967 research outputs found

    The Constructive method for query containment checking (extended version)

    Get PDF
    We present a new method that checks Query Containment for queries with negated derived atoms and/or integrity constraints. Existing methods for Query Containment checking that deal with these cases do not check actually containment but another related property called uniform containment, which is a sufficient but not necessary condition for containment. Our method can be seen as an extension of the canonical databases approach beyond the class of conjunctive queries.Postprint (published version

    Parallel-Correctness and Containment for Conjunctive Queries with Union and Negation

    Get PDF
    Single-round multiway join algorithms first reshuffle data over many servers and then evaluate the query at hand in a parallel and communication-free way. A key question is whether a given distribution policy for the reshuffle is adequate for computing a given query, also referred to as parallel-correctness. This paper extends the study of the complexity of parallel-correctness and its constituents, parallel-soundness and parallel-completeness, to unions of conjunctive queries with and without negation. As a by-product it is shown that the containment problem for conjunctive queries with negation is coNEXPTIME-complete

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Reasoning about distributed relational data and query evaluation

    Get PDF
    Large data sets are often stored distributedly to increase the reliability of systems and the efficiency of query evaluation in them. While some query operators -- like selections and projections -- are intrinsically conform with parallel evaluation, others -- like joins -- demand specific distribution patterns. For relational databases, a common approach to evaluate queries in parallel relies on the use of rather simple distribution patterns for binary joins and the computation of the query result according to some query plan, operator by operator. Often, this requires the redistribution of large intermediate results (possibly larger than the input and/or output) and thus may lead to unnecessary long processing times. Thus, especially in the last decade, more elaborate distribution patterns that depend on the whole query have been studied and shown to allow more efficient query evaluation in several cases by reducing the amount of communication between servers. Ameloot et al. have described a setting where query evaluation is studied for a broad range of distribution patterns. Their work focuses on problems to decide whether a query can be evaluated correctly under a given distribution pattern. More particularly, they have considered two problems: "parallel correctness", where the pattern is specified explicitly, and "parallel-correctness transfer", where the pattern is known to be appropriate for another query. This thesis comprises the author's contributions to the complexity-theoretical investigation of these problems for conjunctive queries (and extensions thereof). These contributions complement the main characterisations and some additional complexity results by Ameloot et al. Furthermore, this thesis contains some new characterisations for "polarised" queries. Via the characterisations, parallel correctness and parallel-correctness transfer can be translated into questions on the co-occurrences of certain facts, induced by the query, on some server. Such questions and others can be modelled by "distribution dependencies", a variant of the well-known tuple- and equality-generating dependencies. Modelling via these constraints allows a more general description of distribution patterns in distributed relational data. The third contribution of this thesis is the study of the implication problem for distribution dependencies, providing lower and upper bounds for some fragments

    Inconsistency-tolerant Query Answering in Ontology-based Data Access

    Get PDF
    Ontology-based data access (OBDA) is receiving great attention as a new paradigm for managing information systems through semantic technologies. According to this paradigm, a Description Logic ontology provides an abstract and formal representation of the domain of interest to the information system, and is used as a sophisticated schema for accessing the data and formulating queries over them. In this paper, we address the problem of dealing with inconsistencies in OBDA. Our general goal is both to study DL semantical frameworks that are inconsistency-tolerant, and to devise techniques for answering unions of conjunctive queries under such inconsistency-tolerant semantics. Our work is inspired by the approaches to consistent query answering in databases, which are based on the idea of living with inconsistencies in the database, but trying to obtain only consistent information during query answering, by relying on the notion of database repair. We first adapt the notion of database repair to our context, and show that, according to such a notion, inconsistency-tolerant query answering is intractable, even for very simple DLs. Therefore, we propose a different repair-based semantics, with the goal of reaching a good compromise between the expressive power of the semantics and the computational complexity of inconsistency-tolerant query answering. Indeed, we show that query answering under the new semantics is first-order rewritable in OBDA, even if the ontology is expressed in one of the most expressive members of the DL-Lite family
    corecore