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ABSTRACT

Self-adaptive threshold adjustment algorithms (SATAs) are required to reconfigure
their parameters autonomously (i.e. to achieve self-parameter adjustment) at runtime
and during online use for effective signal detection in cognitive radio (CR) applica-
tions. In this regard, a CR system embedded with the functionality of a SATA is
termed a self-reconfigurable CR system. However, SATAs are challenging to develop
owing to a lack of methods for self-parameter adjustment. Thus, a plausible approach
towards realizing a functional SATAmay involve developing effective non-parametric
methods, which are often pliable to achieve self-parameter adjustment since they are
distribution-free methods. In this article, we introduce such a method termed the
non-parametric amplitude quantization method (NPAQM) designed to improve pri-
mary user signal detection in CR without requiring its parameters to be manually
fine-tuned. The NPAQM works by quantizing the amplitude of an input signal and
then evaluating each quantized value based on the principle of discriminant analysis.
Then, the algorithm searches for an effective threshold value that maximally sepa-
rates noise from signal elements in the input signal sample. Further, we propose a
new heuristic, which is an algorithm designed based on a new corollary derived from
the Otsu’s algorithm towards improving the NPAQM’s performance under noise-only
regimes. We applied our method to the case of the energy detector and compared the
NPAQM with other autonomous methods. We show that the NPAQM provides im-
proved performance as against known methods, particularly in terms of maintaining
a low probability of false alarm under different test conditions.

1. Introduction

Cognitive radio (CR) refers to an adaptive radio that can detect and use free channels (white spaces) on a

non-interference basis for opportunistic communication [1]. CR systems are deployed in many communica-

tion networks based on the IEEE 802.22 standard in order to improve user perceived quality of service as well

as to improve the spectra utilization and efficiency of existing communication networks. CR systems are also

deployed to extend the coverage area of modern networks by ensuring that signals are transmitted in lower

frequency bands wherein they can propagate much farther in space [2]. Essentially, most CR systems are
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required to sense their surrounding spectra towards deciding accurately whether primary user (PU) signals

are present (occupied) or absent (free) in a specified channel. In order to achieve this, most CR systems are

deployed using either one or a combination of different detectors, such as the radiometer (popularly called

the energy detector (ED)), cyclostationary detector, matched filter, Eigen value detector or the compressed

sensing method [1]. However, the ED is widely considered to be the most viable detector since it suffices

as the simplest, fastest, cheapest, and least computationally-demanding detector [1–3]. In principle, the ED

works by estimating accurate threshold values based on the magnitude of the elements in the input sample,

and then such threshold values are used to determine correctly whether PU signals exist or not in the sensed

channel [4–6]. However, because noise elements are random and fluctuate unpredictably, consequently, it

is required that CR systems should be embedded with effective adaptive threshold adjustment algorithms

(ATAs), which are able to accurately compute and adapt the threshold of an ED under vacillating noise

levels [7–11].

In this regard, a number of ATAs are well-known in the literature for their effectiveness. However, most

of these ATAs are predominantly parametric-based methods that depend on manually fine-tuned parameters

before they can be used. These parameters are often computed and fine-tuned by a human operator at runtime

and thus such parameters cannot be readjusted (i.e reconfigured) until the next runtime. Even so, in cases

where wrong values are assigned to these parameters, the performance of a CR system can be severely

undermined. This may lead either to very low probability of detection (PD) or very high probability of

false alarm (PFA) of the CR system. Most importantly, there are some recent CR-based applications, such

as in CR-based wireless sensor networks (WSNs) where remotely deployed CR-based sensors are required.

These sensors are often unreachable after being deployed, and thus are required to autonomously readjust

their parameters based only on the input data sample acquired per time [12]. In this regard, we define such

ATAs that are capable of self-reconfiguring their parameters at runtime and during online use without human

intervention as self-adaptive threshold adjustment algorithms (SATAs).

It is difficult to design SATAs using commonly available parametric-based ATAs because of a lack of

validmethods to achieve self-parameter adjustment in such parametric-basedmethods. Thus, an approach to-

wards developing SATAs may involve constructing non-parametric-based threshold adjustment approaches,

which can be extended easily to become fully self-adaptive methods. Further, non-parametric methods are

suitable for use because by being distribution-free in nature, they are typically independent of the unknown
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parameters of many probability distribution functions often associated with most parametric-based meth-

ods. In this regard, we note that non-parametric methods are methods that do not require that the signal of

interest being analysed meets certain assumptions about its underlying probability distribution. Put simply,

the parameters are not fixed and neither is the type of probability distribution used in the method to model

the input signal. In the strict sense, they are called distribution-free methods because it is not required that

any probability distribution be assumed in order to construct the method [13]. On the other hand, para-

metric methods depend on a set of fixed parameters of a suitable probability distribution used to construct

the method. Essentially, in most parametric methods, the input data is often assumed to originate from a

certain distribution, which is assumed to be known a priori as well as its parameters [13]. Consequently,

we approach a new pertinent research question in the present article, which is, how can a self-adaptive and

non-parametric (distribution-free) method be developed for useful threshold estimation in CR applications?

We note that if such methods are developed, they will be highly useful, particularly for CR-based appli-

cations where remotely deployed self-reconfiguring sensors are required, for example in military, marine,

geological-based WSN, and other IoT-based applications [14–16]. Further, developing such methods will

provide the following benefits: SATAs deployed in CR systems will experience fewer cases of erroneously

determined parameter values, which are typically caused by human mistakes during the fine-tuning process.

SATAs will be able to accurately and automatically adjust their parameter values towards matching chang-

ing spectra conditions, and CR systems will be able to react much quicker to sudden changes in spectra

conditions.

Thus, in the present article, we propose a method called the non-parametric amplitude quantization

method (NPAQM) for estimating accurate threshold values by self-adjusting its internal parameters. The

NPAQM is a SATA since it can autonomously adjust its internal parameters at runtime and during online

use. To realize these characteristics, the NPAQM works by evaluating a set of potential threshold values

obtained by quantizing the magnitude of the frequency domain input signal. It then measures the goodness

of each threshold value using the first order difference of the between-class variance function derived from the

Otsu’s algorithm. This enables the NPAQM to compute a candidate threshold value that maximally separates

noise from signal elements in an input signal sample. In addition, a corollary is derived from the principle of

discriminant analysis behind the Otsu’s algorithm, from which a new heuristic is constructed that maintains

a low false alarm rate for the NPAQM under noise-only regimes. We evaluated the NPAQM extensively
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under different possible operating conditions and our findings have led to the following contributions:

1. We have developed a new self-adaptive and non-parametric threshold adjustment algorithm called the

NPAQM, which does not require gray-scale level computations or histogram generation as obtained

in existing methods.

2. We have derived a new and interesting corollary from the Otsu’s algorithm to determine the unimodal-

ity of an unknown distribution. We then constructed a new heuristic algorithm based on the corollary

to improve the NPAQM’s performance under noise-only regimes, a condition in which many existing

methods typically under-perform. This heuristic algorithm is described in Section 4.3.

3. The NPAQM selects an effective threshold value using the first order difference of the between-class

variance function, which differentiates the NPAQM from existing methods. It was extensively tested

and compared with existing non-parametric methods under different operating conditions and shown

to achieve improved performance.

The rest of the article is structured as follows: the related work is discussed in Section 2. The detection

system is presented in Section 3 and full details of the NPAQM is provided in Section 4. Our method of

analysis is elucidated in Section 5. The results obtained are presented and discussed in Section 6, while

conclusions are drawn in Section 7.

2. Related Work

There are two main threshold estimation approaches deployed in most ED-based CR systems namely,

the fixed and adaptive threshold estimation methods. Some recent use-cases of the fixed threshold approach

can be found in [4–6]. However, since the fixed approach cannot adapt to fluctuating spectra conditions,

consequently, its performance declines under conditions of noise uncertainty, fading, interference, and the

general randomness from thermal and ambient noise measurements [7, 9, 11]. As a consequence, recent

attention has been drawn to the importance of ATAs since they naturally outperform the fixed threshold

approach. In this regard, ATAs can be further grouped into two broad classes namely, the parametric and

non-parametric-based methods.

In most cases, many notable ATAs are parametric-based algorithms, which depend on presumed noise

distributions for their configuration. The forward consecutive mean excision (FCME) algorithm is an ex-

ample of a popular ATA that depends on two basic parameters, namely the threshold factor Tcme and the
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percentage of clean elements Q [17, 18]. In [18], authors configured the FCME algorithm using different

noise distributions, such as the exponential distribution to develop theoretical formulas to compute Tcme,

while assuming different values for Q. In practice, such theoretically assumed distributions may deviate

from the actual ground-truth, for example in cases where a small number of elements are sensed. This may

lead to poorly estimated parameter values that may undermine the performance of the FCME algorithm.

A similar argument suffices for other ATAs such as the recursive one-sided hypothesis testing (ROHT)

technique [19], and the first order statistical technique (FOST) [20], Barne’s approach [21], and many other

methods as in [22–26]. Essentially, these methods depend on critical parameters that are fine-tuned a priori

based on some input noise level or some theoretical distribution of the input sample. However, once these val-

ues are defined, it is often impossible to adjust their parameter values autonomously during online/realtime

use, thus lacking the characteristics required of a SATA. Furthermore, these methods may assume more

about a given sample distribution as against non-parametric methods. When these assumptions are correct,

parametric ATAs are able to estimate more accurate threshold values than most non-parametric methods.

However, since more is often assumed by parametric ATAs, thus, when these assumptions are incorrect,

these methods typically fail, which limits their robustness.

Consequently, the present article focuses on non-parametric ATAs, which are typically distribution-

free methods [27]. To the best of our knowledge, we have identified two different non-parametric methods

deployed in the literature for signal detection in CR applications. The first approach appears in [19], which

adopts the Otsu’s algorithm in order to estimate accurate threshold values for ED-based CR systems. Therein,

authors computed the gray-scale level and histogram of the input sample and applied Otsu’s algorithm to

compute accurate threshold values. However, in a later publication, authors in [9] noted that Datla’s approach

in [19] may be limited in two ways: first, it was found that using Otsu’s algorithm introduces significant

processing delay since there is need to compute gray-scale levels. Second, Datla’s approach becomes limited

under noise-only conditions since it has nomechanism to determine this case. Consequently, such limitations

were avoided in [9] by circumventing the need to compute gray-scale levels albeit the need to compute

histograms, which further limits the algorithm’s performance. Thus, different from these approaches, we

seek to alleviate the aforementioned limitations by circumventing the need for both gray-scale and histogram

computations. In this regard, we introduce a new method in Section 4 as well as a heuristic algorithm that

maintains a low false alarm rate for our method under noise-only regimes. Our proposed methods and the
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new test for the unimodality of an unknown distribution are contributions that distinguish the present article

from existing works. There are many future CR-based applications that may benefit from our proposed

technique, possibly in future Internet of Things (IoT)-based applications in 5G [28] as well as in cluster-

based CR applications in industrial IoT [29].

3. The Detection System

Figure 1 presents the front-end model of an energy detector (ED) deployable for signal detection in CR

applications. The model comprises an adaptive threshold adjustment block in which our proposed algorithm

is deployed. Essentially, the input signal, which is often corrupted by channel effects such as fading and

ambient/device noise is received via the input antenna. The received signal y(t) is modelled as

H0 ∶ y(t) = w(t); for t = 1, 2, ..., N (1)

H1 ∶ y(t) = ℎ(t) ∗ s(t) +w(t); for t = 1, 2, ..., N (2)

where t is the time index, N is the total number of time-domain elements, ℎ(t) is the channel impulse

response function, s(t) is the transmitted signal,w(t) is the ambient/system noise modelled as additive white

Gaussian noise (AWGN), and the symbol ’∗’ denotes the convolution operator. In this case, N is obtained

as N = ⌈Ts × fs⌉, where ⌈⋅⌉ denotes the ceiling function, Ts is the total sensing period, and fs is the

sampling frequency. The H0 hypothesis describes the case where the received signal comprises elements

of a noise-only sample, whereas H1 corresponds to the case where the received signal comprises elements

of a signal-plus-noise sample. We consider the channel response function ℎ(t) as described by Rayleigh

fading distribution. Rayleigh distribution was considered since it is most applicable in non-line of sight

communication networks deployed in heavily built-up urban environments [30]. In our simulation, we used

Jake’s model based on summing sinusoids to simulate Rayleigh fading channels following the approach

in [31]. Furthermore, we considered the case for frequency-flat fading channels in our simulation since our

concern has to do with television white spaces (TVWS), which are typically less than 6MHz in bandwidth. In

this case, such a bandwidth size and less would typically experience to a greater extent frequency-flat fading

channels as against frequency-selective fading channels, which arise more often in broadband channels [32].

Generally, since our method operates upon frequency domain-based elements, thus, the ED computes in
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Figure 1: A simple front-end model of an ED-based CR system

the energy estimator block the power spectral density (PSD) of y(t) as Y (f ), where f denotes the frequency

index of each channel. For this purpose, we used the fast Fourier transformation (FFT) algorithm to compute

Y (f ) based on the approach in [33]. Hence, in the frequency domain, the corresponding hypothesesH0 and

H1 translate to:

H0 ∶ Y (f ) = W (f ), for f = 1, 2, ..., F (3)

H1 ∶ Y (f ) = H(f ) ⋅ S(f ) +W (f ), for f = 1, 2, .., F (4)

where F is the total number of frequency channels in the measured/sensed bandwidth and other variables

therein are the corresponding frequency domain transformed variables of (1) and (2), respectively. Here, F

is concisely determined as

F = 2⌈(log2(Ts×fs)−1)⌉ (5)

A quick derivation of (5) is presented in Appendix A. Then, following Figure 1, the sample Y (f ) for f =

1, 2, 3, ..., F is fed to the self-adaptive threshold adjustment block where processing takes place in order

to compute a suitable threshold value  . Then, each element in Y (f ) is compared to  in the decision

maker block towards determining the state of each channel f . It is worth noting that an element in this

case refers to a single frequency channel f , whereas a set of elements is considered to be a single sample,

which corresponds to a single sweep of a number of contiguous frequency channels (i.e the entire sensed

bandwidth). If a channel turns out to be free (i.e. Y (f ) < ), then we declare H0, which implies that the

channel contains noise-only elements, whereas, if the channel is occupied (i.e. Y (f ) ≥ ), then we declare
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H1, which implies that the channel contains signal-plus-noise elements.

In subsequent sections of this article, we shall refer to Y (f ) simply as Yf , where f maintains its meaning

as the frequency channel index and F remains the total number of frequency channels. In essence, we aim

in the present article to compute effective  values using our newly proposed method in order to accurately

decide which of the cases (i.e. H0 orH1) may suffice under different channel conditions.

4. The Proposed Method

In this section, we describe the non-parametric amplitude quantization method (NPAQM) and derive

an interesting corollary from the theoretical basis of the Otsu’s algorithm. We then present a new heuris-

tic algorithm based on the new corollary in order to improve the NPAQM’s performance under noise-only

regimes. This section closes with an analysis of the time complexity of the NPAQM.

4.1. The Non-parametric Amplitude Quantization Method

We aim to develop an effective SATA deployable in an ED for signal detection in CR applications. Our

idea stems from the non-parametric approach associated with the Otsu’s algorithm. In order to construct

our method, we consider the PSD sample Yf =
{

y1, y2, ..., yF
}

as the input to our algorithm. The PSD

sample is typically obtained via the sensing front-end presented in Figure 1. The total number of elements

F is obtained using (5). Since the desired threshold value lies within the magnitude range of Yf , an intuitive

approach to determine this value is to first quantize Yf into discrete values and then evaluate each discrete

value to determine their respective levels of effectiveness. The idea of quantization is introduced to limit

the search space for the candidate threshold value. In most cases, the amplitude range of the input signal

may be quite large to search every single value in order to determine the best choice of the threshold value.

Consequently, it is more efficient to quantize the magnitude range and then to test each quantized value

instead of all possible values towards determining the best threshold value. Thus, in order to effectively

quantize Yf , we adopt Doane’s formula in [34] to automatically determine the desired quantization levelM

suited for Yf . Doane’s formula was considered because of its simplicity as well as for its effectiveness over

non-normal data, which is often encountered in many communication networks [13]. Thus, the NPAQM
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computes the quantization levelM as [34]:

M =
⌈

1 + log2 F + log2

(

1 +
|g|
�g

)⌉

, (6)

where |⋅| refers to the modulus function, ⌈⋅⌉ is the ceiling function, and g is the estimated 3rd-moment

(skewness) of the distribution obtained as

g =

1
F

F
∑

i=1

(

Yi − Yf
)3

(

1
F

F
∑

i=1

(

Yi − Yf
)2
)

3
2

, (7)

where Yf denotes the mean of the input sample set Yf and

�g =

√

6(F − 2)
(F + 1)(F + 3)

. (8)

Next, in order to determine the quantization step size q for Yf , the NPAQM reorders the elements in Yf

as follows: Y(f ) =
{

y(1), y(2), ..., y(F )
}

, where Y(f ) is sorted in an ascending order such that y(1) < y(2) < ... <

y(F ). This reordering process enables the NPAQM to obtain a set of potential threshold values, which will

be examined to determine the most effective value for signal detection. To achieve this, we compute q based

onM as

q =
⌈y(F ) − y(1)

M

⌉

, (9)

By using q, the NPAQM then obtains the reordered quantized values of Y(f ) as Y(m), where

Y(m) =
{

y(1), y(1) + q, y(1) + 2q, ..., y(1) + (M − 1)q
}

. This process is a step further towards constructing a

set of potential threshold values required for signal detection. However, for sake of clarity, we rewrite Y(m)

simply as Y(m) =
{

y(1),y(2),..., y(M)
}

, where Y(2) = y(1)+q, Y(3) = y(1)+2q, ..., Y(M) = y(1)+(M −1)q, which

are arranged in the following order y(1) < y(2) < ... < y(M). Each value in Y(m) is considered to be a potential
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threshold value and Y(m) is rewritten for notational convenience as  i expressed as

 i =
{

1,2,..., M
}

, (10)

where 1 = y(1), 2 = y(2), ..., M = y(M). At this point, we note that  i is a collection of potential threshold

values. Thus, when applied to Yf , each value in  i would bifurcate Yf into two subsets, namely the noise-

only subset !( i), and the signal-plus-noise subset S( i), where elements with values smaller than  i are

considered to be noise-only elements, whereas elements with values larger than  i are considered to be

signal-plus-noise elements. We then obtain the values of !( i) and S( i) as

!( i) =
{

Y(f ) <  i
}

=
{

y(1), y(2), ..., y(k)
}

, (11)

S( i) =
{

Y(f ) ≥  i
}

=
{

y(k+1), y(k+2), ..., y(F )
}

, (12)

for  i = 1,2,..., M , where k refers to the number of elements in !( i), that is, the number of elements

with values smaller than  i. Then, based on the principles of discriminant analysis elucidated in [35], we

proceed to compute the between-class variance of the subsets !( i) and S( i) for each threshold element in

 i as [35]:

�2( i) = Ps( i) ⋅ P!( i)
[

S( i) − !( i)
]2
, for  i = 1,2,..., M (13)

where Ps is the probability of signal elements in S( i), P! is the probability of noise elements in !( i),

S( i) is the mean of the signal subset S( i), and !( i) is the mean of the noise elements in !( i). The simple

probabilities Ps and P! in (13) are computed as

P!( i) = k
F
, (14)

Ps( i) = 1 − k
F
. (15)

In the ideal sense, the between-class variance function of (13) is a parabola (specifically, a quadratic

function), which should have a vertex point (a point of inflexion) that corresponds to the maximum value of

the function. However, in real-world practice, such a single point of inflexion may not always exist for every

input sample, as there may be several elements with the same between-class variance value (i.e. multiple
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modes). Consequently, the maxima of (13) may for this reason be uniformly distributed across a range of

elements, which makes it difficult to determine the most effective boundary (or inflexion point) between the

noise and signal elements in an input sample. Therefore, a better approach is to obtain the first derivative of

the between-class variance function, which better reflects the initial point of change between the magnitude

of the noise and the signal elements in an input sample. In consequence, we apply the first order difference

function of (13) in the NPAQM as follows:

�m( i) =
|

|

|

�2m+1( i) − �
2
m( i)

|

|

|

, for m = 1, 2, ...,M − 1. (16)

and we obtain the most effective threshold eff as

�
(

eff
)

= min
for  i=1,2,...,M

�( i) (17)

Thus, the most effective threshold value eff is found to be the threshold value that minimizes (17).

Essentially, following the constructs described in (6) - (17), we easily summarize the NPAQM as presented

in Algorithm 1. Here, Algorithm 1 highlights the fact that the NPAQM does not require gray-scale compu-

Algorithm 1: Non-parametric amplitude quantization method
Input: PSD sample: Yf =

{

y1, y2, ..., yF
}

Output: Effective threshold value, eff
1 Reorder input PSD in an ascending order as Y(f ) =

{

y(1), y(2), ..., y(F )
}

2 Compute the optimal quantization levelM using (6)
3 Compute the quantization step size q using (9)
4 Obtain the ordered quantized values as Y(m) =

{

y(1), y(1) + q, y(1) + 2q, ..., y(1) + (M − 1)q
}

5 Obtain the candidate threshold values  i using (10) based on the quantized values Y(m)
6 for  i = 1,2,..., M do
7 Compute !( i) using (11)
8 Compute S( i) using (12)
9 Compute P!( i) using (14)

10 Compute PS( i) using (15)
11 Compute �2( i) using (13)
12 Compute �( i) using (16)
13 end
14 Obtain the desired threshold eff using (17)
15 Return eff

tations or the generation of histograms as obtained in other methods (see [9, 19]). By reordering the input
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sample, the NPAQM circumvents the need for computing a histogram function as in [9, 19] since it only

needs to count the number of elements in just two subsets !( i) and S( i) at each quantized value  i (see

steps 7 and 8 of Algorithm 1). Further, the NPAQM is indeed a non-parametric approach since it is obviously

independent of any presumed noise distribution. In the following subsections, we shall consider the case for

automatically controlling the false alarm rate of the NPAQM under noise-only regimes.

4.2. A New Corollary to determine the unimodality of an Unknown Distribution

In the study of CR systems, it is important to develop new and effective methods to autonomously de-

termine when a sample contains only noise elements, which is a case for the test of the unimodality of

an unknown distribution. In this regard, we propose a new corollary to determine the unimodality of an

input sample arising from an unknown distribution. This corollary would determine whether a measured

sample contains only noise elements or not since noise-only elements are typically described by unimodal

distributions [13].

As a background to the new corollary, let us consider the sketches in Figure 2, which depict four different

cases. The first case in Figure 2a depicts a clear bimodal distribution with two classes c0 and c1,which relates

to the class of noise c0 and signal c1 elements, respectively. In the case of the bimodal distribution, we know

from the theoretical constructs in [35] that the between-class variance �2b() of ameasured sample will always

exist, i.e �2b() > 0, where  denotes the threshold. However, we consider three other cases in the present

article that describe the case for unimodality, which is a more difficult case to determine automatically in

practice. These are shown in Figs. 2b - d, respectively. For example, Figure 2b may represent a very

low signal-to-noise ratio (SNR) regime obtained in many signal processing applications. Here, the signal

elements are totally buried in noise. In Figure 2c, we sketch the distribution of a noise-only sample, while in

Figure 2d, the case of a signal-only sample is depicted. In all three cases (Figs. 2b - d), the unimodality of the

different distributions is clearly depicted, for which we shall now provide a new corollary to automatically

determine this case.

First, we consider a few theoretical constructs associated with the Otsu’s algorithm, which are based on

the principles of discriminant analysis [35]. In this regard, a typical histogram p(i) obtained from ameasured

sample
{

Yf
}F
f=1 , where F is the total number of elements, will normally be generated and quantized into L

bins, such as i = 1, 2, ..., L. Based on these L bins, a threshold value  is sought that bifurcates these bins i
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Figure 2: Sketches of Different Density Distributions: (a) Bimodal Distribution, (b) Unimodal Distribution with
a mixture of two classes, (c) Unimodal Distribution with a single class, for example, Noise-Only Sample Sets, (d)
Unimodal Distribution with a single class, for example, Signal-Only Sample Sets

into two classes c0 and c1, where c0 consists of i = 1, 2, ...,  bins, and c1 consists of i = +1, +2, ..., L bins.

Otsu has shown in [35] that the optimal  can be exhaustively searched for by maximizing the inter-class

variance of the L bins of the histogram. Furthermore, in [35], the inter-class variance (or between-class

variance) function to be maximized is given as:

�2b() = !0!1
[

�0 − �1
]2 , (18)

which is expressed in terms of class probabilities !0 and !1 computed as follows:

!0 =
∑

i=1
p(i) = !(), (19)

!1 =
∑L

i=t+1
p(i) = 1 − !(). (20)

and class means �0 and �1 obtained as

�0 =
∑
i=1 ip(i)
!0

=
�()
!()

, (21)

�1 =

∑L
i=+1 ip(i)

!1
=
�Y − �()
1 − !()

, (22)
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where the total mean �Y of
{

Yf
}F
f=1 is computed as

�Y =
∑L

i=1
ip(i), (23)

where p(i) are the normalized frequencies (probabilities) corresponding to each bin i of the histogram.

The following relations have been readily verified in [35]:

!0�0 + !1�1 = �Y (24)

!0 + !1 = 1 (25)

By considering (19) - (25) in (18), the between-class variance becomes

�2b() =

[

�Y!() − �()
]2

!() [1 − !()]
(26)

Typically, the desired (optimal) threshold ∗ is the threshold that produces the maximum between-class

variance computed in (26) over the total number of bins L. This is obtained as

�2b(
∗) = max

1≤≤L
�2b() (27)

Based on the constructs in (18) - (27), a new corollary can be obtained to determine the unimodality of

an unknown distribution. First, we consider the following axiom: The between-class variance of a unimodal

distribution does not exist, which is mathematically stated as: �2b() = 0. This axiom is obvious from Figure

2b - d where there exist no spatial separation between the classes in the different unimodal cases. Therefore,

considering �2b() = 0 in (18), we obtain

�0() = �1(), (28)

Equation (28) is valid in the practical sense since all unimodal distributions are characterized by a single

class. Consequently, it follows literally that the optimal threshold value ∗ obtained in (27) based on Otsu’s
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algorithm will yield �2b(
∗) = 0 for the unimodal case. Hence, (26) becomes

�Y!(∗) = �(∗), for �2b(
∗) = 0. (29)

Thus, in order to keep (25) valid in the unimodal case, it follows that either of the below statements is true:

{

!0 = 0, !1 = 1
}

or
{

!0 = 1, !1 = 0
}

, (30)

which means that !(∗) = 0 or 1 (recall (19)), thus implying that (29) becomes either of the following:

�(∗) = �Y , for !(∗) = 1 (31)

�(∗) = 0, for !(∗) = 0 (32)

Here, (31) and (32) are easily considered to be two new corollaries with interesting consequences. First, (32)

implies that the mean corresponding to the optimal threshold value of the measured sample is zero following

the use of the Otsu’s algorithm. This implication is unrealistic and impractical since every measured sample

set must have a mean value. On the other hand, (31) implies that the mean corresponding to ∗ for a unimodal

distribution is equal to the mean of the measured sample set. This implication provides a more practical

consequence, which we state as follows:

"The optimal threshold value computed using the Otsu’s algorithm for a set of measured sample values

obtained from a unimodal distribution is equal to the total mean of the entire sample set."

Following this new corollary, we present the following steps of a simple and practical protocol to auto-

matically determine a unimodal distribution from an unknown measured sample:

1. We assume that the input sample set is
{

Yf
}F
f=1

2. Use Otsu’s algorithm in [35] to obtain an optimal threshold ∗ for
{

Yf
}F
f=1

3. Compute the mean of
{

Yf
}F
f=1 as �Y = 1

F

∑F

f=1
Yf .

4. If ∗ is equal to �Y , (i.e. ∗ − �Y ≈ 0), then
{

Yf
}F
f=1 is a product of a unimodal distribution.

5. However, if ∗ >> �Y , then
{

Yf
}F
f=1 may belong to either a bimodal or multimodal distribution. In

this regard, the case for determining either bimodal or multimodal distributions is already well-known

(see [35]).
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To provide an insight into the physical parameters of the derived corollary, let us consider a special

case where the measured PSD output from a spectrum analyser is denoted as Yf . In this case, the spectrum

analyser is assumed to have swept through several channels f = 1, 2, 3, ..., F . The elements of the sensed

sample are collated in step 1 of the protocol, which implies that processing begins after a single sweep of

the target spectrum (or bandwidth) is completed. Then, Otsu’s algorithm is applied in step 2 to
{

Yf
}F
f=1 in

order to obtain an optimal threshold ∗. The mean of the sample �Y is computed in step 3, and comparison

is conducted in step 4 between ∗ and �Y . Decision regarding unimodality or multimodality is made as in

step 4 or step 5 of the protocol.

4.3. New Heuristic to select thresholds in Noise-only regimes

Following the new corollary in Section 4.2, we construct a new heuristic to determinewhether ameasured

sample contains only noise elements or not. In this article, a heuristic algorithm is defined as an algorithm

that finds a solution among a number of possible solutions, however, they may not be guaranteed to always

find the best solution [36]. Thus, they are considered to provide approximate and not exact solutions. In

our case, once determined to contain only noise elements, the heuristic then selects the element with the

maximum value in the sample as the appropriate threshold value since this threshold value will lie at or

above the noise level. Thus, this approach automatically tries to ensure that the NPAQM maintains a low

PFA rate. The advantage of our heuristic is that users no longer need to manually pre-adjust PFA rates

per changing spectra condition. Instead, our heuristic strives automatically to keep the PFA rate as low as

possible per input sample.

To achieve this, our heuristic measures the degree of closeness between the estimated threshold value,

eff , obtained using Algorithm 1 and the mean �Y of the entire ordered sample set (recall step 3 in Section

4.2). If the difference is smaller than 10 % of the entire sample range (y(F ) − y(1)), and eff is less than or

equal to �Y , then our heuristic indicates that the measured sample contains only noise elements. The entire

process is summarized in Algorithm 2. In this regard, we have conducted several preliminary experiments

using different values ranging from 1 to 20 % and found no reduction in the false alarm rate of our heuristic

under different noise-only conditions. Thus, it is not necessary to search larger percentage or the entire

sample range since the probability of including actual signal elements may increase as one searches farther

away from the edges of the spectrum, as well as noting that this may increase the processing time of the

algorithm. Further, since our heuristic will only operate under the noise-only condition (following step 2
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Algorithm 2: Heuristic Algorithm to determine thresholds in Noise-only regimes
Input:

1. PSD elements, Yf , for f = 1, 2, ..., F
2. eff obtained from Algorithm 1

Output: Final threshold value, eff
1 Compute the mean of Yf as �Y = 1

F
∑F
f=1 Yf

2 if
⌈

eff
⌉

≤ ⌈�Y ⌉ then
3 if |

|

�Y − eff |
|

≤ 0.1 ∗
[

y(F ) − y(1)
]

then
4 � = 0.1 × F //Obtain index of edge elements//

5 eff = max
[

max
f=1,2...,�

(Yf ), max
f=F−�,F−�+1,...,F

(Yf )
]

6 else
7 eff = eff //eff is left unchanged//
8 end
9 else

10 eff = eff //eff is left unchanged//
11 end

of Algorithm 2), thus, it is designed to find the maximum value within any percentage value of the total

number of elements assigned by the user (following step 5 of Algorithm 2). Therefore, this implies that

only higher threshold values will be selected even if larger percentage values were assigned by the user, thus

further reducing the false alarm rate as desired in noise-only conditions. Consequently, searching through

10 % of the entire sample size ensures that, at least, part of the edges of the spectrum will be explored

towards determining the maximum noise (peak) value that establishes an effective threshold value. For this

reason, Algorithm 2 is only referred to as a heuristic. Nevertheless, sequel to performing the unimodality

test via step 2 of Algorithm 2, the heuristic selects a final threshold value by examining the edge elements

in Yf where it is considered most probable to find noise elements. This assumption is further supported

following the fact that the shape factor of typical bandpass filters is defined by responses that rise and fall at

the spectra boundaries [37], where the smallest noise elements are most probable to be found. Consequently,

our heuristic selects an appropriate eff that corresponds to the maximum element value obtained from both

tails of the power spectra.

Summarily, since every input sample will contain either only noise or a combination of signal-plus-noise

elements, it becomes straightforward to deploy our methods as follows: In the case wherein the input sample

comprises both signal-plus-noise elements (i.e the case for bimodality), Algorithm 1 operates effectively in
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estimating a threshold value in this case. However, its performance may be limited by the signal-to-noise

ratio and number of elements in the input sample. On the other hand, if the input sample contains only

noise elements (i.e the unimodality case), this will be effectively determined by Algorithm 2 (the heuristic),

which is based on the proposed test for unimodality. Essentially, our method works by sequentially executing

the NPAQM (Algorithm 1) followed by Algorithm 2 in order to compute a useful threshold value for the

effective detection of PU signals in a specific channel. We shall present results in Section 6 to demonstrate

the effectiveness of our proposed methods.

4.4. Time Complexity Analysis of the NPAQM

We analyse the time complexity (TC) of the NPAQM as follows: We consider the number of machine

instructions required to execute the NPAQM as a basis for approximating the TC. To achieve this, we remove

all constant factors within the steps of theNPAQM to ensure that its running time scales according to the input

sample size F , particularly as F tends to infinity. Similarly, we exclude lower order terms to asymptotically

describe the TC [38]. Thus, we note that (6) - (17) are evaluated once in constant time reducing to steps of

(1). The NPAQM evaluates a for loop in steps 6 - 9 of Algorithm 1, thus having a TC of (M), where

M ≪ F. The NPAQM reorders the input sample
{

Yf
}F
f=1 in step 1 of Algorithm 1 based on a TC of (F ),

which can be obtained using any of the best sorting algorithms, such as Timsort [39]. Without any other

nested for loop in both Algorithms 1 and 2, and since F ≫ M, the NPAQM approximates to an overall TC

of (F ), which makes for a highly scalable and fast algorithm comparable to other well-known algorithms

in the literature.

5. Empirical Method of Analysis

We analysed and compared the NPAQM against other methods using the empirically computed PD and

PFA of each algorithm described statistically as

PD = Pr(Yf >  ∣ H1), f = 1, 2, ..., F (33)

PFA = Pr(Yf ≥  ∣ H0), f = 1, 2, ..., F (34)

where Yf is the input PSD sample with each element located at a different frequency index f = 1, 2, ..., F ,

and  is the threshold value estimated by the algorithm.
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We computed the receiver operating characteristic (ROC) curve (PD vs PFA) using Fawcett’s empirical

approach [40] as adapted in Figure 3. First, we labelled each input sample in a binary fashion to obtain the

ground-truth of the different samples used in our simulations. By binary fashion, we refer to the labelling of

zeroes and ones, where zeroes denote noise elements, whereas ones denote signal elements. The different

samples used in our experiments are presented and discussed in Section 6. The ground-truth of each sample

was obtained using an a priori known true threshold value (see Figure 3) corresponding to each respective

sample. In this regard, the peak value of the noise floor in each sample was selected to be the true threshold

value, which we defined based on the thermal noise floor of the simulated ED-based CR system. Thus, for

the ground-truth of each sample, we considered the magnitude of each element above the true threshold

value as a true signal element (and this was labelled as 1), whereas elements with magnitude below the true

threshold value were considered as noise elements (and were labelled as 0). We used this binary procedure

to obtain the ground-truth corresponding to each test sample.

Subsequently, we applied the same binary labelling procedure based on the actual threshold value esti-

mated by the NPAQM and other algorithms in order to obtain the real outcome. Then, using the well-known

confusion matrix [40], a missed detection is declared to have occurred if an algorithm labels an element as

0 instead of 1 as in the ground-truth (see Figure 3a). We declared a false alarm to have occurred if an algo-

rithm labels an element as 1 instead of 0 as in the ground-truth (false positive (see Figure 3b)). Likewise,

we declared a correct detection to have occurred if an algorithm correctly labels an element as 1 similar to

the ground-truth (i.e. a true positive).
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Figure 3: Method of Labelling and Analysis showing different errors [41]
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Following the above, the PD per sample was then computed as [40]:

PD =
�
�
, (35)

where � denotes the total number of true positives (truly detected signal elements) if Yf >  ∣ H1, and � is

the total number of actual true signal elements (obtained as the total number of ones in the ground-truth).

The PFA per sample was computed as

PFA =
'
�
, (36)

where ' denotes the total number of false positives (falsely detected signal elements) if Yf >  ∣ H0, and �

is the total number of true noise elements (obtained as the total number of zeroes in the ground-truth). Our

findings are reported in the next section.

6. Results and Discussion

We present and discuss our findings in two main subsections: first, we present results to validate the new

corollary to automatically determine a unimodal distribution. Then we discuss our findings based on the

performance of the NPAQM under different operating spectra conditions. In testing the NPAQM, first, we

present results to validate our new heuristic algorithm under noise-only conditions and thereafter present our

findings under different signal-plus-noise conditions. Our findings are discussed relative to the specification

of the IEEE 802.22 standard for CR, which states that PD > 0.9 and PFA < 0.1 [42]. All simulations

were conducted using MATLAB version R2017b and the entire samples used in our evaluation are made

freely accessible in [43]. Importantly, since our research focuses on non-parametric SATAs, we compared

the NPAQM with other non-parametric methods such as the methods in [19] and [9]. We note that Datla’s

approach in [19] is based strictly on the Otsu’s method, so we shall refer to it simply as the Otsu’s method,

whereas the method in [9] is termed the modified-Otsu, which we term Mod-Otsu. It is noted also that the

signal-to-noise ratio (SNR) considered in our experiments refers to the difference between the maximum

magnitude of the signal element (in dB) and the maximum (peak) magnitude of the noise element (in dB)

within a specified bandwidth. Such a difference is more or less related to the dynamic range of the input

sample.
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Figure 4: Different Sample Histograms: (a) Unimodal Gaussian Distribution, (b) Unimodal uniform Distribution,
(c) Unimodal Chi-square Distribution, (d) Bimodal Gaussian Distribution

6.1. Tests to validate the New Corollary

In this section, three notable processes, including the Gaussian, uniform and Chi-square processes were

considered to validate the new corollary. These processes were considered to analyse the response of our

protocol to the effect of both symmetric (Gaussian and uniform) as well as asymmetric (Chi-square) distri-

butions. The values in each table presented in this section were obtained by averaging over 1000 different

Monte Carlo trials. In each table, the following metrics are presented and described as follows:
{

�k
}K
k=1

denotes the theoretical mean used in the random number generator corresponding to each process (or dis-

tribution), �Y is the actual mean value computed from the randomly generated sample, and ∗ denotes the

optimal threshold value estimated via the Otsu’s algorithm. We used the independent t-test statistical mea-

sure to compare the actual mean and the mean of the estimated threshold values for samples generated via the

different processes. The t-test was considered since it effectively determines whether the means of the two

sets of data are significantly different from each other. The measure of statistical significance is stated per

experiment based on the computed two-tailed P-value. In this regard, we tested our protocol using the Gaus-

sian, uniform and Chi-square models provided in MATLAB (version R2017b) to generate random numbers

corresponding to each distribution. The sample histograms corresponding to each distribution captured from

one of several Monte Carlo trials are shown in Figure 4.
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Table 1
The parameter values from a unimodal Gaussian Distribution over a fixed variance for a computed two-tailed
P − value of 0.648 and t − test value of -0.0003

k F �k �Y ∗
1 50 0.0000 0.0070 0.0080
2 100 1.0000 1.0010 1.0030
3 200 2.0000 2.0050 2.0020
4 300 3.0000 3.0040 3.0070
5 500 4.0000 4.0013 4.0013
6 1000 5.0000 5.0082 5.0068

6.1.1. For unimodal Gaussian Process

A set of random numbers
{

Yf
}F
f=1 were generated based on the Gaussian distribution model over differ-

ent sample sizes F using different theoretical mean values
{

�k
}K
k=1 , forK = 6, and using a fixed variance of

�2 = 5 for each k. In this case, the following set of theoretical mean values were used �k = {0, 1, 2, 3, 4, 5} .

Subsequently, 1000 Monte Carlo trials were conducted in order to arrive at an average value for both �Y and

∗. The results obtained are presented in Table 1.

While it may be straightforward to observe (in Table 1) that the values of �Y and ∗ are approximately

the same, nevertheless, for a computed two-tailed P − value of 0.648 and a t − test value of -0.0003, it is

noted that there is not a statistically significant difference between the values of �Y and ∗, respectively. The

new test is shown to be further valid under different sample sizes as shown in Table 1. In this case, both

the distribution’s mean �k and the sample sizes F were varied simultaneously and the values of �Y and ∗

remained approximately equal (i.e. �Y − ∗ ≈ 0). Consequently, the results in Table 1 confirm that the

theoretical corollary of (31) is valid for the case of the unimodal Gaussian distribution.

6.1.2. For unimodal uniform Process

A similar procedure as above was carried out to test the case of a uniform unimodal process. Uniformly

distributed random numbers were generated over the range [u1, u2]. In this case, the lower range �1 was

fixed at u1 = 0, while the upper range u2 of the distribution was varied. We then subjected these uniformly

generated samples to the new protocol of the corollary. The results obtained are provided in Table 2.

We show in Table 2 that both �Y and ∗ have very close values, which validates the theoretical conclusion

of the new corollary in (31) for the uniform unimodal process based on a t-test value of -0.0002 and a two-

tailed P-value of 0.999846.
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Table 2
The parameter values for the unimodal uniform Distribution for a computed two-tailed P − value of 0.999846
and t − test value of -0.0002

u2 �Y ∗
5.0000 2.4998 2.5008
10.0000 4.9972 4.9973
15.0000 7.5000 7.4975
20.0000 9.9987 9.9985
25.0000 12.4952 12.4940
30.0000 14.9815 14.9875

Table 3
The parameter values for the unimodal Chi-square Distribution for a computed two-tailed P − value of 0.95 and
t − test value of -0.347

V �Y ∗
5.0000 5.0031 5.1752
10.0000 9.9939 10.1839
15.0000 14.9893 15.1783
20.0000 20.0048 21.1805
25.0000 24.9928 25.1654
30.0000 29.9882 30.1688

6.1.3. For unimodal Chi-square Process

We tested the new corollary using Chi-square randomly generated numbers based on different degrees of

freedom V . These randomly generated samples were subjected to our new protocol over 1000 Monte Carlo

trials to validate the protocol. The results obtained are presented in Table 3 showing again that the values of

�Y and ∗ are approximately equal (Table 3). To confirm this, we computed a two-tailed P − value of 0.95,

and a t − test score of -0.347 with 10 degrees of freedom, which confirms that there is not a statistically

significant difference between �Y and ∗ in Table 3. Thus, we have demonstrated further that the new

corollary (see 31) is valid for the case of an asymmetric distribution such as the Chi-square distribution.

6.1.4. For Bimodal Gaussian Process

To further validate the new corollary, we demonstrate that it works only for unimodal distributions and

not for bimodal distributions. To achieve this, we subjected our new protocol to samples from a bimodal

distribution to ascertain its validity. In this test, we generated two normal distributions having the same

variance (�2 = 1) but with different mean values of �1 = {0, 1, 2, 3, 4, 5} and �2 = {10, 13, 15, 16, 19, 20} ,

respectively. Here, �1 is the mean value of the first distribution while �2 is the mean value of the second

distribution. Although these mean values were chosen arbitrarily, however, they can be changed without

necessarily affecting the validity of our test. Figure 4d shows a capture of the histogram of the bimodal sam-
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Table 4
The parameter values for the Bimodal Gaussian Distribution for a computed two-tailed P − value of 0.034 and
t − test value of 2.34

�1 �2 �Y ∗
0.0000 10.0000 5.0013 3.1082
1.0000 13.0000 6.9998 4.1053
2.0000 15.0000 8.5001 5.1050
3.0000 16.0000 9.4995 6.1219
4.0000 19.0000 11.4997 7.1261
5.0000 20.0000 12.4988 8.1261

ple drawn from within the Monte Carlo trials used to validate our protocol. Numerical results are presented

in Table 4 to validate our test protocol.

Based on a computed two-tailed P −value of 0.034 and a t−test score of 2.463, there exists a statistically

significant difference between �Y and ∗, implying that the protocol fails under the bimodal case. This

confirms that our new protocol is valid only for the test of unimodality, which makes it quite useful for

detecting noise-only sample sets automatically. We shall show in the next subsection the usefulness of our

new corollary under practical CR conditions using the heuristic in Algorithm 2.

6.2. Tests to validate the NPAQM’s Performance

6.2.1. Under Noise-only conditions: The H0 case

The NPAQMwas tested considering three different noise-only sample sets. First, we considered samples

of additive white Gaussian noise (AWGN) under two different sample lengths of F = 250 and 515 elements,

respectively. The shorter sample length (F = 250) describes the case in which a CR system performs fast

spectrum sensing, whereas the longer sample length (F = 515) corresponds to longer spectrum sensing

time. Both conditions typically aid to investigate whether the performance of the NPAQM will be affected

by sample length or not. Second, the NPAQM was tested under coloured noise conditions (precisely pink

noise condition). This condition may arise when a CR system senses very wide bands, which is a possibility

under real-life conditions. Thirdly, we considered the performance of the NPAQM under different noise

uncertainty levels, which typically arise in practice. In all these conditions, we compared the NPAQM

against two well-known non-parametric methods published in [9, 19].

In Figures 5a, 5c, and 5e, we present the actual sensed spectra graphs as measured by the simulated

ED-based CR system and the respective threshold values (see lines) estimated by the different algorithms.

Figure 5a presents the spectra of an AWGN sample with dimension F = 250 elements. Here, we mention
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Figure 5: Estimated thresholds of each technique over different noise characteristics and sample lengths and the
corresponding false alarm performance of each technique

that the ground-truth threshold value required to maintain a minimum PFA rate of PFA = 0.01 is -97.5

dBm. Interestingly, the NPAQM estimated autonomously a threshold value of -98 dBm, which produced
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Table 5
PFA rate (in percentage) under different noise uncertainty levels in AWGN

Noise Uncertainty (dB) PFA (in %)
NPAQM Otsu [19] Mod-Otsu [9]

1 0.4 50.0 30.8
3 0.4 61.6 34.8
5 1.6 54.4 38.0

PFA = 0.02 as shown in the corresponding performance curve of Figure 5b. It is seen in Figure 5b that the

NPAQM achieved the least PFA rate as against the other methods owing to the capability of our heuristic

(see Algorithm 2) to identify such noise-only conditions in order to minimize the PFA rate of the NPAQM.

This further validates the practical potentials of the new corollary described in Section 4.2 since our heuristic

was built upon the proposed corollary. Consequently, the NPAQM was able to select the element with the

maximum value from both ends of the spectra towards producing the lowest achievable PFA rate as against

the other methods.

Then, we increased the dimension of the noise sample from 250 to 515 elements and re-examined the

performance of the different algorithms. The spectra and the respective threshold values estimated by the

different algorithms are graphed in Figure 5c. In the corresponding performance graph of Figure 5d, the

NPAQM is shown to produce a minimum PFA rate of PFA = 0.02 based on an estimated threshold value of

-89.6 dBm (see Figure 5c). In this case, it is seen in Figure 5d that the Otsu [19] and Mod-Otsu [9] methods

produced very high PFA rates since they are unable to determine the present condition as comprising noise-

only elements. Consequently, both methods placed their threshold values approximately mid-way through

the spectra, which led to considerably high PFA rates. Again, the NPAQMoutperformed these other methods

because it engaged the improved capability of the heuristic algorithm deployed to autonomously minimize its

PFA rate. Interestingly, since the NPAQM would always attempt to select the maximum value under noise-

only conditions, it is thus able to achieve the minimum PFA rates typically specified by the IEEE 802.22

standard, hence making it a dependable algorithm under practical conditions.

We tested the NPAQM further under the pink noise condition (using a sample length of 515 elements)

with the spectra as shown in Figure 5e. Here, Figure 5e confirms the presence of pink noise characteristics

since the energy level is seen to slowly ramp downwards from the left to the right side of the spectra, which

indicates the presence of lower noise values at higher frequencies as expected under pink noise conditions. In

this case, the NPAQM achieved the lowest PFA rate of PFA = 0.0019 as shown in Figure 5f. The NPAQM
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performed well because it applied the new heuristic of Algorithm 2, which ensured that higher threshold

values were selected in order to minimize the algorithm’s PFA rate automatically. Again, the Otsu and Mod-

Otsu methods both performed poorly under this condition since they lack such effective methods to minimize

their respective PFA rates.

Further, we investigated the performance of the NPAQM under different noise uncertainty levels as

obtained under real practical CR conditions. We varied the noise uncertainty levels in steps of 1, 3, and 5

dB, respectively and the results obtained are presented in Table 5. Here, we show that the NPAQM achieved

the lowest PFA rate under all uncertainty conditions. It is worth mentioning that we have presented only

PFA results in this subsection since there exist no signal elements to be detected. Summarily, the NPAQM is

shown to have performed best under the different noise-only conditions of this section owing to the capability

of Algorithm 2, which is based on the validity and effectiveness of the newly proposed corollary of Section

4.2. We note that since Algorithm 2 exists independently of Algorithm 1, thus, Algorithm 2 can be used by

other methods including the Otsu andMod-Otsu methods as well as other regular ATAs in order to minimize

their PFA rates under such noise-only conditions. This is an interesting conclusion from our findings, which

not only establishes the NPAQM as an effective algorithm, but also establishes Algorithm 2 as an effective

extension deployable in other methods.

6.2.2. Under Signal-plus-Noise conditions: The H1 case

The NPAQM was tested under different signal-plus-noise conditions. First, effort is made to determine

the minimum SNR level belowwhich the performance of the NPAQMmay no longer be guaranteed. In order

to achieve this, we examined the case of detecting both frequency modulated (FM) carrier and orthogonal

frequency division multiplexing (OFDM) signals. We considered FM carrier signals for the case wherein

a CR system may need to detect existing microphone signals within a regular TV band, whereas OFDM

signals were considered in order to investigate the possible case of detecting digital television (DTV) signals.

Further in this section, we tested each algorithm under both narrow and wideband sensing conditions as well

as under the Rayleigh fading case. We also considered a broad range of SNR values from 5dB to 25 dB

under Rayleigh fading conditions. This range is typically sufficient since radio systems are often required

to detect as high as 20dB in some data network applications and 25 dB in some voice applications. Thus, a

CR device should be able to detect high SNR levels, as well as very low levels, particularly towards the 0

dB level. We present our findings as follows:
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Figure 6: For FM Carrier signal: ROC curves showing the performance of the different techniques at different
SNR levels

6.2.2.1. Using FM signal The receiver operating characteristic (ROC) curves obtained for detecting the FM

carrier signal under different SNR values are shown in Figures 6a - 6d. In this case, the sample length of

the dataset was fixed at 250 elements. It should be noted that towards computing the different ROC perfor-

mance curves of Figure 6, we note that the actual signal elements were located from the 80tℎ - 90tℎ element,

whereas all other elements were purely noise-only elements as shown in the corresponding spectra graphs

of Appendix B. In Appendix B, we present the respective spectra graphs used to obtain the corresponding

ROC curves of Figure 6 at the different SNR levels, respectively.

In Figure 6a, it can be observed that the NPAQM achieved the lowest PFA under the SNR = 1dB

condition albeit at the expense of a corresponding low PD rate. This performance is expected since signals

at such low SNR levels would typically be indistinguishable from noise. Interestingly, instead of increasing

its PFA rate in order to increase its PD rate, the NPAQM remarkably opted to maintain a low PFA = 0.004
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rate since it was able to determine that this case comprised noise-only elements based on the use of Algorithm

2. On the other hand, the Otsu and Mod-Otsu methods opted instead to maximize their PD rates albeit at

very high PFA rates (see Figure 6a). Such very high PFA rates of the Otsu and Mod-Otsu methods would

definitely be detrimental to CR networks since much of the spectrum will be left underutilized.

Under the higher SNR levels of Figures 6b - 6d, it can be seen that the NPAQM gradually increased its

PD rate while strongly ensuring that its PFA rate was kept as low as possible. Notably, the NPAQM achieved

a maximum PD rate of PD > 0.9 at the SNR = 10dB level while guaranteeing PFA < 0.1. This cannot be

said of the Otsu and Mod-Otsu methods, which are seen to incur very high PFA rates even at higher SNR

levels. An exception can be observed for the Mod-Otsu method at the SNR = 10dB level, wherein a stable

performance of PD > 0.9 and PFA < 0.1 was achieved. Consequently, it can be concluded that the NPAQM

achieves a better well-behaved performance as against the other methods in terms of minimizing its PFA

rate, while an appreciable detection performance can be guaranteed when SNR ≥ 10dB.

6.2.2.2. Using OFDM signal The performance curves corresponding to the detection of OFDM signals

are shown in Figures 7a - 7d. Again we note that the corresponding spectra graphs used to compute the

respective ROC curves at different SNR levels are presented in Appendix C. In this case, it is worth noting

that a large sample length of F = 4096 was used, thus making the empirically computed ROC curves much

smoother than in the FM case. In computing the ROC curves, we note that the actual signal elements in

Figures 11a - 11d of Appendix C were located from the 300tℎ to 3800tℎ element index, whereas all other

elements were purely noise-only elements.

Similar to the FM case, it can be observed in Figure 7a that the NPAQM achieved the lowest PFA rate

in the SNR = 1dB case. In particular, the NPAQM selected a very high threshold value in this case

based on the use of Algorithm 2, which led to such a low PFA rate. This performance can be explained by

considering the fact that the OFDM signal assumes a noise-like characteristics, particularly at its crest, thus

leading the NPAQM to consider the sample as comprising noise-only elements. However, the performance

of the NPAQM can be seen in Figures 7b - 7d to have greatly improved, particularly at SNR > 5dB, thus

satisfying the IEEE 802.22 standard. It can be deduced from our findings that, it is easier to detect OFDM

signals as against detecting only the carrier of an FM signal. This can be explained considering the effect

of occupancy since the FM carrier signal occupies a relatively narrower bandwidth as against the OFDM

signal. This may indicate that both the width as well as the magnitude of a PU signal may greatly affect the
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Figure 7: For OFDM signals: ROC curves showing the performance of the different techniques at different SNR
levels

detection performance of typical threshold adjustment algorithms. Consequently, we further explore these

observations in greater details in the next subsection.

6.2.2.3. Under narrow and wideband sensing conditions The spectra graphs for the case of narrow and

wideband sensing are shown in Figures 8a and 8c, whereas their corresponding performance curves are

presented in Figures 8b and 8d, respectively. In occupancy terms, the narrowband signal mimics the case of

a highly occupied band since the signal can be seen to occupy most of the spectrum from the 40tℎ to 220tℎ

element (see Figure 8a). The narrowband condition is a worthwhile and often difficult case to select accurate

threshold values because a larger portion of the band may belong to signal elements, thus approximating a

unimodal distribution (recall Figure 2 in Section 4.2). Nevertheless, it is seen in Figures 8b and 8d that the

NPAQM performed better than the Otsu and Mod-Otsu methods by yielding PD = 0.97 at PFA = 0.075 for

the narrowband case and PD = 0.91 at PFA = 0.03 for the wideband case.
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Figure 8: Estimated thresholds over different sensed bands (a) Narrowband (b) Wideband

For the case of wideband sensing (i.e low/sparse occupancy), the signal elements occupied about 8% of

the entire bandwidth (i.e from the 60tℎ - 80tℎ element). By using a high enough SNR level (i.e. SNR =

8dB) in this case, the signal was well detected by the NPAQM in the wideband case as compared to the

Otsu and Mod-Otsu methods. This can be attributed to the use of the first order difference function in the

NPAQM, which ensured that a better defined boundary was accurately detected between the noise and signal

elements in the input sample. The Otsu andMod-Otsu algorithmsmay have achieved lower PFA rates in both

cases, but this is because both the narrow and wideband datasets were designed to approximate unimodal

distributions. Such effects of unimodality made both algorithms to place their thresholds about mid-way

through the magnitude of the input sample leading to lower PFA rates. The narrowband case approximates a

unimodal distribution since it contains over 90% of signal elements, whereas thewideband case approximates

a unimodal distribution since it contains over 90% of noise-only elements.

In this regard, the NPAQM maintained an appreciable and balanced performance as against the other
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Figure 9: Estimated thresholds over Rayleigh fading spectra and the corresponding ROC performance curve
showing the performance of the different techniques. The displays of the raw spectra data for the narrow and
wideband signals are shown in (a) and (c), respectively, whereas the corresponding ROC curves obtained for the
different spectra data are shown in (b) and (d) at the different SNR levels.

methods because it adopts Algorithm 2, which opts to inspect the spectra edges whenever the case for uni-

modality is detected. Technically, this ensures that the NPAQM maintains a good performance level inde-

pendent of the size of the sensed bandwidth, thus making it viable for use in practice.

6.2.2.4. Under Rayleigh Fading conditions TheNPAQMwas tested further considering the case of Rayleigh

fading channels. We considered two different Rayleigh fading channels with SNR = 5dB and 25dB, re-

spectively. These were generated at a sample rate of 9600 Hz and a Doppler frequency of 100 Hz. Figure

9a graphs the spectra in the low SNR case showing the selected thresholds, whereas Figure 9b presents the

corresponding ROC performance curve of the low SNR case. In both Figures 9a and 9c, the signal elements

are designed to exist between the 125tℎ - 170tℎ element in both cases, whereas all other elements are purely

noise-only elements. In the low SNR = 5dB case, the NPAQM is shown in Figure 9b to achieve PD = 0.58
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at PFA = 0.008, which demonstrates that yet again the NPAQM maintains a very low PFA rate even under

fading channels at low SNR levels albeit at a low PD rate.

We increased the SNR level (see Figure 9c) and the NPAQM is again shown to maintain a high PD

rate albeit at a slightly higher PFA rate (i.e. PFA = 0.08), which remains within the requirement of the

IEEE 802.22 standard i.e. PFA < 0.1. Most interestingly, we note that the PFA rate of our method does

not continue to grow with an increase in the SNR level, instead it asymptotically converges to below the

PFA = 0.1 rate as stipulated by IEEE 802.22 standard for CR. This is confirmed based on the results obtained

at very high SNR levels of 25 dB as presented in Figure 9d. Here, our algorithm maintains a low PFA rate

even at very high SNR levels. Although it is appealing to design the PFA and PD rates to satisfy specific

constraints, nevertheless, such designsmay only suffice under conditions were the assumed noise distribution

corresponds to the actual probability distribution of the real input signal. However, since this cannot be

guaranteed at all times under all working conditions (see [13]), thus, SATAs such as our proposed NPAQM

will be of great benefit to a number of signal detection conditions in CR applications.

7. Conclusion

In this article, a fully autonomous method is proposed called the non-parametric amplitude quantization

method (NPAQM) for improving threshold estimation in ED-based CR systems. Different from existing ap-

proaches, the NPAQM does not require gray-scale computations or the generation of histograms as required

in existing methods, thus guaranteeing faster processing times based on a time complexity of (F ), where

F is the total number of input elements. Furthermore, we have presented a new corollary to determine the

unimodality of an unknown distribution, which can be applied to not only signal detection in CR, but to

other statistical-based signal-processing applications such as in clustering, machine learning, modal deter-

mination problems, to name but a few. Following the new corollary, we have constructed a novel heuristic

algorithm to improve the performance of the NPAQM and possibly other methods under noise-only regimes.

Our heuristic algorithm ensures that the NPAQM maintains an acceptable PFA rate (i.e. PFA < 0.02) under

different dynamic spectra conditions. The NPAQM is notably independent of the size of the sensed band-

width since it performs well under both narrow and wideband sensing conditions. In general, our algorithm

performed better in PFA terms than the other non-parametric methods compared with in the present article.

Specifically, in the noise-only regime, the NPAQM achieved about 96.36 % and 95 % decrease in the PFA
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rate as compared to the Otsu and Mod-Otsu methods, respectively. This lower PFA rate was maintained by

our algorithm even under low SNR conditions (i.e. SNR < 5 dB) albeit at a lower PD rate as compared

to the other methods. However, at higher SNR levels (i.e. SNR > 5 dB), the NPAQM achieved similar to

the other methods a high PD rate (PD > 0.9) while still maintaining a lower PFA rate than the Otsu and

Mod-Otsu methods. In future works, the PD rate of the NPAQMwill be improved particularly at such lower

SNR levels (SNR < 3 dB) to further reduce the probability of interference with existing PU transceivers.

Presently, our findings suggest that the NPAQM provides an improved performance as against other fully

autonomous methods, thus emphasizing its potentials for use in self-reconfigurable CR systems.

A. Appendix-A
Equation (5) in the main text is derived in this section. Let the FFT length F used to compute the

frequency response of the input signal y(t) be defined as

F = 2x, (37)

where x is the next power of 2, which is to be computed from the input signal length N . However, since
the new length F may contain trailing zeros, which pad the input signal in order to improve the FFT’s
performance, thus, it is required that

2x > N − 1, (38)

where N is obtained as N = Ts × fs, and Ts is the sensing period whereas fs is the sampling frequency.
Note that the number of FFT points goes from 0, 1, ..., N − 1, which accounts for the use of N − 1 in (38).
Thus, from (38), x is obtained as

x > log2(Ts × fs − 1) (39)

Substituting (39) in (37) yields the new FFT length as

F = 2⌈log2(Ts×fs−1)⌉ (40)

The ceiling notation is introduced in (40) so that x is made always greater than log2(Ts ×fs−1) towards
ensuring that the input signal length is properly zero padded.

B. Appendix-B
The spectra graphs presented in Figures 10a - 10d are the datasets used to compute the corresponding

ROC curves presented in Figures 6a - 6d at different SNR levels, respectively.

C. Appendix-C
The spectra graphs presented in Figures 11a - 11d are the datasets used to compute the corresponding

ROC curves presented in Figures 7a - 7d at different SNR levels, respectively.
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Figure 10: For FM Carrier signal: The actual spectra graphs showing the different threshold values estimated
by the different techniques under different SNR levels
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Figure 11: For OFDM signals: The actual spectra graphs showing the different threshold values estimated by
the different techniques under different SNR levels
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