5 research outputs found

    Efficient Finite Difference Method for Computing Sensitivities of Biochemical Reactions

    Full text link
    Sensitivity analysis of biochemical reactions aims at quantifying the dependence of the reaction dynamics on the reaction rates. The computation of the parameter sensitivities, however, poses many computational challenges when taking stochastic noise into account. This paper proposes a new finite difference method for efficiently computing sensitivities of biochemical reactions. We employ propensity bounds of reactions to couple the simulation of the nominal and perturbed processes. The exactness of the simulation is reserved by applying the rejection-based mechanism. For each simulation step, the nominal and perturbed processes under our coupling strategy are synchronized and often jump together, increasing their positive correlation and hence reducing the variance of the estimator. The distinctive feature of our approach in comparison with existing coupling approaches is that it only needs to maintain a single data structure storing propensity bounds of reactions during the simulation of the nominal and perturbed processes. Our approach allows to computing sensitivities of many reaction rates simultaneously. Moreover, the data structure does not require to be updated frequently, hence improving the computational cost. This feature is especially useful when applied to large reaction networks. We benchmark our method on biological reaction models to prove its applicability and efficiency.Comment: 29 pages with 6 figures, 2 table

    HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks

    Get PDF
    HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA). HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA)

    Amplitude quantization method for autonomous threshold estimation in self-reconfigurable cognitive radio systems

    Get PDF
    Self-adaptive threshold adjustment algorithms (SATAs) are required to reconfigure their parameters autonomously (i.e. to achieve self-parameter adjustment) at runtime and during online use for effective signal detection in cognitive radio (CR) applications. In this regard, a CR system embedded with the functionality of a SATA is termed a self-reconfigurable CR system. However, SATAs are challenging to develop owing to a lack of methods for self-parameter adjustment. Thus, a plausible approach towards realizing a functional SATA may involve developing effective non-parametric methods, which are often pliable to achieve self-parameter adjustment since they are distribution-free methods. In this article, we introduce such a method termed the non-parametric amplitude quantization method (NPAQM) designed to improve primary user signal detection in CR without requiring its parameters to be manually fine-tuned. The NPAQM works by quantizing the amplitude of an input signal and then evaluating each quantized value based on the principle of discriminant analysis. Then, the algorithm searches for an effective threshold value that maximally separates noise from signal elements in the input signal sample. Further, we propose a new heuristic, which is an algorithm designed based on a new corollary derived from the Otsu’s algorithm towards improving the NPAQM’s performance under noise-only regimes. We applied our method to the case of the energy detector and compared the NPAQM with other autonomous methods. We show that the NPAQM provides improved performance as against known methods, particularly in terms of maintaining a low probability of false alarm under different test conditions.http://www.elsevier.com/locate/phycomhj2022Electrical, Electronic and Computer Engineerin

    Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks

    No full text
    Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms available in literature to demonstrate its applicability and efficiency

    Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks

    No full text
    corecore