1,342 research outputs found

    Fast Algebraic Attacks and Decomposition of Symmetric Boolean Functions

    Full text link
    Algebraic and fast algebraic attacks are power tools to analyze stream ciphers. A class of symmetric Boolean functions with maximum algebraic immunity were found vulnerable to fast algebraic attacks at EUROCRYPT'06. Recently, the notion of AAR (algebraic attack resistant) functions was introduced as a unified measure of protection against both classical algebraic and fast algebraic attacks. In this correspondence, we first give a decomposition of symmetric Boolean functions, then we show that almost all symmetric Boolean functions, including these functions with good algebraic immunity, behave badly against fast algebraic attacks, and we also prove that no symmetric Boolean functions are AAR functions. Besides, we improve the relations between algebraic degree and algebraic immunity of symmetric Boolean functions.Comment: 13 pages, submitted to IEEE Transactions on Information Theor

    Algorithm 959: VBF: A Library of C plus plus Classes for Vector Boolean Functions in Cryptography

    Full text link
    VBF is a collection of C++ classes designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This implementation uses the NTL library from Victor Shoup, adding new modules that call NTL functions and complement the existing ones, making it better suited to cryptography. The class representing a vector Boolean function can be initialized by several alternative types of data structures such as Truth Table, Trace Representation, and Algebraic Normal Form (ANF), among others. The most relevant cryptographic criteria for both block and stream ciphers as well as for hash functions can be evaluated with VBF: it obtains the nonlinearity, linearity distance, algebraic degree, linear structures, and frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions are presented. Finally, three real applications of the library are described: the first one analyzes the KASUMI block cipher, the second one analyzes the Mini-AES cipher, and the third one finds Boolean functions with very high nonlinearity, a key property for robustness against linear attacks

    Fast algebraic immunity of Boolean functions and LCD codes

    Get PDF
    Nowadays, the resistance against algebraic attacks and fast algebraic attacks are considered as an important cryptographic property for Boolean functions used in stream ciphers. Both attacks are very powerful analysis concepts and can be applied to symmetric cryptographic algorithms used in stream ciphers. The notion of algebraic immunity has received wide attention since it is a powerful tool to measure the resistance of a Boolean function to standard algebraic attacks. Nevertheless, an algebraic tool to handle the resistance to fast algebraic attacks is not clearly identified in the literature. In the current paper, we propose a new parameter to measure the resistance of a Boolean function to fast algebraic attack. We also introduce the notion of fast immunity profile and show that it informs both on the resistance to standard and fast algebraic attacks. Further, we evaluate our parameter for two secondary constructions of Boolean functions. Moreover, A coding-theory approach to the characterization of perfect algebraic immune functions is presented. Via this characterization, infinite families of binary linear complementary dual codes (or LCD codes for short) are obtained from perfect algebraic immune functions. The binary LCD codes presented in this paper have applications in armoring implementations against so-called side-channel attacks (SCA) and fault non-invasive attacks, in addition to their applications in communication and data storage systems

    D.STVL.7 - Algebraic cryptanalysis of symmetric primitives

    Get PDF
    The recent development of algebraic attacks can be considered an important breakthrough in the analysis of symmetric primitives; these are powerful techniques that apply to both block and stream ciphers (and potentially hash functions). The basic principle of these techniques goes back to Shannon's work: they consist in expressing the whole cryptographic algorithm as a large system of multivariate algebraic equations (typically over F2), which can be solved to recover the secret key. Efficient algorithms for solving such algebraic systems are therefore the essential ingredients of algebraic attacks. Algebraic cryptanalysis against symmetric primitives has recently received much attention from the cryptographic community, particularly after it was proposed against some LFSR- based stream ciphers and against the AES and Serpent block ciphers. This is currently a very active area of research. In this report we discuss the basic principles of algebraic cryptanalysis of stream ciphers and block ciphers, and review the latest developments in the field. We give an overview of the construction of such attacks against both types of primitives, and recall the main algorithms for solving algebraic systems. Finally we discuss future research directions

    Strengthening Crypto-1 Cipher Against Algebraic Attacks

    Get PDF
    In the last few years, several studies addressed the problem of data security in Mifare Classic. One of its weaknesses is the low random number quality. This causes SAT solver attacks to have lower complexity. In order to strengthen Crypto-1 against SAT solver attacks, a modification of the feedback function with better cryptographic properties is proposed. It applies a primitive polynomial companion matrix. SAT solvers cannot directly attack the feedback shift register that uses the modified Boolean feedback function, the register has to be split into smaller groups. Experimental testing showed that the amount of memory and CPU time needed were highest when attacking the modified Crypto-1 using the modified feedback function and the original filter function. In addition, another modified Crypto-1, using the modified feedback function and a modified filter function, had the lowest percentage of revealed variables. It can be concluded that the security strength and performance of the modified Crypto-1 using the modified feedback function and the modified filter function are better than those of the original Crypto-1

    Ongoing Research Areas in Symmetric Cryptography

    Get PDF
    This report is a deliverable for the ECRYPT European network of excellence in cryptology. It gives a brief summary of some of the research trends in symmetric cryptography at the time of writing. The following aspects of symmetric cryptography are investigated in this report: • the status of work with regards to different types of symmetric algorithms, including block ciphers, stream ciphers, hash functions and MAC algorithms (Section 1); • the recently proposed algebraic attacks on symmetric primitives (Section 2); • the design criteria for symmetric ciphers (Section 3); • the provable properties of symmetric primitives (Section 4); • the major industrial needs in the area of symmetric cryptography (Section 5)
    corecore