art baselines, we demonstrate that our method outperforms the best-performing baseline on all datasets by at least 12.8% in terms of packing utility.Comment: ACM Transactions on Graphics (TOG

    Agent and object aware tracking and mapping methods for mobile manipulators

    Get PDF
    The age of the intelligent machine is upon us. They exist in our factories, our warehouses, our military, our hospitals, on our roads, and on the moon. Most of these things we call robots. When placed in a controlled or known environment such as an automotive factory or a distribution warehouse they perform their given roles with exceptional efficiency, achieving far more than is within reach of a humble human being. Despite the remarkable success of intelligent machines in such domains, they have yet to make a full-hearted deployment into our homes. The missing link between the robots we have now and the robots that are soon to come to our houses is perception. Perception as we mean it here refers to a level of understanding beyond the collection and aggregation of sensory data. Much of the available sensory information is noisy and unreliable, our homes contain many reflective surfaces, repeating textures on large flat surfaces, and many disruptive moving elements, including humans. These environments change over time, with objects frequently moving within and between rooms. This idea of change in an environment is fundamental to robotic applications, as in most cases we expect them to be effectors of such change. We can identify two particular challenges1 that must be solved for robots to make the jump to less structured environments - how to manage noise and disruptive elements in observational data, and how to understand the world as a set of changeable elements (objects) which move over time within a wider environment. In this thesis we look at one possible approach to solving each of these problems. For the first challenge we use proprioception aboard a robot with an articulated arm to handle difficult and unreliable visual data caused both by the robot and the environment. We use sensor data aboard the robot to improve the pose tracking of a visual system when the robot moves rapidly, with high jerk, or when observing a scene with little visual variation. For the second challenge, we build a model of the world on the level of rigid objects, and relocalise them both as they change location between different sequences and as they move. We use semantics, image keypoints, and 3D geometry to register and align objects between sequences, showing how their position has moved between disparate observations.Open Acces

    Embodied Interactions for Spatial Design Ideation: Symbolic, Geometric, and Tangible Approaches

    Get PDF
    Computer interfaces are evolving from mere aids for number crunching into active partners in creative processes such as art and design. This is, to a great extent, the result of mass availability of new interaction technology such as depth sensing, sensor integration in mobile devices, and increasing computational power. We are now witnessing the emergence of maker culture that can elevate art and design beyond the purview of enterprises and professionals such as trained engineers and artists. Materializing this transformation is not trivial; everyone has ideas but only a select few can bring them to reality. The challenge is the recognition and the subsequent interpretation of human actions into design intent

    Reactive Planning With Legged Robots In Unknown Environments

    Get PDF
    Unlike the problem of safe task and motion planning in a completely known environment, the setting where the obstacles in a robot\u27s workspace are not initially known and are incrementally revealed online has so far received little theoretical interest, with existing algorithms usually demanding constant deliberative replanning in the presence of unanticipated conditions. Moreover, even though recent advances show that legged platforms are becoming better at traversing rough terrains and environments, legged robots are still mostly used as locomotion research platforms, with applications restricted to domains where interaction with the environment is usually not needed and actively avoided. In order to accomplish challenging tasks with such highly dynamic robots in unexplored environments, this research suggests with formal arguments and empirical demonstration the effectiveness of a hierarchical control structure, that we believe is the first provably correct deliberative/reactive planner to engage an unmodified general purpose mobile manipulator in physical rearrangements of its environment. To this end, we develop the mobile manipulation maneuvers to accomplish each task at hand, successfully anchor the useful kinematic unicycle template to control our legged platforms, and integrate perceptual feedback with low-level control to coordinate each robot\u27s movement. At the same time, this research builds toward a useful abstraction for task planning in unknown environments, and provides an avenue for incorporating partial prior knowledge within a deterministic framework well suited to existing vector field planning methods, by exploiting recent developments in semantic SLAM and object pose and triangular mesh extraction using convolutional neural net architectures. Under specific sufficient conditions, formal results guarantee collision avoidance and convergence to designated (fixed or slowly moving) targets, for both a single robot and a robot gripping and manipulating objects, in previously unexplored workspaces cluttered with non-convex obstacles. We encourage the application of our methods by providing accompanying software with open-source implementations of our algorithms

    Innovative robot hand designs of reduced complexity for dexterous manipulation

    Get PDF
    This thesis investigates the mechanical design of robot hands to sensibly reduce the system complexity in terms of the number of actuators and sensors, and control needs for performing grasping and in-hand manipulations of unknown objects. Human hands are known to be the most complex, versatile, dexterous manipulators in nature, from being able to operate sophisticated surgery to carry out a wide variety of daily activity tasks (e.g. preparing food, changing cloths, playing instruments, to name some). However, the understanding of why human hands can perform such fascinating tasks still eludes complete comprehension. Since at least the end of the sixteenth century, scientists and engineers have tried to match the sensory and motor functions of the human hand. As a result, many contemporary humanoid and anthropomorphic robot hands have been developed to closely replicate the appearance and dexterity of human hands, in many cases using sophisticated designs that integrate multiple sensors and actuators---which make them prone to error and difficult to operate and control, particularly under uncertainty. In recent years, several simplification approaches and solutions have been proposed to develop more effective and reliable dexterous robot hands. These techniques, which have been based on using underactuated mechanical designs, kinematic synergies, or compliant materials, to name some, have opened up new ways to integrate hardware enhancements to facilitate grasping and dexterous manipulation control and improve reliability and robustness. Following this line of thought, this thesis studies four robot hand hardware aspects for enhancing grasping and manipulation, with a particular focus on dexterous in-hand manipulation. Namely: i) the use of passive soft fingertips; ii) the use of rigid and soft active surfaces in robot fingers; iii) the use of robot hand topologies to create particular in-hand manipulation trajectories; and iv) the decoupling of grasping and in-hand manipulation by introducing a reconfigurable palm. In summary, the findings from this thesis provide important notions for understanding the significance of mechanical and hardware elements in the performance and control of human manipulation. These findings show great potential in developing robust, easily programmable, and economically viable robot hands capable of performing dexterous manipulations under uncertainty, while exhibiting a valuable subset of functions of the human hand.Open Acces
    • …
    corecore