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Abstract

Large data sets are often stored distributedly to increase the reliability of systems
and the efficiency of query evaluation in them. While some query operators—Ilike
selections and projections—are intrinsically conform with parallel evaluation, others—
like joins—demand specific distribution patterns.

For relational databases, a common approach to evaluate queries in parallel relies
on the use of rather simple distribution patterns for binary joins and the computation
of the query result according to some query plan, operator by operator. Often, this
requires the redistribution of large intermediate results (possibly larger than the
input and/or output) and thus may lead to unnecessary long processing times. Thus,
especially in the last decade, more elaborate distribution patterns that depend on the
whole query have been studied and shown to allow more efficient query evaluation in
several cases by reducing the amount of communication between servers.

Ameloot et al. have described a setting where query evaluation is studied for a
broad range of distribution patterns. Their work focuses on problems to decide
whether a query can be evaluated correctly under a given distribution pattern. More
particularly, they have considered two problems: parallel correctness, where the
pattern is specified explicitly, and parallel-correctness transfer, where the pattern is
known to be appropriate for another query.

This thesis comprises the author’s contributions to the complexity-theoretical
investigation of these problems for conjunctive queries (and extensions thereof).
These contributions complement the main characterisations and some additional
complexity results by Ameloot et al. Furthermore, this thesis contains some new
characterisations for ‘polarised’ queries.

Via the characterisations, parallel correctness and parallel-correctness transfer can
be translated into questions on the co-occurrences of certain facts, induced by the
query, on some server. Such questions and others can be modelled by distribution
dependencies, a variant of the well-known tuple- and equality-generating dependencies.
Modelling via these constraints allows a more general description of distribution
patterns in distributed relational data.

The third contribution of this thesis is the study of the implication problem for
distribution dependencies, providing lower and upper bounds for some fragments.
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1. Introduction

Modern societies rely on data. Vast amounts of data are collected, stored and
processed with a velocity that increases from day to day. Data is recorded by a
myriad of sensors and it is produced by billions of users—sometimes intentionally,
sometimes unwittingly; the boundaries are blurred.

Whether we are aware of it or not, the collection and storage of data ultimately
aims at their analysis.! From the perspective of database theory, the analysis of data
can be viewed as the evaluation of queries on a database. Storing and processing
very large volumes of data is a non-trivial task and distributed databases have been
used and studied as a means to cope with it—already in the latter decades of the
previous century.

Naturally, this abstract description comprises a multitude of possible choices. A
few central questions related to these choices are the following. Is the data highly
structured or unstructured? Where is it stored? What kind of queries can be
formulated? How are they evaluated?

Next, we describe the specific setting that is studied in this thesis (Section 1.1),
introduce the main algorithmic problems that we consider (Section 1.2) and, lastly,
give a quick overview of the contributions of the author (Section 1.3).

1.1. Setting

While scientists and engineers have provided several answers to each of the questions
above, in this work, we consider basically ome setting: relational data that is
distributed over multiple servers organised in a shared-nothing architecture. The
data is queried via logical formalisms like conjunctive queries—possibly with union,
disequalities and (atomic) negation—and the result is computed in a single round. Of
course, this choice has an influence on the questions that are posed and the answers
that are given, and thus asks for some justification.

Practically, relational databases are a commercial success story. Theoretically, they
are well-studied, offering a rich body of literature. We assume that the reader

'The analysis is usually guided by varying intents: it can help to influence consumers and voters,
to optimise logistics and transport or to expand scientific knowledge (amongst others). These
prospects raise lots of questions—ethical, political and juridical in particular—, which we neglect
here despite their importance.
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has a basic acquaintance with the relational database model and refer to standard
textbooks for a broader view [AHV95, SKS05].

Large data sets are commonly distributed over multiple servers such that results can
be computed on parts of them in parallel. In modern data centres, dozens, hundreds
or even thousands of servers are connected via high-speed networks [SB18]. For our
theoretical investigation, we abstract from the details of the network architecture
and build on the model of massively parallel communication (MPC). The MPC
model, initially studied by Beame, Koutris and Suciu [KS11, BKS13], follows earlier
approaches to model parallel computations like Valiant’s bulk-synchronous parallel
model [Val90] but abstracts from low-level details. This abstraction moves the focus
to the communication between the servers, which is nowadays an important limiting
factor.

Computation in the MPC model is round-based. In each round, a communication
phase is followed by a computation phase. In the communication phase, servers can
freely exchange data via broadcasting. Afterwards, in the computation phase, each
server processes the data on its own—without any further communication. Another
round can start when all servers have finished the computation phase, which imposes
a ‘global barrier’ on the whole computation process. In particular, the slowest servers
in each round determine the overall computation time.

Despite its simplicity, the MPC model captures essential aspects of modern systems
like Google’s MapReduce [DGO8|, Apache’s Spark [ZCF10] or Shark [XRZ*13] that
support the processing of key-value pairs or SQL queries.

To speed up the computation process, it is desirable to minimise, first, the number
of rounds and, second, within each round, the amount of communication and the
load—the amount of data—per server. Usually, there is a trade-off between both
goals (an improvement in one dimension can result in a setback in the other) but
they provide a guideline. Ensuring a good balance of the load ratios of the servers is
particularly challenging if the data is ‘skewed’—that is, when certain data values
(‘heavy hitters’) occur unproportionally often—because the distribution is usually
guided by one value per item, the key, and thus independent of other items.

Several results for query evaluation in the MPC model have been obtained recently
for computations that can be accomplished in one round. We mention only a few
initial results, as an indicator that even this very restricted setting poses interesting
challenges. The Hypercube algorithm was presented by Afrati and Ullman [AU10]
as a method to compute multi-way—instead of just binary—joins and later proven
to be load-optimal for single-round computations over skew-free data by Beame,
Koutris and Suciu [BKS14]. Furthermore, the latter authors designed a worst-case
optimal one-round evaluation algorithm (for skewed or skew-free data) [KBS16].
These studies centre around conjunctive queries, or fragments thereof, which we also
choose as a starting point.

Generally, computations with multiple rounds are often fine from a practical
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perspective and presumably also offer additional interesting theoretical questions and
answers to be discovered, or more efficient algorithms to be devised. We emphasise
that the restriction to single-round computations in this thesis is not meant to
favour them but rather results from organisational considerations: one has to start
somewhere.

1.2. Problems

This thesis focuses on variants of three static analysis problems for distributed
relational data. The first two problems, parallel correctness and parallel-correctness
transfer, deal with the question whether a given query can be evaluated correctly in
a single computation phase of the MPC model—with varying degrees of knowledge
about the previous communication phase. The third problem, the implication problem
for distribution tgds, addresses the question of algorithmical reasoning about the
existence of relational facts on nodes in a more general way, independent of queries.

The majority of the results in this work are complexity-theoretic results, usually
providing matching lower and upper bounds for the mentioned problems under
various restrictions of their inputs (query classes, distribution formalisms, ...). Such
bounds can serve as an indication of the optimality of algorithms and can highlight
certain aspects that contribute to the complexity. This, in turn, facilitates the
identification of special cases where the problems can be solved more efficiently in
theory—and possibly also in practice.

1.2.1. Parallel correctness

Suppose a user wants a query () to be evaluated by a distributed database management
system. We differentiate between two approaches: either the query itself provides
a specification P, called policy, of the way the data is distributed, or a suitable
specification is derived automatically. In the former case, the user is responsible for
the correctness of the evaluation process, in the latter case, it should be guaranteed
by the derivation mechanism.

Following the previously mentioned approaches for query evaluation in the MPC
model, a policy P is defined over a network of servers ki, ..., k, and specifies, for
each fact, a subset of nodes responsible for this fact. For an instance G, which is
a set of facts, the policy thus describes instances L(1),...,L(n) of the nodes. The
naive distributed evaluation of the query in one round is simply the union over the
query results on each node.

The instance-specific version of parallel correctness asks, for a given query @ and
a policy P, whether the naive distributed query evaluation yields the same result as
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the standard evaluation on the complete instance. Formally, this holds if equation

Q(9) = QL)) V... UQ(L(n))

is satisfied. The static version of parallel correctness generalises this question to
every instance G (over an induced schema and domain).

As the set equality indicates, parallel correctness comprises two aspects: all
facts derived on the complete instance are derived on at least one node and only
such facts are derived there. These properties are called parallel completeness and
parallel soundness. For monotonic queries, parallel correctness is identical to parallel
completeness (since they are trivially parallel-sound), for other queries parallel
soundness has to be studied on its own.

Coming back to our motivation, deciding parallel correctness algorithmically has
at least two potential benefits. First, it can free users from reasoning about the
correctness of self-designed policies themselves. Second, it can guide the automatic
selection or derivation of policies. In particular, if query @ is parallel-correct under
the currently applied policy P, this allows to avoid the costly redistribution of data
without inspection of the (very large) data set. Therefore, parallel correctness can be
seen as a basic property in the context of optimised distributed query evaluation.

1.2.2. Parallel-correctness transfer

As discussed above, the question for parallel correctness can be posed in a scenario
where a policy P is given and a new query Q' is to be evaluated. Since policy P is
usually derived from or designed for a query @, this easily leads to a more general
question: given that query @) has been evaluated correctly, is query Q' guaranteed to
be evaluated correctly under P too?

This question is reflected in the notion of parallel-correctness transfer. We say
that parallel-correctness transfers from query @ to query Q' if the latter query is
parallel-correct under every policy where the former query is parallel-correct under.
This property is equivalent to the following implication.

VP: Q is parallel-correct under P = )’ is parallel-correct under P

Note that both policy and instance are universally quantified—while at least the
policy is specified explicitly as input for the variants of the parallel correctness
problem.

Compared with parallel correctness, transfer of parallel-correctness allows the op-
timisation of distributed query evaluation on a higher level. If multiple queries
Q1,...,Q, are to be evaluated and parallel-correctness transfers from, say, query Q1
to query @, then it suffices to find a policy for queries @1, ..., @,—1 and to reuse it
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for the evaluation of @),. This is similar to other typical approaches in ‘multi-query
optimisation’ [LO18] and is particularly useful in analytical tasks where the same
queries are evaluated repeatedly, over changing data. In this sense, the potential of
parallel-correctness transfer resembles that of query containment.

1.2.3. Distribution dependencies and their implication problem

Deciding parallel correctness and transfer of parallel correctness essentially requires
to reason about occurrences and co-occurrences of sets of facts—whose size and
structure is mainly determined by the query (or queries) under consideration. Clearly,
this is not a peculiarity of these properties but rather a fundamental aspect in
distributed data management, where the placement of data determines the reliability
of the system and is, moreover, critical for its scalability and the performance of query
processing in particular. Thus, a question of utmost importance is the following:
how should data be replicated and partitioned over the servers?

Despite the importance of this question and decades of research on distributed
databases, typical placement strategies remained comparatively simple for a long time.
Horizontal or vertical fragmentation (or hybrid variants thereof) in combination
with range or hash partitioning are prominent examples [OV11]. Unfortunately,
query evaluation under such placement strategies usually requires a communication
phase for each binary join, which is why these strategies often have a negative
impact on the overall computation time. Therefore, more sophisticated strategies
have increasingly attracted attention in the recent past—and, sometimes, were even
proven to be optimal. Examples include co-partitioning and (single or multiple)
hypercubes [BKS17, KS17, SCH*18, SVS*13, ZBS15].

Nevertheless, the study of frameworks that allow reasoning about data dependencies
in general has a long tradition in computer science. Tuple- and equality-generating
dependencies, for instance, are an elegant and versatile formalism to model constraints
on relational data. They have been introduced to unify several types of constraints,
the practically important key constraints, more general functional dependencies and
inclusion dependencies in particular [Nic78, BV81, Fag82]. Central to reasoning
about constraints is the implication problem: given a set X of constraints and a
constraint T,

does every data set that satisfies X also satisfy 77

For tuple- and equality-generating dependencies (tgds and egds), the chase is an
invaluable algorithmic tool to decide the implication problem. The undecidability of
the implication problem for unrestricted tgds and egds has motivated researchers
to study restricted variants. Meanwhile, several fragments have been studied in an
attempt to discover the boundaries of decidability and complexity. Often, these
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fragments are defined by syntactic restrictions on the dependencies like weak acyclicity,
weak guardedness, stickiness, wardednesss and many more [BGPS19, CGK13, CGP10,
FKMPO05].

However, seemingly few attempts have been made so far to use these frameworks
explicitly for distributed data. Notable exceptions are, for instance, the data exchange
setting [ABLM14] and Webdamlog [AAS13, ABGA11, MSAM15].

We try to bring both strands of research—placement strategies for distributed data
and dependency frameworks—closer together. To this end, we adapt tuple- and
equality-generating dependencies to model knowledge about distributed relational
facts. The possibility to reason about distributed data may optimise query evaluation
(by avoiding reshuffling, by improving the precision of estimations on query execution
plans etc.).

1.3. Contributions

This thesis is the result of a scientific collaboration with my advisor and some
colleagues from the ‘Databases and Theoretical Computer Science’ (DBTI) research
group at the Hasselt University, Belgium, which has begun in 2014.

Most of the results presented here have been published in major conference and
articles before, or are accepted for publication. Prof. Dr Thomas Schwentick, my
advisor, and Prof. Dr Frank Neven, from DBTI, have contributed to all these
publications. Furthermore, Dr Bas Ketsman and—in the beginning—Dr Tom Am-
eloot, both in DBTTI then, have contributed to the work on parallel correctness and
parallel-correctness transfer.

Since these publications have emerged from complementary research activities, a
coherent presentation of the author’s own results makes it necessary to refer to some
of their contributions in particular. To make a clear distinction between contributions
of the author and those of others, the latter are marked with a star (Definition*,
Proposition*®, Theorem™ etc.).

The following is an overview over the author’s contributions in this thesis. More
details are given in the ‘bibliographical remarks’ sections at the end of Chapters 3,
4 and 5.

The majority of the contributions in Chapter 3 are complexity-theoretical results,
which provide lower or upper bounds—often both, and matching—to the central
problems around parallel correctness for various query classes. In particular, we show
that parallel correctness is I15-complete for conjunctive queries (without negation)
and that it is coNEXPTIME-complete for conjunctive queries with negation. Motivated
by the high complexity for queries with negation in general, the fragments of ‘full’
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and ‘polarised’ CQs with negation are considered in detail and shown to be coNP-hard
and II5-complete, respectively.

For polarised queries, previous key notions are extended in a non-trivial way in
order to yield characterisations of parallel completeness and—for the first time—for
parallel soundness. The picture is rounded up by a II5-completeness result. These
results have not been published before.

For parallel-correctness transfer, studied in Chapter 4, most contributions are
complexity-theoretical again. In particular, transfer is shown to be IT§-complete
for conjunctive queries (without negation) but II5-complete for ‘strongly-minimal’
queries with disequalities.

Building on the characterisations in the previous chapter, transfer of parallel
soundness is then studied systematically for the first time. For polarised queries
(with negation), it is characterised and shown to be II5-complete too. These results
have not been published before.

In Chapter 5, we introduce distribution tgds and egds as a variant of classical tgds
and egds, show how they can be used to model typical distribution patterns and
study the associated implication problem. More particularly, we identify decidable
fragments with different complexities, ranging from NP over PSPACE to EXPTIME.
For each of the fragments, which are defined by simple syntactic criteria, we provide
matching lower and upper bounds. The latter rely, of course, on an adaptation of
the chase.






2. Preliminaries

In this chapter, we fix notations for basic concepts and provide some general defini-
tions. More specific definitions are given where needed, in the following chapters.
Let N denote the set of all positive integers and let Ng = N {0} denote the set of
natural numbers. Symbol & denotes the disjoint union of sets and is often used to
represent a partition {S1,...,S,} in the form Sy W--- W S,. The powerset of a set A
is denoted 24 and the cardinality of A is denoted |A.

A mapping f : X — Y over a finite domain X = {z1,...,x,} is sometimes specified
in the form {z1 — y1,...,Zn — Yy}, meaning that f(z1) =y1,..., f(xn) = yn holds.
For mappings f1 : X1 — Y7 and fo : Xo — Y5 over disjoint domains X; and Xo,
the combined mapping f : X1 U X9 — Y7 U Y5 that behaves like f; on X; and
like fo on Xy is denoted f1 U fo. Furthermore, flz1 +— y1,...,2, — yp] denotes the
mapping f': X U{z1,...,2n,} = Y U{y1,...,yn} derived from f : X — Y such
that f'(z;) = y; for every ¢ € {1,...,n} and f'(z) = f(x) for every other x € X. In
particular, if {x1,...,2,} is disjoint from X, then f’ is an extension of f.

For a binary relation R C Ax B and sets A" and B’, two natural types of restrictions
are defined: the left-restriction A’ <R = {(a,b) € R | a € A’} and the right-restriction
R> B = {(a,b) € R | b € B'}. Furthermore, such a binary relation R canonically
induces two mappings R : A — 28, where R(a) = {b | (a,b) € R} for every a € A
and, analogously R™! : B — 24, where R™*(b) = {a | (a,b) € R} for every b € B.
The former mapping is used without difference in denotation—it will be clear from
the context whether we refer to the relation or the induced mapping.

In complexity analyses, ||o|| denotes the encoding size of object o in a standard
representation over some suitable, fixed alphabet. To keep formulations simple, we
usually say that a problem P’ has ‘higher’ complexity than problem P if P is in
some complexity class C and P’ is hard for a complexity class C’ where C C C’ holds
and C C C’ is commonly assumed—even if not proven. In this sense, a problem that
is IT5-hard has higher complexity than a problem in NP, for instance.

2.1. Relational databases and queries, classically

The following concepts are defined under the assumption of disjoint, countably infinite
sets dom of data values—in queries also called constants—and var of variables. The
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set var of variables, in particular, is the disjoint union of two countably infinite
sets xvar and nvar of data variables and node variables.'

To answer algorithmical questions, it is sometimes necessary to restrict to a finite
subset of data values where, usually, the exact values do not matter. For simplicity,
we assume that dom contains N and define the initial fragment doms < {1,..., s} of
size s for every s € N.

2.1.1. Databases

A schema is a non-empty, finite set S of relation symbols, where each relation symbol
R € S has a fixed arity ar(R).

An R-atom for a relation symbol R of arity m = ar(R) is of the form R(71,...,7y)
where each term 71, . . ., 7., is either a data value or a variable. The set {1,..., 7} of
terms of such an atom A = R(7y,...,7) is denoted term(A) and the corresponding
subsets of data variables and data values are defined as xvar(A) = term(A) N xvar
and dom(A) & term(A) N dom, respectively. The latter set is also called the active
domain of atom A. Analogously, the set of node variables is defined as nvar(A) &
term(A)Nnvar. Atoms over nullary relations are usually denoted without parentheses,
that is, we write R instead of R() if ar(R) = 0.

An R-fact is an R-atom whose terms are only data values (not variables) and an
S-fact is an R-fact for some relation R € S. An instance over a schema § is a finite
set of S-facts and the class of all S-instances whose active domain is a subset of U is
denoted inst(S,U) or simply inst(S) if the domain is unrestricted, U = dom. In this
context, the set U is often called the universe. Similarly, facts(S,U) and facts(S)
denote the sets of all facts that may occur in S-instances over universe U or dom,
respectively.

A substitution for an atom A = R(1q,...,7y) is a partial mapping s : term —
term that is defined for all terms in A. Its image is s(A) = R(s(m1),...,5(Tm)).
For the sake of brevity, the application of a substitution is sometimes denoted
Alri, /7], 7,/7] ], where only the changes 7;; # 7, = s(;;) are specified. Note
that a substitution can replace data values (by variables or other data values).

There are two important, successive, refinements of substitutions. First, substitu-
tions that preserve data values (that is, behave like the identity on dom) are called
homomorphisms. Second, a homomorphism V' that maps terms only to data values is
called a valuation, which is said to induce fact V(A) on atom A. For simplicity and
without loss of generality, we assume that homomorphisms and thus also valuations
are defined for all data values in dom.

With slight abuse of notation, the canonical generalisations to tuples, to sets and to

Node variables are used in Chapter 5 only. In the previous chapters, the term variable always
refers to a data variable.

10
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similar concepts (like atoms) of the mappings defined here and in the following are
used without difference in denotation.

In a few proofs it turns out to be useful to amend facts (or, more generally, atoms) by
some information, often by a single data value (or variable). Following this idea, an
arbitrary schema S can be transformed into its extended schema S’ that contains the
same relation symbols as & but each with an arity increased by 1. Correspondingly,
for a term 7, the 7-extension of a set A = {Ri(x1),..., Rm(xm)} of atoms is the
set ext,(A) & {Ry(7,21),..., Rm(7, Zm)} of atoms over the extended schema, where
term 7 is assigned to the additional first position. Each set A’ of atoms over an
extended schema is naturally translated back to a set ext ! (A’) of atoms over the
(plain) schema by discarding the term in the first position of each atom. For a set A’
of atoms over an extended schema—that possibly results as a union of multiple
extensions—and a single term 7, the filtered set filt;(A’) contains only those atoms
with 7 in their first component. Finally, the 7-reduced set results by filtering the atoms
first and then translating them back, that is, red,(A') & (ext! o filt;)(A’) for every
set A’ of atoms over an extended schema. As an example, consider instances Z =
{R(7),5(8,9)} and a possible union of extensions Z' = {R(1,7), 5(1,8,9),5(2,7,7)}.
The former yields an extended instance ext;(Z) = {R(1,7),5(1,8,9)} and the latter
a reduced instance red;(Z') = {R(7),S(8,9)}, respectively. Clearly, for pairwise
different terms 7y, ..., 7, equality red,, (ext,, (A1) U---Uext,, (An)) = A; holds for
every ¢ € {1,...,m} and arbitrary sets Ay, ..., A, of atoms.

2.1.2. Queries

Queries are mappings from databases over some source schema S to databases over
some target schema 7. More precisely, a query () defines, for every database D
over S, a database Q(D), the result of query @ on D.

Several formalisms to define queries on relational databases are known. Many of
them are variants of logical formulas in first-order predicate logic. In the following,
the subtle distinction between a mapping and its representation as a formula or a set
of rules is silently ignored in most cases. Both are simply called query.

This work has a strong focus on the following query classes that are strict subclasses of
first-order predicate logic—syntactically, after an obvious and well-known translation
of the rules into formulas, as well as with respect to their expressiveness. The
most prominent subclasses among them are conjunctive queries (CQ) and unions of
conjunctive queries (UCQ), either with or without a restricted form of negation.
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2. Preliminaries

Conjunctive queries (with and without negation)

A conjunctive query Q with negation (CQ™) over schema S is of the form
H + Al,...,Am,—\Bl,...,ﬂBn,

where the single relation atom head(Q) & H is called the head of Q and a non-empty,
finite set pos(Q) & {A1,..., A} of relation atoms over S, is called the positive
body of @, and a finite set neg(Q) E {B4i,...,By}, is called the negative body of Q.
The query’s body is the set body(Q) & {Ay,..., Apm,—B1,...,~B,} of atoms. The
variables in head(Q) are called head variables, all other existential or projection
variables. Each query is required to satisfy the following safety conditions:

e safe head: every head variable occurs in at least one positive atom;

e safe negation: every variable in a negated atom occurs in a positive atom.

An important subtype of queries is the following: a query @ is a conjunctive query
(without negation), CQ, if its body does not contain any negated atom—in which
case body(Q) = pos(Q) holds.

It is common to define restrictions of query classes by the use of variables. A query
is full (projection-free) if it does not have any existential variables and it is boolean
if it does not have any head variables.

A wvaluation for a conjunctive query Q with negation is a valuation for pos(@), that
is, it is a mapping V : term — dom that is defined for every variable of the query,
var(Q) ¥ var(pos(Q)). Valuation V requires facts V(pos(Q)) and prohibits facts
V(neg(Q)) for CQ™ Q. It is said to satisfy @ on instance T if the instance contains all
required facts and no prohibited fact, that is, if V(pos(Q)) C Z and V(neg(Q))NZ =0
holds. In this case, valuation V' derives fact V' (head(Q)). The query result on an
instance Z is the instance Q(Z) that contains exactly those facts that are derived by
some valuation that satisfies @) on Z.

A query @) is consistent if there exists at least one instance Z such that the query
result Q(Z) is not empty. It is well-known that a conjunctive query @ with negation
is consistent if and only if there is no direct contradiction in its positive and negated
atoms, pos(Q) Nneg(Q) # 0. In the following, every conjunctive query with negation
is silently assumed to be consistent.?

Unions of conjunctive queries (with and without negation)

A union of conjunctive queries with negation (UCQ™) over schema S consists of
finitely many conjunctive queries @1, . .., @ with negation over S, where k > 1, whose

2This does not affect the computational complexity of the studied problems since the syntactical
criterion can be checked efficiently.
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heads all refer to the same relation symbol. Such a UCQ™ is denoted @@ = Q1U---UQy
and queries @1, ..., Qk are referred to as the subqueries or disjuncts of Q.

Several properties are generalised to a UCQ™ directly from its subqueries. A
UCQ™ is a union of conjunctive queries (without negation) if all its subqueries
are conjunctive queries (without negation). Similarly, it is full or boolean if all its
subqueries are full or boolean, respectively.

A wvaluation for UCQ™ Q = Q1 U --- U Qy is a valuation for one of its subqueries Q;.
Valuation V satisfies @ if it satisfies some @Q);, in which case it derives the corresponding
fact V(head(Q;)). The query result on instance Z is the union of the results of its

subqueries, Q(Z) & Q(Z) U --- U Qx(Z).

Remark 2.1.1 (Valuation-subquery correspondance). Formally, the same valuation
can derive multiple facts for different subqueries. On instance {R(a,b),S(a)}, for
example, a single valuation V = {z — a,y — b} derives three facts H(a,b), H(b,a)
and H(a,a) for the query Q@ = Q1 U Q2 U Q3 with subqueries

Q1 = H(x,y) «+ R(z,y),
Q2 = H(y,x) + R(z,y) and
Q3 = H(z,x) + S(x).

However, this is of no importance in most of the arguments to follow and we hence
usually neglect this possible ambiguity, assuming that all subqueries use disjoint sets
of variables and that a valuation is defined only for the variables of one subquery. In
the case of the query above, we assume an (equivalent) representation like

Q1 = H(u,w) + R(u,w),
Q2 = H(y,x) < R(x,y) and
Q3 = H(z,z2) + S(z).

Furthermore, a valuation that is defined for {u,w} is neither defined for all variables
in {x,y} nor for all variables in {z} (and, analogously, for other sets of variables).
Under these assumptions, a valuation V' determines a unique subquery @Q; of the

UCQ Q. For simplicity, we then often write V(head(Q)) instead of V' (head(Q;)),
eliminating the need for an explicit quantification; not only for head(Q) but also for

pos(@), neg(Q) and so on.

Queries with disequalities

All previously defined query classes are naturally extended by addition of disequality
atoms. A disequality atom T # 7' relates two terms 7,7’ and is satisfied by a
valuation V if this valuation is defined for both terms and maps them to different

13
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data values. Following our assumption on the consistency of queries, disequalities of
the form a # b for different constants a,b do not occur.
For instance, a conjunctive query Q with negation and disequalities, CQ™%, is of

the form
H<—Al,...,Am,—\Bl,...,ﬁBn,Al,...,Ap,

where diseq(Q) = {A1,...,A,} is a finite set of disequality atoms, where each
disequality atom is of the form 7 # 7’ for terms 7,7" € var(pos(Q)) U dom. A
valuation V' satisfies query @ on instance 7 if it satisfies each disequality atom and
the underlying disequality-free query, H <+ A1,..., Ap, =By, ..., By.

The class of all conjunctive queries is denoted CQ. Similarly, UCQ and CQ7 denote
the classes of unions of conjunctive queries and conjunctive queries with disequalities,
respectively. Further extensions result by combination of unions, disequalities or
negations that are easily identified by the class name like CQ™, UCQ™7 and so on.
These rather general (syntactic) properties are sometimes accompanied by further
restrictions, which are then specified in brackets. For instance, CQ[full] denotes the
subclass of queries from CQ™ that are full. Analogously, the tags sm and pol refer to
strongly minimal and polarised queries, respectively, which we introduce later.

Remark 2.1.2. Although queries, as defined above, allow constants in relation and
disequality atoms, many complexity results in this work do not depend on the use
of constants. Therefore, class names CQ, UCQ), ...are reserved for the respective
subsets of those queries that are free of constants while CQqorns UCQqom s - - - denote
those classes where constants may occur.

cqQ-

ucqQ-

" T

ucQ ucQ™#*

\ /

CQ;%é - U(st"é

CcQ

Figure 2.1.: The most important query classes considered in this work and their
relationship with respect to syntactical restrictions (arrows towards
extensions).

Properties of queries

Different query representations can describe the same query mapping: query repres-
entations @ and Q' are equivalent, denoted Q = @', if they have the same result,
Q(Z) = Q'(Z), on every instance Z. A weaker relationship is query containment:
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query @ is contained in query @', denoted Q C ', if the result of the latter contains
the result of the former, Q(Z) C Q'(Z), for every instance Z. Naturally, two queries
are equivalent if and only if they mutually contain each other.

If a query Q1 is not contained in another query @2, then, by definition, there is a
finite instance Z witnessing that. More precisely, the size of a minimal such instance
is bounded by the size of the queries in the following way.

Fact 2.1.3 (Counterexamples for containment). Let Q; and Qs be queries in UCQ ™7
If Q1 Z Q2, then there is an instance Z of size at most rv® such that Q1(Z) € Q2(Z),
where v is the number of variables in ()1 and r and « are the number and the
maximal arity of relation symbols in both queries @1 and )2, respectively. Indeed, if
query Qs is in UCQ7, the size bound depends on @ alone.

Note in particular that the size, rv®, is polynomial in the size of the queries if «
is viewed as constant. Moreover, for queries ) and @’ from CQ, containment can
be characterised by the existence of homomorphisms. A homomorphism from Q
to ' is a homomorphism h where h(head(Q)) = head(Q’) and h(pos(Q)) C pos(Q’).

Homomorphisms from a query to itself are called endomorphisms.

For some queries, the result set can never diminish if facts are added to the instance:
a query @ is monotonic if Q(Z) C Q(Z') for all instances Z,Z" where Z C 7’. The
following fact is well-known.

Fact 2.1.4 (Monotonicity of UCQ7). Let Z,Z’ be instances where Z C 7’ and let Q
be some UCQ#. If a valuation V satisfies Q on Z, then V satisfies Q also on Z’. In
particular, this implies that query () is monotonic.

If at all, the query result usually depends on the concrete data values in the instance
only in a restricted way. For a set D C dom of data values, a query is D-generic if
m(Q(Z)) = Q(m(Z)) holds for every permutation 7 : dom — dom that behaves like
the identity on D. In the special case where D = (), the query is simply called generic.
Every query Q € UCQ;(’)Z&I1 is dom(Q@)-generic. In particular, each constant-free query
is generic.

2.2. Relational databases and queries, distributed

The simplicity of the MPC model, where there is no hierarchy on the servers and
no restriction on the communication between them (as in other network topologies),
justifies the following definition. A network is a non-empty finite set, whose elements
are called nodes. The size of a network N is its cardinality |V|.
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2.2.1. Databases

Basically, distributed databases are collections of instances that are stored on the
nodes of a network. Since we are particularly interested in the comparison of parallel
and centralised (classical) evaluation, we follow the ‘local-as-view’ approach and
additionally keep track of all facts via a ‘global’ instance.

Definition 2.2.1 (Distribution and distributed database). Given some network N
and a schema S, a distribution of an instance Z of S-facts over N is a relation
L € N x 7 that associates every node k € N with the local instance L(k) of node k.
A distributed database over N is a generalisation of this concept; it is a pair D = (G, L)
consisting of an S-instance G, the global instance of D, and a distribution L. of G
over N. <

The formalisation above explicitly allows replication of facts across nodes. Further-
more, it does not require that all facts of the global instance G are actually present
at some node of the network.

The sets of those nodes and facts that are in the domain and range of relation L
are denoted net(LL) and facts(LL), respectively. A distributed database D = (G,L)
is complete if G C facts(IL), in which case the two sets are equal since facts(L) C G
is guaranteed by Definition 2.2.1. In this case, the global database G is implicitly
defined by IL and often omitted. For incomplete distributed databases, the facts that
are in G — facts(IL) are said to be skipped by D.

2.2.2. Query evaluation

The result of a distributed, communication-free evaluation of a query is the union of
all partial results obtained at the individual nodes of the network.

Definition 2.2.2 (Distributed evaluation). Let D = (G, L) be a distributed database
over some schema S and some network N. Furthermore, let () be a query from
schema S to schema T .

The distributed evaluation of @ on D yields a new distribution Q(L) C N x inst(7T)
by pointwise evaluation of the query on the local instances, that is,

QML) = | {k} x QL(K)).

keN

We are particularly interested in those facts that are located (or derived) on some
node of a distribution L, forgetting about where it is derived. In these cases, the
set facts(LL) is denoted | |, emphasising that it results as the union of the local
instances. In particular, the distributed query result | |Q(L) of @ on D is the union
facts(Q(L)) of all partial results. <
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To facilitate the description, the mapping L~! induced by a distribution L is gen-
eralised from single facts to sets of facts in the following way without notational
difference: for every set F of facts, L2 (F) <N fer L=1(f) is the set of those nodes
whose local instances contain all facts from F.

Note that the evaluation strategy in Definition 2.2.2 is rather naive. It does not
take into account any knowledge about the relationship between the global instance
and the local instances. In particular, when a fact f is missing in a local instance, it

is unclear whether it is also missing in the global instance or only skipped.

2.2.3. Distribution policies

One of our goals is to explore the scenarios where the (naive) distributed evaluation
yields the same result as the centralised evaluation. Typically, distributions are
not determined arbitrarily but rather following some pattern. In our setting, this
regularity is captured by the notion of a distribution policy. We start with the
definition and an example of policies and continue with a discussion of different
representations for them.

Definition
Policies determine which nodes are responsible for which facts.

Definition* 2.2.3. A (distribution) policy over a network N and a schema S is a
finite distribution P C N x facts(S) of arbitrary facts over S. <

The formalisation of distribution policies is a weak generalisation of distributions
(where the set of facts is not only restricted by the schema but also by facts in the
given instance). Therefore, each distribution can be seen as a distribution policy and
vice versa. However, both concepts are used in a different sense: while a distribution
is meant to represent an actual placement of facts on the nodes of a network, the
policy is meant to represent the intended placement of facts. Given a policy P, a
node k is said to be responsible for a fact f if f € P(k).

In this sense, for every fixed instance G, a policy P induces a distribution L. = P> G,
as illustrated in Figure 2.2 (on page 18). We note that the definition implies equality

L(k) = (P> G)(k) =P(k) NG

for each node k. That is, the local instance comprises exactly those facts for which
the node is responsible and which are present in the global instance. Notably, this
definition implies that the actual placement of a fact is independent of the occurrence
of other facts in instance G: for every node k and every fact f it holds f € L(k) if
and only if f € G and f € P(k).
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Remark 2.2.4. Notably, the finiteness of the relation particularly implies that the
set of data values occurring in the facts referred to by P is finite too. This set is
called the universe of P, denoted univ(P).

The set of all relation symbols actually referenced by a policy P is denoted sch(P).
Together with the policy’s universe it induces the set inst(P) < inst(sch(PP), univ(P))
of instances. We say that an instance Z is an instance over P if 7 € inst(P) and,
similarly, that a valuation V' is a valuation over P if it maps only to values in univ(P).

local instance LL(k1) P(ky)
50 -
R(a,a)
© o =
R(a,a) R(a,a) |l S(a) R(b,b)
R(b,a)
R(b,b) R(b,b)
local instance L(k2) P(k2)
Distribution L Policy P global instance G

Figure 2.2.: Example distribution L with two local instances L(k1) = {R(a,a), S(b)}
and L(k2) = {R(a,a), R(b,b)}. This distribution results as the right
restriction of policy P to the global instance G = {R(a, a), R(b,b), S(b)},
where P is the union of {k;} x {R(a,a), R(a,b), R(b,a),S(a),S(b)} and
{ko} x {R(a,a), R(b,a), R(b,b), S(a)}.
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Algorithmical representation

Since some of the main algorithmical problems studied later expect a policy as input,
an obvious question is how such a policy is represented. For all representations, we
assume that nodes and facts are encoded as words over some fixed alphabet.

The most simple type considered in this thesis is the explicit representation of
the relation as a list of pairs. The class Py contains exactly those representa-
tions. Besides this type, we consider two other kinds of policy representations: a
representation based on rules and one based on algorithms.

The second—slightly more implicit—representation is given by a finite set of rules
of the form A — k for an atom A and a node k. If policy P is represented by
the set {A; — ki1,..., A, — k,} of rules, then its network is net(P) = {k1,...,k-}
and its universe is the set of constants explicitly present in its defining atoms,
univ(P) = dom(A;) U---Udom(A,). Under a rule-based policy, a node k € net(P)
is considered responsible for a fact f over univ(P) if there is a rule A; — k and a
valuation V' for A; such that V(4;) = f holds.

As an example, rules {R(0,1) — k, R(1,0) — k, R(x,x) — £} represent a two-node
policy with universe {0,1} that distributes facts R(0,1) and R(1,0) to node k while
it distributes facts R(0,0) and R(1,1) to node £.

The class Prye consists of all such rule-based representations. In particular, it
contains the class Pygt, whose policies can be interpreted as lists of variable-free
rules. Contrary to list-based policies, for rule-based policies the number of facts can
grow exponentially in the representation size (depending on the arity of the relation
symbols). This is relevant for a few of the hardness results to follow.

The third—much more implicit—way to define a policy P is by means of an
algorithm that decides relation P. Although, in principle, arbitrary algorithms could
be considered, a restriction to ‘efficient’ algorithms seems desirable from a practical
point of view. In this work, the measure of efficiency is the worst-case run time of
the algorithm.

For every constant ¢ € N — {1}, the class Pag contains algorithmic representations
of policies of the form (Ap, 3) , where Ap is an algorithm that decides nondetermin-
istically in time O(]|(k, f)||°) whether (k, f) € P holds. For technical reasons, the
set of inputs for algorithm Ap is restricted by the unary-coded bound f such that
every node and every fact can be represented by at most S symbols over the assumed
(fixed) alphabet. In particular, each data value is encoded by at most 8 symbols
and the universe is the set of all values with such encodings. Note that the size of
the network can be exponential in 5. Nevertheless, due to the unary encoding of 3,
each node has an identifier of polynomial length, which hence can be ‘guessed’ by an
NP-algorithm that gets representation (Ap, 3) as an input.

Restriction to deterministic algorithms yields the class Pg_,, for every c € N—{1}.
Here, bound f is not seen as a bound on the encoding size of nodes but as a bound on
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the number of nodes, say, the first 8 nodes according to a fixed lexicographical order
on the alphabet. This yields a linear bound on the size of the network and allows to
compute all local instances induced by a given global instance deterministically in
polynomial time.

In the following, the formal distinction between a policy and its representation is
often ignored and only made explicit when necessary. Ignoring this distinction,
class Pyle is evidently a subclass of Pg_alg and thus also of Pglg, for a suitable ¢, since
every explicit representation can be translated into a naive look-up algorithm (with
an appropriate bound ).

Remark 2.2.5 (Choice of algorithms). The consideration of even nondeterministic
algorithms is probably not of practical relevance. It is, however, theoretically
advisable since it is formally less restrictive while often not increasing the worst-case
complexity bounds discussed in this work. Furthermore, classes Pallg and Pé_alg are
excluded because ‘linear time’ is a subtle notion.

For the upper bounds proven in the following chapters, it is often unimportant which
of the representations is used. Similarly, the lower bounds often hold already for the
most simple (list-based or rule-based) representations. For ease of reference, we thus
define the following two families of policy classes.

Definition 2.2.6 (Natural policy classes). The family of deterministic natural policy
classes is Pyet & {Puist Prute } U {Pg_alg | ¢ > 2}, a restriction of the family of natural
policy classes, P = Per U {Pag | ¢ = 2} <
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Typically, database management systems have to answer several queries in a short
period of time—perhaps repeatedly, over changing data. The naive approach for
distributed systems is to redistribute the data for the evaluation of the query at hand,
regardless of the current distribution (resulting from previous computations). Since
communication over the network causes a significant part of the total computation
time, it seems desirable to minimise the amount of redistributed data or—ideally—to
avoid it completely.

This demands a concise representation of the distribution or, at least, of the
distribution pattern and the possibility to reason about its usefulness for the query.
Parallel correctness formalises the ideal scenario (of avoiding redistribution com-
pletely) for policies as distribution patterns: given a query @ and a policy P, is the
result on instance G equal to the result of the distributed evaluation on the local
instances L.(1),...,L(n) defined by G and P? Is that the case for the one instance G
at hand, in which case equation

Q(G) = QL)) V... UQ(L(n))

holds, or does it even hold for every suitable instance? Moreover, equality can be
seen as the convergence of an underapproximation and an overapproximation of the
query result by the distributed computation, resulting in problems related to parallel
correctness—parallel soundness and parallel completeness.

Structure of this chapter. After providing a precise definition of the notion of
parallel correctness and some variants in Section 3.1, we study the complexity of the
corresponding decision problems for several query classes. In Section 3.2, we begin
with conjunctive queries or unions thereof, possibly with disequalities, and extend our
study by allowing negation of relation atoms in the subsequent Section 3.3. Finally,
we provide an overview of related results in Section 3.4.

For queries in UCQ”, which are monotonic, parallel correctness is equivalent to
parallel completeness. Parallel completeness of a query, in turn, can be characterised
by minimally requiring valuations (Theorem* 3.2.5) and we prove it to be II5-
complete (Theorem 3.2.7) in general, while it is coNP-complete for strongly minimal
queries—which only have minimal valuations (Proposition*® 3.2.17).
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For queries in UCQ ™7, which are not necessarily monotonic, parallel soundness is not
trivial but studied separately. Although all variants remain I15-complete if the max-
imum arity of the relations is bounded in advance, the complexity raises considerably
without this restriction: parallel correctness—as soundness and completeness—is
coNEXPTIME-complete in general (Theorem 3.3.4). However, we identify fragments
that exhibit a lower complexity.

For full queries—without projection—, the problems are in coNP (Proposition™ 3.3.9)
and, indeed, coNP-hard (Proposition 3.3.7). As a side-product, we get that lower
bounds for the containment problem are automatically lower bounds for the parallel
correctness problem for certain query classes like the relational algebra or Datalog
(Corollary™* 3.3.8).

For polarised queries—where each relation occurs only positively or only negated—,
the notion of minimally requiring valuations can be extended to incorporate prohibited
facts, induced by negated atoms. Interestingly, the canonical extension to minimal
valuations allows to characterise parallel soundness (Proposition 3.3.15) but not to
characterise parallel completeness. The latter is possible though by extending the
notion of minimal valuations to P-minimal valuations (Proposition 3.3.21), which
differentiates between ‘effectively’ and ‘ineffectively prohibited’ facts (with respect to
policy P). The corresponding decision problems are IT5-complete, irrespective of the
arities of the underlying schema (Theorem 3.3.22).

3.1. Definition

The most restricted form of ‘parallel correctness’ considers the evaluation of a query on
a specific distributed database, as defined and illustrated next. We define consecutive
generalisations of this notion further below.

Definition* 3.1.1 (Parallel correctness on distributed database). Let Q) be a query
and D = (G,LL) be a distributed database. Query Q is parallel-correct on D if

1. @ is parallel-sound on D, that is, if | |Q(L) C Q(G); and
2. @ is parallel-complete on D, that is, if | |Q(L) 2 Q(G). |

An important special case of the previous definition arises when the distributed
database results by a policy. In this case, a policy P and a global instance G are given
and induce a distributed database D = (G,LL), where L = P> G. Correspondingly,
we say that query @ is parallel-correct on G under P if the conditions above are
satisfied (and similarly for the constituent properties, parallel soundness and parallel
completeness).

Example 3.1.2. Let D = (G, L) be the distributed database that is induced by the
global instance G = {R(a,a), R(b,b), S(b)} and the two-node policy
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P Y {ki} x {R(a,a), R(a,b), R(b,a), S(a),S(b)}
U {ko} x {R(a,a), R(b,a), R(b,b),S(a)}

from Figure 2.2 (on page 18). For query @ : H(z) + R(z,z),—S(x), this yields the
distributed query result

QL) = {H(a), HD)} 2 {H(a)} = Q(9),

as illustrated in Figure 3.1 (on page 24).

On the one hand, query @ is parallel-complete on G under [P because the distributed
result set contains all facts from the result set of the (classical) centralised evaluation.
On the other hand, query @ is not parallel-sound on G under Policy P because
additional facts are derived locally, namely H(b). The latter is a consequence of the
unawareness of node ks of the prohibited fact S(b), due to the definition of policy P.
Clearly, query @ is not parallel-correct on G under P, since it is not parallel-sound.

|

The properties introduced in Definition 3.1.1 refer to the behaviour of the given
query on a single global instance. These properties are naturally extended to all
global instances, or—strictly speaking—to all instances induced by the policy.!

Definition* 3.1.3 (Parallel correctness under policy). Let @@ be a query and let P
be a policy. Query Q is parallel-correct under P if

1. @Q is parallel-sound under P, that is,
if @ is parallel-sound on G under P for every G € inst(PP); and

2. @ is parallel-complete under P, that is,
if @ is parallel-complete on G under P for every G € inst(P). <

The previous definition gives rise to the following static analysis problem.
PC(o.P)

Parameters: query class @ and policy class P

Input: query Q € O,
policy P € P
Question: Is @ parallel correct under P?

Following Definition 3.1.1, we also consider a dynamic variant of this problem, where
the correct evaluation of the query is to be determined only for a single distribution,
induced by a given global instance.

nstances with facts over additional relations or facts with additional data values either have no
effect or a trivialising effect on parallel correctness.
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local result Q(L(k1)) local instance L(k;)
R(a,a)
H{a)
by V, = {z — a}, 5(b)
requiring {R(a,a)},
prohibiting {S(a)}
R(a,a)
S(b)
H(a), H(b) R(a,a) R(b,b)
by V, = {z +— a} and
by Vi, = {x — b},
requiring { R(b,b)}, H(a)
prohibiting {S(b)} R(b,b) by V, = {x + a}
local result Q(L(k2)) local instance L(k2) global result Q(G)
Distributed result | |Q(LL) Distribution L global instance G

Figure 3.1.: Exemplary evaluation of query @ : H(x) < R(x,z),~S(x) with distrib-
uted and global result sets (left and right). Query Q is parallel-complete
on D = (G, L) because the only fact H(a) derived globally is also derived
locally—even twice. Query Q is however not parallel-sound on ID because
fact H(b) is derived locally but not globally.

Parameters: query class Q and policy class P

Input: query Q € Q,
policy P € P,
instance G
Question: Is @) parallel-correct on G under P?
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3.2. Unions of conjunctive queries

For both problems, static and dynamic, variants for parallel soundness and par-
allel completeness are defined analogously. They are denoted PSounp;(Q,P) and
PSounp(@,P) or PCowmpi(0,P) and PComp(Q,P), respectively.

In the next section, we start the investigation of the complexity of parallel correctness
for conjunctive queries and unions thereof. Afterwards, in the subsequent section,
we extend our study to queries that also allow atomic negation.

3.2. Unions of conjunctive queries

Let us start with a simple but central observation for the negation-free class of unions
of conjunctive queries: each query Q € UCQfom is trivially parallel-sound because
it is monotonic. Monotonicity implies that each local result set Q((P>G)(k)) is a
subset of the global result set Q(G) because the local instance (P> G)(k) is a subset
of the global instance G. More precisely, Fact 2.1.4 guarantees that, whenever a fact
is locally derivable, then it is also globally derivable—even by the same valuation.

Thus, for the queries considered in this section, the parallel correctness problem is
equivalent to the parallel completeness problem. For the sake of clarity, we refer to
the problem by the latter name.

Our study begins with the general case (arbitrary unions of conjunctive queries
with disequalities and constants) in Section 3.2.1, where parallel completeness is IT5-
complete. It continues with the fragment of strongly minimal queries in Section 3.2.2,
where the complexity decreases to coNP-completeness for queries without disequalities,
albeit it remains IT5-hard for queries with disequalities.

3.2.1. General case

Before we investigate the worst-case complexity of the problems PComp and PCowmp;,
we consider some notions that allow to characterise parallel completeness in terms
of valuations instead of instances. These notions provide valuable insights into
the problem on the one hand and facilitate the complexity analysis on the other
hand. Moreover, variants of these notions are useful also for some other query
classes (like polarised queries, considered in Section 3.3.3) and related problems (like
parallel-completeness transfer, considered in Chapter 4).

Characterisation

Parallel completeness is defined with respect to a set of global instances, in the static
variant, or a single global instance, in the dynamic variant. Usually, these instances
are rather large—bounded by the size of the policy’s universe as well as the number
and arities of its relation symbols, and thus exponential in the worst case.
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3. Parallel correctness

However, distribution policies are highly regular: they are defined on the granularity
of a fact. Because of this regularity, parallel completeness can be characterised with
respect to a set of ‘very small’ instances. These instances are the facts required by
minimal valuations. The notion of minimality, in turn, is based on the preorder
defined next.

Here and in the following, we rely on the valuation-subquery correspondance
mentioned in Remark 2.1.1 to facilitate notation for unions of conjunctive queries.

Definition* 3.2.1 (Preorder SPQ‘)S). For a query Q € UCQ™7, the preorder <0
relates valuations for Q. If Vi, V4 are valuations for @), then Vj §5OS V5 holds if

1. both valuations derive the same fact,

Vi(head(Q)) = Va(head(Q)), and

2. valuation Vj requires only facts that V5 requires,
Vi(pos(Q)) € Va(pos(Q)). <

Starting from preorder S%OS, an equivalence relation E%OS and a strict preorder <2—2°S

are canonically defined such that

o V] E%OS V5 holds if V; S%OS Vy and Va S%OS Vi hold and
o Vi <{,” Vo holds if Vi <¢)” V5 and Vi(pos(Q)) & Va(pos(Q)) hold.

If it is clear from the context, the query-indicating index is sometimes omitted.

Definition* 3.2.2 (Minimally requiring valuation). For a fixed query @ € ucQ™7#,
a valuation V' is minimally requiring if it is minimal with respect to S%OS, that is, if
pos

there is no valuation U for () such that U <g V. <

It is worth noting that for unions of queries, the notion of minimality of valuations
can cross the boundaries of the constituent subqueries, as illustrated in the following
example.

Example 3.2.3. Let @ be the UCQ consisting of two conjunctive queries,

e Q1 = H(z,z) + R(x,z) and
® Q2= H(y7 Z) — R(?/) Z)>S(yvz)'

Although valuation Vo = {y — 0,z — 0} is minimal for subquery Qo—since it
requires only one fact for each relation symbol in its body—it is not minimal for
query (. This is witnessed by another valuation, Vi = {z — 0}, for which V; <¢ V>
holds because V; derives the same fact, V;(head(Q)) = H(1,1) = Va(head(Q)), but
requires fewer facts, Vi (pos(@Q1)) = {R(0,0)} € {R(0,0),5(0,0)} = Va(pos(Q2)). W
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3.2. Unions of conjunctive queries

Remark 3.2.4. For negation-free queries in general and in this section in particular,
we simplify notation a bit. For a query @ € UCfoom, we also write <¢ instead
of <¢”. Furthermore, we mostly write just minimal instead of minimally requiring.

This is justified later by generalisations of the corresponding definitions (Sec-
tion 3.3.3), where negated atoms are also taken into account.

For a fixed query @ and an arbitrary valuation V for @, there is always a minimal
valuation U such that U < V. This minimal valuation is, however, not necessarily
unique, as the following example illustrates. Consider the boolean query H() <«
R(z), R(y) and valuation V £ {z — 1,y — 2}. Valuation V is not minimal for
the query because it requires two facts and thus strictly more than the following
valuations. Valuations U; < {z — 1,y — 1} and Uy & {z — 2,y — 2} are both
minimal for the query because each valuation requires only a single fact. In particular,
Uy < V and Uy < V hold since both valuations derive the same fact as V. Note that
Uy and Us are not only distinct but also require distinct sets of facts.

Determining whether V4 <g V5 holds for given valuations Vi, V3 is possible in
polynomial time, while determining whether a valuation is minimal for a given query
is coNP-complete [AGK17a].

Now, we have the concepts to characterise parallel completeness by a set of ‘very
small’ instances. These instances are the facts required for minimal valuations.
Intuitively, it is sufficient to witness the derivation of each fact in a query’s result
set by a minimal valuation. Since such a valuation requires a minimal number of
facts, it is always satisfied on some node’s local instance if a non-minimal valuation
deriving the same fact is satisfied. This idea motivates the following condition.

Condition (PComp)

Assumptions: Let Q be a UCQ* and let P be a policy.
For every minimal valuation for @ over P,
there is a node in net(IP) that is responsible for all facts required by the valuation.

The next theorem states that this condition characterises parallel completeness for
unions of conjunctive queries without negation.

Theorem* 3.2.5 (Characterisation of parallel completeness). For every query Q €
UCQ? and every policy P, query @ is parallel-complete under P if and only if
Condition (PComp) is satisfied for ) and P.

Extending the condition from minimal valuations to all valuations, as in Condi-
tion (PComp-naive) below, yields a stronger condition (which is more restrictive on
the set of valuations for the query) that is known to be sufficient, albeit not necessary.
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3. Parallel correctness

Condition (PComp-naive)

Assumptions: Let Q be a UCQ¥ and let P be a policy.
For every valuation for @) over P,
there is a node in net(IP) that is responsible for all facts required by the valuation.

Policies that satisfy this condition distribute facts, in general, more generously than
they have to ensure the correct evaluation of the query. The next definition captures
this property, which we encounter again later.

Definition* 3.2.6 (Strong parallel completeness). A query Q € UCQ” is strongly
parallel-complete under policy P if @ and P satisfy Condition (PComp-naive). <«

Furthermore, it is not possible to decide parallel completeness of a union of conjunct-
ive queries naively by deciding parallel completeness of its subqueries. More precisely,
although a union of conjunctive queries is parallel-complete under a given policy P
if all its subqueries are parallel-complete under P, this is not a necessary condition.
The latter is witnessed by the query in Example 3.2.3 (on page 26): query ) can be
parallel-complete under a policy P even though it has no node responsible for both
facts R(a,a),S(a,a) as long as it has a node that is responsible for the single fact in
R(a,a).

Building on the previous observations and, particularly, on the characterisation
provided by Theorem 3.2.5, the computational complexity of several variants of the
parallel completeness problem for unions of conjunctive queries is studied below.

Complexity
The remainder of this section is devoted to the proof of the next theorem.

Theorem 3.2.7. PCowmp(0,P) and PCowmp;(Q,P) are II5-complete for every query class
Q € {CQ,CQ7,UCQ,UCQ”} and every policy class P € .

Proof. The upper bound is implied by the upper bound stated in Proposition 3.2.8
for the most general query class UCQ” and the most general policy class Paig>
for arbitrary ¢ > 2. The lower bound follows from the lower bound stated in
Corollary 3.2.13 for the least general query class CQ and the least general policy

class Piist - ]
We start with the upper bounds stated in the previous theorem.

Proposition 3.2.8. PComp(ucQ#,P) and PComp;(UCQ#,P) are in IT5 for every P € .
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3.2. Unions of conjunctive queries

Proof. We provide an algorithm for each problem. The general idea is to check
parallel completeness either indirectly, via the characterisation by Theorem 3.2.5, for
the static variant or directly on the given instance for the dynamic variant. We start
with the latter, fixing a policy class P from 3.

» Dynamic variant. To check parallel completeness of query () on some instance G
under a policy P over nodes ky, ..., k, means to check whether

QUP>G) (k1)) U...UQ(P>G)(k)) 2 Q(Y) (3.1)

holds. For this, it is sufficient to show that, for each fact in the global result set Q(G),
there is a node where this fact is derived too. More particularly, if the derivation of
a fact on G is witnessed by some valuation V', then its derivation on a local instance
is equally witnessed by a—possibly different—valuation W'.

Algorithm A; tests for the existence of such a valuation W for every valuation V
that is relevant, that is, globally satisfying.

Algorithm A;

Input: query Q € UCQ7,
policy P € P,
instance G

Quantified extra input:
v valuation V for @ over univ(P)

3  valuation W for @ over univ(IP), node k € net(PP), string s

1. if V(pos(Q)) Z G then {ignore valuation that is not globally satisfying}
2: accept

3: if V(head(Q)) = W(head(Q)) then

4:  if W(pos(Q)) C G and W (pos(Q)) C P(k) then

5: accept

6: reject

The correctness of Algorithm A; is a direct consequence of Equation (3.1), translated
to the level of valuations that derive the resulting facts, and the definition of right
restrictions. The latter satisfies (P>G)(k) = P(k) NG, where a suitable node is
specified by the existentially quantified extra input. Hence, the condition in Line 4
holds if and only if valuation W satisfies ) on the local instance of node k. Because
of Line 3, this valuation witnesses derivation of the fact derived by V.

It remains to discuss the worst-case complexity of the algorithm. There are possibly
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3. Parallel correctness

exponentially many valuations to check. These are, however, handled by the quantified
extra input: each valuation can be encoded by a string of polynomial length (bounded
by the product of the number of variables of the query and the maximal encoding
size of data values in the instance).

Finally, each test routine can be completed in polynomial time. First, the required
facts, induced by the valuations, are computed. Then, it is tested whether they all
occur in G and, for valuation W, in Line 4, also whether they all occur in P(k). The
former test is obviously polynomial and the latter is too because policy class P is
fixed. We argue the case where P = Py, for some ¢ € N — {1}; for all other policy
classes, the argument is then also valid. Here, policy P is represented by (Ap, 3),
where Ap is a nondeterministic polynomial time algorithm, which is invoked for each
fact required by W. For each invocation of Ap, the (existentially quantified) extra
input—the solution candidate—of the nondeterministic algorithm can be replaced
by successive parts of string s.

» Static variant. When parallel completeness should be checked for all instances
induced by the policy, the previous approach is not applicable. Here, Condi-
tion (PComp) comes to help. Following this characterisation of parallel completeness,
it is equivalent to check for every minimal valuation whether there is a node respons-
ible for the facts required. That’s precisely what Algorithm A does.

Algorithm A

Input: query Q € UCQ7,
policy P € P
Quantified extra input:
v valuation V for @ over univ(P)

3 valuation U for @ over univ(lP), node k € net(P), string s

1. if U(head(Q)) = V' (head(Q)) and U(pos(@)) < V(pos(Q)) then
2:  accept

3: if V(pos(®)) C G and V(pos(Q)) C P(k) then

4:  accept

5: reject

The correctness of Algorithm A follows from Theorem 3.2.5, as it is a straightforward
implementation of Condition (PComp). The test in Line 1 leads to the ignorance of
each valuation V that is not minimal—as witnessed by valuation U, which derives
the same fact but requires fewer facts. For every other—minimal—valuation V,
responsibility of the quantified node is tested in Line 3.
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3.2. Unions of conjunctive queries

The analysis of the worst-case complexity of this algorithm follows the lines of the
analysis for A; above. 0

Remark 3.2.9. There is another algorithmic approach to decide PCowmp;, closer to
Algorithm A. In this approach, the test of responsibility for required facts is restricted
to those minimal valuations that are valuations over the global instance G. Intuitively,
the existentially quantified extra input is then again needed to refute minimality
of V where appropriate.

The algorithms specified above are straightforward applications of the definition of
parallel completeness or its characterisation. An obvious question is whether they
can be improved with respect to their worst-case complexity. Theorem 3.2.5 answers
this question negatively: the underlying problems are IT)-hard.

We prove the lower bounds starting from the hardness of II,-QBF, the standard
satisfiability problem for IT5 [Sto76].

II,-QBF

Input: formula ¢ = Vae3y ¥ (x,y),
where 9 is a propositional formula in 3-CNF
over propositions € = (z1,...,2,) and y = (y1,...,Ys)

Question: Does, for every truth assignment 3, on x,
exist a truth assignment 3, on y such that 3, U 8, satisfies ?

Note that we begin with a proof of IT5-hardness for parallel completeness for conjunct-
ive queries with constants. The use of constants allows a more direct ‘translation’ of
the satisfiability question. Data values are however not necessary to achieve hardness,
as we show in a subsequent step that culminates in Corollary 3.2.13.

But now, queries with constants first.

Proposition 3.2.10. PCowmp(cQ,,,,,Pis:) s Hg—hard, even if restricted to polices over
single-node networks.

Proof. The mapping described next is a polynomial reduction from II,-QBF and
therefore proves the stated hardness result.

Every input formula ¢ = Va3y v for II,-QBF with a propositional (quantifier-free)
subformula % in 3-CNF can be mapped to a query ) € CQg,,, and a policy P € Pyig;
in the following way. Let © = (x1,...,2,) and y = (y1,...,ys) be the propositions
of 1, which consists of clauses C1,...,C), where C; = ({1 V ;2 V {;3) for every

je{l,...,p}
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3. Parallel correctness

The database schema underlying query and policy contains a binary relation Neg
and ternary relations Cy,...,C, for the clauses of 1. Constants 0,1 € dom are used
as truth values. Furthermore, query () and policy P alike are based on a common set
of facts,

Feat = {Neg(0,1),Neg(1,0)} U {C;(b)|j € {l,...,p} and b e BT},
which encodes complementary truth values (like for z; and —x1) as well as satisfied
clauses. To this end, the set BT = {0,1}3 — {(0,0,0)} contains all triples of truth
values with at least one true component.

Query @ refers to variables x1,...,z,,vy1,...,ys and T1,..., Ty, Y1, - - ., Ys that repres-
ent the positive and negative literals, respectively, that may occur in ¥. The query’s
head head(Q) = H(zy,...,z,) comprises all positive literals over the universally
quantified propositions while its body pos(Q) = Fgat U Ajit U Aclay comprises the
aforementioned facts and, additionally, sets

A = {Neg(wi, @) | i€ {1,...,r}} U {Neg(ys, %) | i € {1,...,s}} and
def .
Aclau = {Cj(gjyl,fjg,fj,g) |] & {1,...,p}}

of atoms. Here—with slight abuse of notation—each literal /;; = x; is interpreted
as variable z; and each literal /;, = —z; as variable Z;, and analogously for literals
over propositions yi, ..., ys.

Furthermore, the single-node policy is P def {ksat} X Fsat. It marks node kgt as
responsible for all facts in Fy,t but no other facts. The policy’s universe consists of
the truth values 0 and 1.

Clearly, query @) can be computed from ¢ in polynomial time. The same holds for
the representation of P as a list of pairs. Since the mapping is also obviously total, it
remains to show that it satisfies the reduction property: ¢ € II,-QBF holds if and
only if (Q,P) € PCoMP(CQy,,,,Piist)-

» Only if. Assume that ¢ € TI,-QBF. We show that @ is parallel-complete under P
then. To this end, let V' be an arbitrary minimal valuation for @) over P. The
following argument shows that node kgy¢ is responsible for all facts required by V.

Since univ(P) = {0, 1}, valuation V naturally induces a truth assignment 3, on x,
where [z (x;) = V(x;) for every i € {1,...,r}. Since ¢ € II,-QBF, there is a truth
assignment (3, on y such that assignment 3, U 8, satisfies subformula ).

This combined truth assignment in turn induces a valuation V' that maps each
variable z; and y; to the truth value defined by (8, and B, respectively, as well
as each variable z; and y; to the corresponding complementary values. The latter
particularly implies that V'(Aj) C {Neg(0,1),Neg(1,0)} C Fuat. Furthermore,
for each j € {1,...,p}, valuation V' maps at least one variable ¢;1,¢;2,¢;3 to 1
because 3, U 3, satisfies ¢ and thus, in particular, every clause C;. Therefore, also
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V'(Adan) C Feat and, summarizing, V'(pos(Q)) C Fsat. Hence, valuation V' is
minimal because, by definition of query @, every valuation requires facts Fyat.

Since valuations V and V' agree on the head variables z1, ..., x,, both valuations
are minimal and V requires all facts Fg, = V'/(pos(Q)), we can infer V < V', In
particular, valuation V requires the same facts as V'’ and thus only facts for which
node kgt is responsible: V(pos(Q)) C V'(pos(Q)) € Feat = P(ksat)-

Hence, there is a node that is responsible for the facts required by every minimal
valuation, that is, query @ is parallel-complete under P by Condition (PComp).

» If. For a proof by contraposition, assume that ¢ ¢ II,-QBF. The following
argument shows that query @) is not parallel-complete under P in this case.

Since ¢ ¢ II,-QBF, there is a truth assignment 5, on x such that there is no
truth assignment 3, on y such that 3, U 8y satisfies ). More specifically, let 5, be
a truth assignment such that 8, U 3, satisfies a maximal number of clauses. The
valuation V' induced by this combined truth assignment maps V' (z;) = Bz (x;) for
every i € {1,...,r} and V(y;) = By(y;) for every i € {1,..., s} as well as all variables
Z1,...,Zy and ¥y, ..., ys to the corresponding complementary values. Obviously, V'
is a valuation over P.

Valuation V' is defined such that V(Aj) C {Neg(0,1),Neg(1,0)} and every atom
Cj(lj1,2;2,0j3) € Aclan is mapped to a fact C;(b) for some b € {0,1}3. Furthermore,
valuation V maps, for every j € {1,...,p}, relation atom C;(¢;1,¢;2,4j3) € Aclau
to a fact in Fgu only if assignment 3, U By satisfies clause C;. Therefore, there is
at least one j € {1,...,p} such that V(C;(¢;1,¢;2,¢;3)) = C;(0,0,0) ¢ Fgar because
truth assignment 3, U 3, does not satisfy ¢. In particular, the only node kgt is
not responsible for all facts required by V. The following argument shows however
that V' is a minimal valuation.

For the sake of a contradiction, assume that valuation V is not minimal. There
exists then a valuation U such that U < V, that is, a valuation that satisfies
U(head(Q)) = V(head(Q)) and U(pos(Q)) € V(pos(Q)). Valuation U then partic-
ularly induces a truth assignment ,8;73/ on x and y because U(Aj) C V(Ai) =
{Neg(0,1),Neg(1,0)}. Assignment j3; , agrees with 3, on the universally quantified
variables because the valuations agree on the head variables. Since both valuations
require identical sets of facts on atoms Fgay U Ajig, we can infer U(Acan) S V (Actan)-
Thus, valuation U requires strictly fewer facts of the form C;(0,0,0). This, in turn,
implies that truth assignment Bg’my satisfies more clauses than the truth assignment
underlying valuation V', which leads to the desired contradiction because 3, was
chosen to satisfy a maximal number of clauses (with respect to Sg).

Therefore, a minimal valuation V exists such that the only existing node kgt is
not responsible for all its required facts. By Condition (PComp), query @ is hence
not parallel-complete under policy P.

The provided mapping is thus indeed a polynomial reduction that proves the II5-
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hardness of PCOMP(CQy,,,Puist)- O

Remark 3.2.11. The policy in the previous hardness proof is skipping (because no
node is responsible for facts Neg(0, 0), Neg(1, 1) or C;(0,0,0)), Corollary 3.2.13 shows
however that skipping is by no means necessary to achieve the hardness result; it
only simplifys the argument a bit.

Next, we prove that the question of parallel completeness for queries with constants
can be reduced to that for queries without constants. The growth of the size of
the resulting query and the policy, and of the policy’s network in particular, is
comparatively small. Also, the new query and policy belong to the same classes as
the original ones (e.g., a query from CQy,,, is transformed into a query from CQ).

Lemma 3.2.12 (Constant elimination). Fix a policy class P € B. For every query
Qe UCQZ’fOm with constants ¢y, ..., cs and every policy P € P, there is a constant-free
query @' and a complete policy ' such that the following properties are satisfied if
the maximum arity of relations is viewed as constant.

1. @’ is parallel-complete under ' if and only if @ is parallel-complete under IP.
2. @' and P’ have encoding sizes similar to ) and IP. More precisely,
a) ||Q'|| is linear in ||Q|| and
b) ||P’|| is polynomial in s + ||P||.
3. @' belongs to the constant-free subclass Q if @ belongs to Qgom-
4. P also belongs to P and refers to only s additional nodes.

Moreover, both query @ and policy P’ are computable in polynomial time.

Proof. Let @ and PP be a query and policy, respectively, as in the statement of
the lemma. Without loss of generality, assume that, first, query @ uses variables
Z1,..., %y, second, neither ¢) nor P does refer to relations Consty,...,Const,, and,
third, the network of P is net(P) = {ki,...,k,}. The query and policy described
below satisfy all properties stated in the lemma.

Query @’ is derived from @) by replacing all constants by separate fresh variables
Y1,...,Ys, that are ‘fixed’ by unary relation atoms. More formally, if () is a single
conjunctive query, the resulting query is defined as

head(Q") jzei o(head(Q))
pos(Q) = a(pos(@)) U {Consti(y1),. .., Consts(ys)},
diseq(Q’) = o(diseq(Q))
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where o is the substitution [c¢1/y1, ..., cs/ys]. For unions of conjunctive queries, each
disjunct is modified in this way.

Accordingly, policy I’ extends IP in two ways. First, it lets all nodes of P be additionally
responsible for those Const;-facts that are meant to represent the original constants.
Second, it adds some nodes that are responsible for the other Const;-facts. Formally,
the policy is defined as

P < P U (net(P) x {Consti(c1),...,Consty(cs)}) UP, U---UP,

where, for each i € {1,...,s}, policy P; & {£;} x (F — {Const;(¢;)}) marks a single
fresh node ¢; responsible for the set F of all possible facts over the combined schema
sch(P) U {Consty,...,Consts} and domain univ(P) U{ci,...,cs} with the exception
of the single fact Const;(c;).

Policy P is complete. First, P’ does not skip any fact over sch(lP) because s > 1
and thus node ¢; € net(P’), which is responsible for these facts by definition, exists.
Second, node k; is responsible for fact Consti(c1) and node ¢ is responsible for
every other fact Const;(d), where either ¢ # 1 or d # c;.

Query @’ and policy P are defined such that they preserve parallel-completeness of @
with respect to P. In principle, this is a consequence of the following two properties,
proven in the appendix (Lemma A.1) and Condition (PComp).

(P1) If V’ is a minimal valuation for Q" and V'(y1,...,ys) = (c1,...,¢s),
then V' is also a minimal valuation for Q.

(P2) If V is a minimal valuation for @, then V([y; — ¢1,...,ys — ¢s| is minimal
for Q’.

To conclude the argument, we show that Property (1) holds: parallel completeness
of @ under P implies parallel completeness of " under P’ and vice versa.

First, assume that @ is parallel-complete under P and let V' be an arbitrary
minimal valuation for Q' over . Two cases can be distinguished, depending on
the tuple d & (dy,...,ds) = V'(y1,...,ys) of data values induced by V': either
d = (c1,...,cs) or not. In the latter case, there is a position i € {1,...,s} such
that d; # ¢; and node ¢; is responsible for all facts V'(pos(Q’)). In the former case,
V'(o(pos(Q))) = V'(pos(Q)) and satisfaction of diseq(Q’) by V' trivially implies
satisfaction of diseq(Q) by V’. Thus, valuation V' is consistent for Q). Since, by
Property (P1), valuation V' is also minimal for @, there is a node k; € net(PP)
responsible for facts V' (body(Q)) under P—because @ is parallel-complete under P
by assumption. Like every node from net(IP), in the extended policy P’ node k; is also
responsible for the facts {Const(c1),...,Consts(cs)} additionally required by V’
for Q'. Hence, node k; is responsible for all facts V/(pos(Q')), implying that Q’ is
parallel-complete under P’.
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Second, assume that Q' is parallel-complete under P’ and let V' be an arbitrary
minimal valuation for ). By Property (P2), the induced valuation V' = V[y;
€1,.--,Yr — ¢r] is minimal for @' and also consistent, satisfying diseq(Q’). Thus
there is a node k € net(P’) that is responsible for all facts V' (pos(Q’)) because @’
is assumed to be parallel-complete under P. Obviously, valuation V' requires facts
{Consti(c1),...,Consts(cs)} and thus node k has to be from net(P). Since P’
extends P on k only with respect to Const;-facts and V(pos(Q)) C V' (pos(Q’)),
node k is responsible for all facts required by V for @ also under the original policy P.
Thus, query @ is parallel-complete under P.

It remains to argue that query @’ and policy P’ satisfy Properties (2) — (4). The
encoding size of query @' is obviously linear in ||@Q||. The encoding size of P’ increases
by the use of s additional nodes and the large set of facts that these nodes are
responsible for.2 Each of the new nodes is responsible for at most s+ ||P|| - (||| + s)"
facts if r is the maximum arity of relations because there at most ||P|| different relations
and at most ||P|| + s data values. Furthermore, nodes ki, ..., k, are responsible for
only s additional facts. Therefore, if r is seen as constant, Property (2) holds.

Property (3) readily follows from the fact that query @’ basically ‘copies’ query @,
introducing only relation atoms (no disequality atoms, no negated atoms, ... ).

Similarly, Property (4) holds because the extension of policy P to P’ can be already
achieved for a list-based representation (with a polynomial increase of the encoding
size) and only nodes ¢1,..., {5 are added to the network of P.

Lastly, it is not hard to see that the complexity of the derivation of query @’ and
policy I only depends polynomially on their encoding sizes, which are polynomial
with respect to @ and P. O

As motivated before, the previous lemma gives us the same lower bound of IT} for
the parallel completeness problem on conjunctive queries without constants.

Corollary 3.2.13. PComP(CQ,Pys) iS Hg—hard, even if restricted to complete policies
and networks over only three nodes.

Proof. Hardness follows from the ITh-hardness of PC(cQy,,,,Pus) over single-node
networks via constant elimination as described above: application of the Lemma 3.2.12
yields an extended policy P’ with two additional nodes, induced by the constants 0
and 1 used in the hardness proof for Proposition 3.2.10, where the arity of relations
is bounded by 3 (a constant). O

2The analysis for the encoding size of P’ even holds for explicit representations. For the more
elaborate representations (rule-based, algorithmic), the increase is only linear in the product of
the number of relations and constants—and, in particular, independent of the arity.
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3.2. Unions of conjunctive queries

The lower bound provided by Proposition 3.2.10 refers to the static variant of
parallel completeness. It results from the need to test responsibility for required facts
only for minimal valuations. The next proposition, which concludes the proof for
Theorem 3.2.7, states that the complexity—unfortunately—does not decrease for the
dynamic variant.

Proposition 3.2.14. PCowmP;(CQ, Py ) is ITh-hard, even if restricted to complete policies
and networks over only two nodes.

Proof. Hardness follows again by a polynomial reduction from IIo-QBF. Indeed, a
slight variation of the reduction provided in the proof of Proposition 3.2.10 shows
[I5-hardness of PCowmp; for queries with constants over single-node networks. Finally,
we adapt this mapping to satisfy the conditions in the statement to prove.

» With constants. For any given input ¢ for II,-QBF, let @’ be the query and P’ be
the policy derived from ¢ by the reduction used in the proof of Proposition 3.2.10.
Then, query Q' uses only two constants ¢y = 0 and ¢; = 1 and policy P’ = {kgat } X Feat
is defined over one node.

Let Fgat be the set of facts defined in the proof of Proposition 3.2.10, which contains,
in particular, all encodings of satisfied clauses. Moreover, consider an additional set
of facts, Funsat = {C1(0,0,0),...,Cp(0,0,0)}, which encodes unsatisfied clauses in
formula .

These sets of facts define policy P”, which results by addition of a new node kynsat
to P, yielding

IP)H d:ef {ksat} X fsat U {kunsat} X (]:unsat U {Neg(07 0)7 Neg(la 1)})a

and the global instance G/ & Fupt U Funsat expected for PC;. Policy P” is easily
checked to be complete over universe {0, 1}.

The mapping from ¢ to (Q',P”,G’) as described above is clearly total and computable
in polynomial time. Furthermore, it yields a valid input for PCowmp; for queries with
constants. As the following argument shows, it also satisfies the reduction property:
¢ € M,-QBF holds if and only if (Q',P”,G") € PComP;(CQy,,, Pust)-

» Only if. Assume that ¢ € II,-QBF. Let f be an arbitrary fact from the global
result Q'(G’). Let V be a minimal valuation that witnesses derivation of f
on G'. The argument in the proof of Proposition 3.2.10 shows that node kg, is
responsible for all facts required by V. Therefore, fact f is also derived locally
at this node because G’ contains already all facts that kgt is responsible for and
thus (P” > G")(ksat) = P’ (ksat) holds. Hence, query @' is parallel-complete on G’
under policy P”.
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3. Parallel correctness

» If. Towards a proof by contraposition, assume that ¢ ¢ II,-QBF. Using
this assumption, the proof of Proposition 3.2.10 shows that there is a minimal
valuation V for query @’ that requires only facts from G’ and thus proves
global derivation of a fact f = H(by,...,b,) where (by,...,b;) = Bg(21,..., 7))
for a truth assignment [, that witnesses ¢ ¢ II,-QBF. The same argument
shows that V' requires at least one C;(0,0,0)-fact and, in particular, that every
other valuation agreeing with V' on the head variables z1,...,z, (irrespective
of its minimality) requires one or more facts Cj (0,0,0),...,C;, (0,0,0) too.
Therefore, no valuation derives fact f on the local instance of kgyt, which is
disjoint from Fynsas. We turn to the only node remaining for policy P”: the
local instance of kypsat does not contain facts Neg(0, 1) and Neg(1,0) required
for atoms Fgyt in Q'. Hence, fact f is derived there neither, and query Q' is
thus not parallel-complete on G’ under P”.

This proves that PComp;(cQy,,,,Pisi) is ITh-hard, even for complete policies and
networks over only two nodes. It remains to extend this hardness result onto
constant-free queries.

» Without constants. Eventually, a query ) free from constants ¢g = 0 and
c1 = 1 can be derived from @’ along the lines of the constant-elimination prin-
ciple (Lemma 3.2.12). Furthermore, policy P” can be extended to policy

P < P U {kgat} X {Const(0),Consty(1)} U {kunsat} X {Consto(1),Const(0)},

which is also complete over universe {0,1}. Lastly, instance G’ is extended to
G % G’ U{Const(0), Consty(1)}. This yields a mapping from an arbitrary formula
for TI,-QBF to a valid input (Q, P, G) for PC;(CQ,Pist)-

The new facts do not affect the above argument for the reduction property. First,
valuations as defined for (only if) additionally require facts Consto(0) and Const(1),
also available on kgyt. Second, facts Constg(1l) and Const;(0) cannot compensate
the missing Neg-facts for the valuation used for (if).

Therefore, PC;(CQ, Py ) 18 Hg—hard, even for complete policies over only two nodes. [

The previous results settle the complexity of the static and dynamic variant of the
parallel completeness problem for conjunctive queries. Both variants are IT5-complete.
Allowing queries to contain also disequalities or unions or even both does not change
that picture. The picture does change, however, if we turn to fragments of UCQ7—
fragments in particular that trivialise the question for minimality of valuations, as
discussed next.
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3.2.2. Strongly minimal queries

The algorithms presented above indicate that the complexity of the parallel com-
pleteness problem is significantly determined by the need to verify the minimality
for the tested valuations. The corresponding lower bounds support this indication.

From another point of view, this observation provides a lever to lower the complexity
of the parallel completeness problem, namely by restriction to fragments where the
need to test minimality vanishes because every valuation is guaranteed to be minimal.
This is captured by the following definition.

Definition* 3.2.15 (Strongly minimally requiring). A query Q € UCQ ™7 is strongly
minimally requiring if every valuation for it is minimally requiring. <

As for minimal valuations, we simply say strongly minimal for negation-free queries.

It has been shown that deciding strong minimality is coNP-complete [AGK T 17a].
The lower bound already holds for conjunctive queries and the upper bound is
obvious: a nondeterministic algorithm can—if existent—easily guess two valuations
that contradict strong minimality (to decide the complement problem).

For some queries, however, it is easy to determine that they are strongly minimal.
Prominent examples are full queries (without projection variables) and queries without
self-joins (where every relation symbol occurs in at most one atom). The following
lemma provides a sufficient condition that generalises these simple observations.

Lemma* 3.2.16 (Sufficient condition for strong minimality). A query @ € CQ is
strongly minimal if every variable x of the query is a head variable or there is a
relation symbol R and a position p such that x is the only variable at position p in
the R-atoms of pos(Q).

As an example, query H(z,y) < R(x), R(y), S(u,x), S(u,u), T (v) is strongly minimal
by the previous lemma: the non-head variable u is the only variable that occurs in
position 1 of the query’s S-atoms and non-head variable v is the only variable that
occurs in a T-atom.

Strong minimality leads to a lower complexity for the parallel completeness problem
because Condition (PComp) and Condition (PComp-naive) are obviously equivalent
for this query class. The latter condition however can be tested by simple adaptations
of Algorithms A; and A that do not need an existentially quantified extra input (if
not for the policy).

Proposition* 3.2.17. Both PComp(cQ[sm),P) and PCowmP;(CQfsm],P) are in coNP for
every policy class P € Pyet-

Note that the result above only holds for policies that are represented by deterministic
polynomial time algorithms. Of course, these upper bounds obviously also hold for
the larger class UCQ7 [sm].
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3. Parallel correctness

We consider strongly minimal queries again when we study parallel-correctness
transfer (Section 4.2.2). Meanwhile, we extend our study of the parallel correctness
problem to queries with negation.

3.3. Unions of conjunctive queries with negation

In the previous section, we have considered the parallel correctness problem for CQs
and UCQs, possibly with disequalities. The situation was rather comfortable. First,
these queries are trivially parallel-sound because they are monotonic. Second, the
characterisation in terms of minimal valuations by Theorem 3.2.5 offered a means to
verify or falsify parallel completeness by sets of ‘very small’ instances.

The situation changes when queries contain negation. Now, parallel soundness
is not guaranteed but has to be checked on its own. Furthermore, the instances
that have to be considered may become ‘quite large’. Both aspects are addressed in
Section 3.3.1. Later, in Sections 3.3.2 and 3.3.3, we show that the second aspect is
irrelevant for some queries, where only one ‘small’ instance is relevant or negation is
used in a ‘controlled’ fashion, respectively.

3.3.1. General case

The following example demonstrates that, as to be expected, conjunctive queries
with negation are not guaranteed to be parallel-sound. Beyond that, we argue that
the size of an instance witnessing violation of parallel soundness can be necessarily
exponential—in the size of the query.

Example 3.3.1 (Exponentially large counterexamples). In the following, we define
a sequence (Q1,P1), (Q2,P2),... of query-policy pairs. For every n € N, let

Qn Z H() < R(z1),...,R(xn), R1), -, Ryn), S(@1, ..., x0), = SWy1, ..., yn)

be a conjunctive query with negation over the unary relation R and the n-ary
relation S. Furthermore, let P, be the policy over network {ko, k1}, where node ko is
solely responsible for fact S(0,...,0) while node k; is responsible for all other facts
over the policy’s universe {0,1}. More concretely,

P, = {ko} x {S(0,...,0)}
U {1} x ({S(b) | b€{0,1}" = {(0,...,0)}} U {R(0), R(1)}).

Clearly, policy P, is complete and can be represented by a linear number of rules:

for every i € {1,...,n}, there is a rule S(z1,...,2;—1,1,%i41,...,2,) — ki to
mark node k; responsible for every S-fact but S(0,...,0). Two more rules address
relation R.
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3.3. Unions of conjunctive queries with negation

For every n € N, query @), is not parallel-sound under P, as the following argument
shows. Let global instance G, & facts(P,) comprise all facts over the schema of P,
such that P, > G, = P,, holds in particular.

On the one hand, no fact is derived globally because no valuation V' over {0, 1}
satisfies @, globally on G, since it prohibits fact V(S (y1,...,yn)) = S(b1,...,by),
for some by,...,b, € {0,1}, which is present in G,.

On the other hand, there is a valuation that satisfies @, locally. One such
valuation is W & {z1—1,...;2p — L,y — 0,...,y, — 0}, which requires facts
W(pos(Qr)) = {R(0),R(1),S5(1,...,1)} C P, (k1) and prohibits fact W (neg(Qy)) =
S(0,...0) & Pp(ky).

Therefore, the distributed result is not a subset of the global result,

UQn(Pn >Gn) = I_lQn(Pn) ={H(} ¢ 0= Qn(Gn), (3.2)
witnessing that @,, is not parallel-sound under P,,.

Furthermore, instance G, is the only instance over {0, 1} with this property. For a
proof by contradiction, assume existence of a global instance G/, C G,, that satisfies Q,,
locally but not globally. A locally satisfying valuation V' has to map at least two
variables z; and y; to different values (otherwise it is inconsistent). This valuation
then requires facts R(0), R(1) and S(ay,...,ay) for some ay,...,a, € {0,1}, which
have to be in local instance (P, > G},)(k1) and thus also in global instance G),. These
observations with assumption G/, C G,, imply that there is a fact S(b1,...,b,) ¢ G,
for some by, ...,b, € {0,1}. Hence, valuation W e {z1 = a1,...,2n = ap,y1 —
bi,...,yn — by} is consistent, because (ai,...,a,) # (b1,...,b,), and satisfies
query @, globally. Therefore, the locally derived fact H() is also derived globally,
contradicting Equation (3.2). Since the query is boolean, this is the only derivable
fact. Thus, as claimed, there is no other instance than G, satisfying this property.
In particular, there is no smaller instance.

In summary, the sequence (Qp,P,),en of query-policy pairs requires a sequence
(Gn)nen of global instances of size ||G,| € Q(exp(||@Qx||)) to witness the violation of
parallel soundness. |

The previous example diminishes the hope to characterise parallel soundness by
(minimal) valuations in a fashion highly analogous to that in Condition (PComp)—at
least in the general case. Indeed, the arguments below show that this is not specific
to parallel soundness but affects parallel completeness and parallel correctness alike.

It is, however, notable that the argument requires the arity of relation S to grow
unboundedly. Correspondingly, we will later consider two scenarios separately: the
special case, where the arity of the queries’ relations is bounded in advance, and the
general case, where there is no such bound.

Helpful to achieve an upper bound in both cases is the next lemma.

41



3. Parallel correctness

Lemma 3.3.2 (Witnesses with small domain). Let Q € UCQ™ be a query and
let P be an arbitrary policy. The following statements hold if d is the maximum
number of variables in disjuncts of Q).

1. If @Q is not parallel-sound under P,

then there is an instance G* with at most d data values witnessing that.
2. If @ is not parallel-complete under P,

then there is an instance G* with at most d data values witnessing that.

Proof. Let @Q be a query over some schema S. The following argument proves
Statement 2, the proof of Statement 1 is analogous.

Assume that @) is not parallel-complete under IP. By definition of parallel-completeness,
there is global instance G witnessing incompleteness: | |Q(P > G) 2 Q(G). Thus, there
exists a fact f € Q(G) that is derived globally by some valuation V' but on none of
the resulting local instances. The set U = dom(V (pos(Q®))) of data values referred to
by V then clearly contains at most d data values. The same is true for the induced
subinstance G* < G N facts(S, U).

Instance G* also witnesses the violation of parallel-completeness of () under P.
This is a consequence of the following observation: for every fact f € facts(S,U) and
every node k € net(PP) the following equivalences,

feG e feg and fe (PrG)(k) = f e (P>g*)(k), (3.3)

hold.

First, valuation V' from above refers only to facts in facts(S, C') and is thus, by the
left-hand side of Observation (3.3), satisfying Q on G* because it is satisfying on G.
Second, there is no valuation that derives f on the local instance (P> G*)(k) of some
node k. Assume, towards a contradiction, that such a valuation W exists. Then,
W requires facts from G* C facts(S,U) and, since @ is a query with safe negation—
and therefore every variable in a negated atom also occurs in a positive atom—,
prohibits only facts from facts(S, U). The right-hand side of Observation (3.3) implies
then, that W is also satisfying on local instance (P> G)(k), contradicting the choice
of fact f.

Therefore, the restricted global instance contains only d data values and also
witnesses violation of parallel completeness, | |Q(P>G*) 2 Q(G*), as claimed. [

This upper bound on the number of data values in instances that witness the violation
of parallel soundness or parallel completeness immediately implies an upper bound
on the size of the instances, that is, on the number of facts they contain. The latter,
in turn, is the key to the following upper bounds for the associated decision problems.
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Proposition 3.3.3. For every P € 3, the following problems are in coNEXPTIME.

e PSouND(UCQ™#,P)
e PComP(UCQ™#,P)
e PC(ucQ™#,P)

If the input is restricted to schemas with a fixed maximal arity, these problems are
in I15.

Proof. We describe an algorithm that decides PSounp(ucQ™#,P) for a fixed policy
class P € B. Without loss of generality, we assume that P = Py, for some ¢ (all
other representations can be easily transformed into a nondeterministic algorithm
with a sufficient runtime bound).

Algorithm A" below tests whether each locally satisfying valuation has a
corresponding globally satisfying valuation. It is formulated for the restricted case,
using two types of quantified extra input. The generalisation is described at the end

of this proof.

Algorithm Asound

Input: query Q € ucQ ™7,
policy P € P
Quantified extra input:
v valuation V for @ over P, instance G* over dom(V (pos(Q))), node k €
net(PP)
3 valuation W for @ over P

1. if V satisfies Q on (P> G*)(k) then
2 if W derives the same fact as V and W satisfies QQ on G* then
3 accept

4: else

5 reject

6: accept

The correctness of Algorithm A" results from the following observations. If
query @ is not parallel-sound under policy P, then there is an instance G over P
and a fact f such that this fact is derived by a locally satisfying valuation V' (on
some node k) but by no globally satisfying valuation. A closer look into the proof of
Lemma 3.3.2 reveals that there is even an instance G* that contains only data values
referred to by valuation V.
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As part of the universally quantified extra input, valuation V, instance G* and
node k are considered by the algorithm. In Line 1, the algorithm tests whether V' is
locally satisfying. If V' is not locally satisfying, nothing has to be checked further
and the algorithm accepts in Line 6. Otherwise, the algorithm tests whether the
existentially quantified valuation W witnesses the derivation of V' (head(Q)) on the
global instance. Since no such valuation W can be found, the algorithm rejects
in Line 5.

If query @ is parallel-sound on the contrary, then obviously either Line 2 is not
reached or a valuation W that satisfies the test in Line 2 exists and leads to acceptance
in Line 3.

For schemas with a fixed upper bound o on the arity of their relations, A" ig a
[I5-algorithm: the number of facts in instance G* is bounded by rd® where r is the
number of relation symbols and d is the maximal number of variables in (). This
gives a bound [|Q||'™®, which is polynomial. Otherwise, the arity o is only bounded

QI op the size

by the size of the query, which yields an exponential bound ||Q]]
of G*.

Furthermore, towards the coNEXPTIME-upper bound, the existential quantified
extra input W can be replaced by a deterministic procedure that checks all valuations

over P deterministically in exponential time. O

So far, we have seen that the violation of parallel correctness and its variants can be
witnessed by at most exponentially large instances in the general case. Moreover,
Example 3.3.1 demonstrates that sometimes there are not (significantly) smaller
instances with that property. Of course, there could be a different, more efficient
approach to decide parallel correctness. However, the algorithm above seems to be
optimal because the problems are complete for the respective classes.

Theorem 3.3.4. The following problems are coNEXPTIME-complete, for every query
class @ € {CQ™,CQ™",UCQ™,UCQ ™"} and every P € P — {Pist}.

e PSouND(Q,P)
e PCompP(Q,P)
e PC(g,P)

If the input is restricted to schemas with a fixed maximal arity, these problems are
[I5-complete.

Proof. The upper bounds readily follow from Proposition 3.3.3, as they already
hold for the most general class UCQ™7 of queries. The lower bounds follow from
the respective lower bounds supplied by Theorem™ 3.3.5 below and the polynomial
reducibility, stated in the subsequent Proposition 3.3.6. O
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Note that the IT5-hardness of parallel completeness and parallel correctness is already
implied by the corresponding lower bounds for conjunctive queries without negation
(Theorem 3.2.7).

The hardness results stated above—and others to follow—are proven by reductions
from a classical static analysis problem in database theory: query containment. This
problem is formally defined below.

CONTAIN(Q;, Q)

Parameters: query classes Q1 and Q-

Input: queries ()1 € Q1 and @2 € Q-
Question: Does 1 C Q2 hold?

Although well-studied over the past decades, some relatively recent results shed new
light on the exact complexity of the containment problem for conjunctive queries
with negation, unions of them and several fragments—described in more detail later.

Most notably, for conjunctive queries with negation, Ketsman has shown the
problem to be coNEXPTIME-complete—if the schemas underlying the input queries
are not assumed to obey a fixed upper arity bound [GKNS19]. This contrasts with a
previously stated IT5-completeness [MST12, UlI00]—which albeit holds if there ezists
a fixed arity bound.

Theorem* 3.3.5. Problem ConTAIN(CQ™,CQ™) is coNEXPTIME-complete in general,
even if restricted to boolean queries. If the input is restricted to schemas with a fixed
maximal arity, the problem is IT5-complete.

This complexity results allows us to establish lower bounds that match the upper
bounds provided by Proposition 3.3.3 via the next result.

Proposition 3.3.6. ConTAIN(CQ™, CQ™), restricted to boolean queries, is polynomially
reducible to each of the following problems.

e PSOUND(CQ™,Pruie)
e PCOMP(CQ™,Prutc)
L4 PC(CQﬁyfprule)

In particular, the reduction yields boolean queries and policies over only four nodes.

Proof. We provide a single mapping that serves as a reduction for all three problems
alike, parallel completeness, parallel soundness and parallel correctness. This mapping
is described next.

45



3. Parallel correctness

Let @1 and Q2 be two boolean queries from CQ™ forming some input of ConTaiN. We
assume, without loss of generality, that both queries are formulated over disjoint sets
of variables and that the schema &; of @1 subsumes the schema of Q2 (otherwise Q;
is trivially not contained in @Q2). Furthermore, let m be the maximum number of
variables in Q1 or Q2. Without restriction, m > 3 is assumed (otherwise atoms
R(x1,x2,23) and R(y1,y2,y2) with a fresh relation relation symbol R and fresh
variables could be added to @1 and Q2, respectively). Finally, both queries are
assumed to be consistent, that is, none of them contains the same relation atom
positively and negated. This latter condition can be tested in polynomial time. If it
is violated, the queries are mapped to a fixed yes-instance (if @)1 is inconsistent) or
to a fixed no-instance (otherwise).

The idea underlying the reduction mapping is to combine queries ()1 and Q9 into a
single query (Q such that it can, although connected conjunctively, emulate derivation
by its constituents ‘independently’—under a suitable policy. To this end, the schema
of @ is defined as the union S U T of two schemas, without restriction assumed
to be disjoint. Schema S is suited to the application of the ext-operator (defined
in Section 2.1.1) to the atoms of queries ()1 and Q2 and thus results from S; by
increasing each relation symbol’s arity by 1. Schema 7 contains unary relation
symbols Start;, Starty, Stop and Type, which are meant to guide the emulated
derivation.

The boolean query Q with head(Q) & H() and

pos(Q) = extq, (pos(Q1)) U exta, (pos(Q2)) U AT and
neg(Q) of extq, (neg(Q1)) U extq, (neg(Q2)) U A~

comprises the bodies of queries ()1 and Q2 extended by different fresh ‘label’ vari-
ables a1 and a9 as well as the additional sets of atoms

At ::i {Start;(a1),Starta(ay), Starte(as), Type(7)} and
A~ = {—=Stop(ay), —Stop(az)}

over schema 7T, where 7 is another fresh variable.

Policy P is defined as the union Ps U Py of two policies over a common network
N & {¢,s,71,72} and universe U S dom,,, which contains at least as many data
values as there are variables in any disjunct of Q1. The policy is defined such that at
most one node can be responsible for every valuation V for @): the responsible node
is determined by both values V' («;) and V(1) and thus governed by sub-policy P,

defined by
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3.3. Unions of conjunctive queries with negation

Pr(c) & {Start;(1), Type(1)}
U {Startsy(1),Stop(1)},
Pr(s) < {start;(1), Type(2)}
U {Starty(1l),...,Starty(m), Stop(1)},
Pr(r1) = {Start;(1), Type(3),...,Type(m)}
U {Starty(1l),...,Starta(m),Stop(1),...,Stop(m)} and
Pr(ry) & {Starti(2),...,Start;(m), Type(l), ..., Type(m)}
U {Starty(1l),...,Starty(m),Stop(1),...,Stop(m)}.

Sub-policy Pg N x facts(S, U) trivially marks each of the four nodes responsible
for all facts over the extended input schema S. Policy P is easily verified to be
complete.

Query @ and policy P can be computed in polynomial time from (@1, Q2) and the map-
ping thus defined is clearly total. Hence, it remains to prove the reduction property:
(Q1,Q2) € ConTAIN(CQ™,cQ™) holds if and only if both (Q,P) € PComP(CQ™,Pru)
and (Q,P) € PSouND(CQ™,Prue) hold. The hardness result for PC(CQ™,Pry.) is then
implied as it is defined as the intersection of the former problem variants.

For the proof of the equivalence, two observations are helpful. They build on the
following distinction of valuations for the derived query ). In the context of this
proof, a valuation V for Q is trivial if V(aq) > 2 or V(1) > 3.

First, policy P is ‘well-behaved’ with respect to all trivial valuations, regardless
of whether containment ()1 C @2 holds or not. A trivial valuation V affects neither
parallel completeness nor parallel soundness because it requires—among others—facts
V(Starti(ai)) and V(Type(7)). There is only one node responsible for these facts,
either node r; or node r5. But this node is then responsible for all facts required
or prohibited by the valuation because, by definition of P, it is responsible for all
Startse-, all Stop-facts and all S-facts. Hence, the following property holds.

(P0) A trivial valuation that is locally satisfying
is also globally satisfying, and vice versa.

Second, policy P is ‘well-behaved’ with respect to all non-trivial valuations if and
only if )1 C Q2 does hold. This is shown below and it is mainly a consequence of
the next two properties of reduced instances (defined in Chapter 2).

(P1) If a non-trivial valuation V satisfies query @ on instance G,
then V also satisfies both @1 on red;(G) and Q2 on red,(G) for a = V(az2).

(P2) If G D {Start(1),Starts(a), Type(b)} and G N {Stop(1),Stop(a)} = 0 and
if valuations V; and Vs satisfy @1 and Q2 on red;(G) and red,(G), respectively,

(ef

then valuation Wy, = Vi UVa U {a1 — 1,2 — a, 7 — b} satisfies Q on G.
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Moreover, for a = 1, valuation W, refers only to facts that node c (if b =1)
or node s (if b = 2) is responsible for.

Properties (P1) and (P2) follow immediately from the construction of @, whose
body contains the extended bodies of ()1 and ()2, and the definition of extended and
reduced instances. With these observations, it is not hard to prove the implications.

The general idea underlying the construction of policy P—and the choice of its network
in particular—is that node ¢ provides a counterexample for parallel completeness and
node s provides a counterexample for parallel soundness whenever Q1 Z Q2 holds.

» Only if. Assume that containment holds, Q1 E Q2. The following arguments prove

that query @ is then both parallel-complete and parallel-sound under policy P. To

this end, let G be an arbitrary instance over the schema and domain of P and let
def

L = P G be the induced distributed database.

» Parallel completeness. Let V' be an arbitrary valuation that satisfies @ on G.
If V is trivial, then it is also locally satisfying by Property (P0). Thus, let V' be
non-trivial in the following.

By Property (P1), valuation V satisfies query @1 on the reduced instance Z; S
red;(G). Containment @)1 C ()2 additionally implies existence of a valuation V3
that satisfies Q2 on Z;. Non-triviality of V' furthermore implies that V(a;) =1
and therefore instance G contains facts Start;(1), Starts(1) and Type(b), for
some b = V(1) € {1,2}. Also, G does not contain Stop(1) because V satisfies Q.

By Property (P2), a valuation Wy, (induced by V, V5 and b) that satisfies @
on G is guaranteed to exist such that it only refers to facts that either node ¢ or
node s are responsible for. Hence, W ;, satisfies @ locally on L(c) or L(s).

Therefore, query () is parallel-complete under policy P.

» Parallel soundness. Let V' be an arbitrary valuation that satisfies @ on the local
instance L(k) of some node k € net(P). If V is trivial, then it is also globally
satisfying by Property (P0). Thus, again, assume V to be non-trivial in the
following.

Satisfaction of ) implies that the local instance L(k) contains facts Start;(1),
Starty(1) and Type(b), for b < V(7), but not Stop(1). This also holds for the
global instance G since P is responsible for these facts on the relevant node
(either node ¢, if b =1, or node s, if b = 2).

By Property (P1), valuation V satisfies @)1 on the reduced instance Z; S
red;(L(k)) and containment @)1 T (2, once more, implies existence of valu-
ation V5 that satisfies ()2 on Z3.

Again, due to Property (P2), there is a valuation W that satisfies @ on G
globally. Therefore, query @ is parallel-sound under policy P.

» If. For a proof by contraposition, assume that containment Q1 = Q2 does not
hold. It is well-known that there exists a ‘small’ instance witnessing Q1 £ QQ2. More
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3.3. Unions of conjunctive queries with negation

precisely, a minimal instance with at most as many data values as query )1 has
variables is guaranteed to exist (Fact 2.1.3). Indeed, these data values can be assumed
to be a subset of the universe univ(P) = {1,...,m} because both queries are generic
and |var(Q1)| < m. In the following, let Z; be such an instance—over the schema
and domain of policy P such that Q1(Z1) € Q2(Z1).

The choice of instance Z; implies that there is a valuation V7 that satisfies Q1
on 7Z; although there is no valuation that satisfies Q2 on Z;. There is however
some satisfying valuation V5 for Q2 over univ(P) because query @2 is consistent and
contains no more than m variables. This valuation is naturally satisfying for Q2 on
the instance Zp = V (pos(Qs)) that is induced by the facts it requires.

The following arguments show that query @ is neither parallel-complete nor
parallel-sound under policy P.

» Parallel completeness. A global instance that witnesses that query @ is not
parallel-complete under policy P is

g &t exty (Il) U exto (IQ)
U {Start;(1),Starty(1),Starta(2), Type(1)},

derived from 7Z; and Z,, containing some additional 7-atoms that enforce the
violation of parallel completeness.

First, by Property (P2), valuation W ; satisfies Q) on G, globally.

Second, there is no locally satisfying valuation for (). Assume, for the sake of a
contradiction, that such a valuation V' exists. Since Starts(1) and Starty(2) are
the only Starts-facts in G, either V(ag) =1 or V(ag) = 2 holds. Furthermore,
Type(1) is the only Type-fact in G. It follows from the definition of P that only
node c is responsible for both facts V(Starta(az)) and Type(1). In particular,
V(a2) = 1 holds because node ¢ is not responsible for fact Starty(2). Then,
by Property (P1), valuation V satisfies Q2 on red;(G). Since red;(G) equals
instance Z; with respect to S-facts and, furthermore, 7 -facts are irrelevant
for (Y2, this implies that ()9 is satisfied on Z;. This contradicts the choice of Z;
and thus concludes the argument.

Therefore, query @ is not parallel-complete under policy P.

» Parallel soundness. Similar to the previous argument, another global instance
witnesses that query @ is not parallel-sound under policy P. This instance is

g ot exty (Il) U exto (IQ)
U {Start;(1),Starts(1), Starts(2), Type(2),Stop(2)},

which differs from the global instance above only with respect to the Type-facts
and the additional Stop-fact.

First, let valuation W be induced by valuations V7 and V5 as valuation Ws 2 in
Property (P2). Clearly, valuation W satisfies ) on local instance L(s) because
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it requires 7-facts Starts(2) and Type(2), for which node s is responsible, and
prohibits fact Stop(2), for which this node is not responsible.

Second, there is no globally satisfying valuation for @ on G. Towards a
contradiction, assume that such a valuation V exists. Then, either V(az) =1
or V(ag) = 2 because Starts(1) and Starts(2) are the only Starte-facts in G.
The latter option however cannot hold since this would render the valuation
inconsistent. Hence, V(ag) = 1 and, by Property (P1), valuation V satisfies
query Q2 on red;(G) = Z;. Again, this contradicts the choice of Z; and concludes
the argument.

Therefore, query @ is not parallel-sound under policy P.

This completes the proof, showing that containment holds if and only if query @ is
parallel-complete, parallel-sound and parallel-correct under policy P. O

The relatively high complexity of parallel correctness and its variants has motivated
the study of fragments with better worst-case bounds. Since the lower bounds in
Proposition 3.3.6 already hold for the simple rule-based representations of policies,
restrictions on the query classes are a natural target.

Following established patterns in the literature, we consider full queries in Sec-
tion 3.3.2. Afterwards, we turn to polarised queries, with a restricted form of negation,
in Section 3.3.3.

3.3.2. Full queries

In Section 3.2.2, we have discussed that the complexity of parallel completeness
decreases from IT5 to coNP for conjunctive queries (without negation) that are
strongly minimal. For these queries, every valuation is guaranteed to be minimally
requiring. Full queries, that is, queries without existentially quantified variables,
form an important special case of strongly minimal queries—often considered in
other contexts in the literature too.

Interestingly, fullness is such a strong restriction that allowing negation in queries
does not change the complexity of parallel completeness. At least this holds when
policies can be evaluated without nondeterminism. Parallel soundness, however, is not
trivial anymore (but has the same worst-case complexity as parallel completeness).

Proposition 3.3.7. The following problems are coNP-hard, even if the input is restric-
ted to complete policies over only two nodes.

[ ] PSOUND(UCQ_‘[fU”]a,Prule)
e PCOMP(UCQ[fulll, Pryte )
e PC(UCQ [fulll,Prute)

50



3.3. Unions of conjunctive queries with negation

Proof. We provide polynomial reductions to all three variants. The reductions
start from CONTAIN(CQ™[ful], UCQ [ful]), which is coNP-complete [GKNS19]. The input
(Q1,Q2) for the containment problem consists of a (single) conjunctive query @1
with negation and a union )2 of conjunctive queries with negation. It is mapped
to a single query @ and a policy P € Pye. Assume, without loss of generality, that
both input queries are formulated over a schema S that does not contain relation
symbol Global. Furthermore, let s denote the number of variables in query Q.
While the derived query @ differs, all reductions use the same non-skipping policy

P < {k} x facts(S, doms) U {£} x {Global}.

This policy is defined over a schema that is extended by a nullary relation Global.
The purpose of the policy is to forward all facts relevant for the original queries
to node k and to separate them from Global-facts. Such a fact serves as a flag to
‘activate’ or ‘deactivate’ the derivation of facts based on an idea explained below.
Policy P can be described by a linear number of rules—linear in the size of the
schema, and thus in the size of the queries. Since all rules, except for Global — ¢,
are of the form R(x1,...,z;) — k, the policy can be computed in polynomial time.

For a query Q € CQ™, let Q™ and Q~ denote the query resulting from addition of
relation atom Global to pos(Q) and neg(Q), respectively. For a query @ € UCQ™,
the atom is added to each subquery in the respective fashion. Then, if the original
query does not refer to relation Global, the modified query either behaves like the
original one or like a trivial one, depending on the instance. More precisely, the
modified queries satisfy the following equalities.

QT (G U {61obal}) = Q(G) (3.4)
Q (GU{Global}) =10 (3.5)
Q" (G — {Global}) =0 (3.6)
Q" (9 — {Global}) = Q(9) (3.7)

We start with parallel soundness. After that, we consider parallel completeness
and parallel correctness, using the same reduction for both. In each case, query @
is clearly computable from input queries ;1 and ()2 in polynomial time and the
mapping is total. Hence, after each definition, we argue only the satisfaction of the
reduction property.

» Hardness of PSOUND(UCQ [full],Prye). Let the derived query be @ et Q7 U Q;.
Query @ is parallel-sound under policy P if and only if containment ()1 E Q)2 holds.

» If. For a direct proof, assume that Q1 C @2 holds and let G be an arbitrary
instance over P. On the one hand, for the local instance L(k) = (P> G)(k) =
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G — {Global}, we have

Q(L(k)) = (Q1 UQF)(L(k)) = Q (L(k)) UD = Q1(L(k)) = Q1(9)

by Equations (3.6) and (3.7) and because @)y ignores fact Global. On the other
hand, the global result set depends on the occurrence of fact Global.

»1. Case (Global € G). Then, Q(G) = (@ UQ)(G) = DU Q(9) = Q2(0)
by Equations (3.4) and (3.5). The containment relationship between the input
queries furthermore ensures Q2(G) 2 Q1(G) = Q(L(k)).

>2. Case (Global ¢ G). Now, Q(G) = (Q7 UQRF)(G) = DU Qi (G) = Q1(G)
by Equations (3.6) and (3.7). As argued above, Q1(G) = Q(L(k)) holds.

Therefore, query @ is parallel-sound under P in both cases.

» Only if. For a proof by contraposition, assume now that Q1 Z Q2. Fact 2.1.3
guarantees existence of an instance G with at most s data values such that
Q1(9) € Q2(G). Since both queries are free of constants and thus generic, we
can assume without restriction that G is an instance over domsg, the universe of
policy P. Even more, we may assume that G contains fact Global, since it is
ignored by queries Q1 and (2. Just like above, we can conclude Q(L(k)) = Q1(G)
and, as in the first case, Q(G) = Q2(G). This implies Q(L(k)) € Q(G) and thus
witnesses that query @ is not parallel-sound under P, as desired.

» Hardness of PCoMP(UCQ [full],Pe). In principle, a reduction ‘symmetric’ to the
previous one, that is, Q S Qf U @5, with an analogous argument would prove
the stated hardness result. Instead, we consider query @ e Q7 U Q2, which does
not introduce negation and therefore allows us to draw stronger conclusions (cf.
Corollary 3.3.8 below). Query @ is parallel-complete under policy P if and only if
containment ()1 C @2 holds.

Clearly, on the local instance of node k, which never contains fact Global, the

derived query is equivalent to Q2. More precisely, Q((P>G)(k)) = Q2(G) holds for
every global instance G.
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» If. Assume that Q1 C Q2 holds. This implies Q7 C Q1 C Q2, which gives the
equivalence Q = Q7 UQ2 = Q2. In particular, the global result set Q(G) = Q2(G)
is identical to the local result set Q((P>G)(k)). Therefore, query @ is parallel-
complete under policy P.

» Only if. Assume Q1 £ Qs towards a proof by contraposition. As in the
argument for the first reduction, this implies the existence of an instance G
over P that contains fact Global and witnesses non-containment, that is, Q1(G) €
Q2(G). The global result set is then Q(G) = Q7 (§) U Q2(G) by Equation (3.4)
and hence a strict superset of the local result set Q2(G). Therefore, query @ is
not parallel-correct under policy P.
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» Hardness of PC(UcQfull],Pye). The previous reduction for parallel completeness is
also a reduction for parallel correctness: query @ is parallel-sound under P because
the policy forwards all—in particular, all prohibited—facts over schema S to node k.

This completes the coNP-hardness proofs for all three variants. O

Remarkably, the reduction provided for parallel completeness neither introduces
negation nor new variables in query ). It only requires that the targeted query
class is closed under, first, disjunction and, second, conjunction with atoms. Hence,
deciding parallel completeness for such query classes is at least as hard as deciding
the corresponding containment problem. Since this problem is undecidable for the
relational algebra and for Datalog [SSS10], this implies the next result.

Corollary* 3.3.8. Parallel completeness and parallel correctness are undecidable for
the relational algebra and for Datalog.

Coming back to conjunctive queries (with union and negation), the lower bounds
stated in Proposition 3.3.7 are tight by the next proposition.

Proposition* 3.3.9. The following problems are in coNP.

e PSOUND(UCQ™[full],Prue )
e PCoMP(UCQ™[full],Prylc)
e PC(UCQ [full], Prue)

Indeed, a closer look into the proof of Proposition 3.3.9 reveals that the coNP-upper
bound can be extended to all policy families in PBqer [GKNS19].

As shown above, the absence of existential variables simplifies the reasoning process
for parallel correctness. Intuitively, this is because, for full queries, each fact in
the result set is derived via a unique valuation. This is not the case for polarised
queries—which we consider next—, where the complexity accordingly increases
again. Nevertheless, it does not raise to coNEXPTIME, as for conjunctive queries with
negation in general.

3.3.3. Polarised queries

We have started our study of the parallel correctness problem and its variants for
the non-monotonic class UCQ ™ with the observation that certain queries only
have exponential-size instances witnessing the violation of the respective property
(Example 3.3.1).

This size bound depends on two aspects: first, on the arity of the relation symbols
and, second, on the simultaneous occurrence of a positive and a negated atom
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referring to the same relation symbol. Both aspects are reflected in the two S-atoms
of the queries in the example sequence Q1, Q2, @3, ... where

Qn=H() < R(z1),...,R(xn),R(y1),. .., R(yn), S(x1,...,2n), 2S(Y1, -, Yn)

for every n € N.

Theorem 3.3.4 states that, with an a prior: bound on the arity, the complexity
remains on the second level of the polynomial hierarchy (in IT5). In the following,
we demonstrate that this is also the case if negation is restricted to relations that
do not occur positively—indicating that, indeed, both aspects are crucial for the
coNEXPTIME-hardness result.

Intuitively, reasoning about parallel soundness is complicated for queries like @,
because of the following problem. Assume that there is a valuation V' and a node
such that the node is responsible for all facts required by V but not for all facts
prohibited by V. This valuation is a candidate for a local derivation without a
corresponding global derivation—but only if itself is not satisfying globally. That
is, the global instance has to contain a prohibited fact, here: g =V (S(y1,...,Yn))-
Addition of fact g however may spawn another valuation V' that derives the same
fact as V and does not prohibit but require fact g = V'(S(z1,...,2y)). If this
valuation is to be unsatisfying, the global instance thus has to contain another fact
g =V'(S(y1,...,yn)). This process then may have to be repeated and is bounded in
the worst case only by the number of facts representable over the considered schema.

An obvious way to prevent the repetitive steps completely is by establishing a
syntactic restriction on the queries as defined next.

Definition 3.3.10 (Polarised query). A query Q € UCQ™7 is polarised® if there is a
bipartition ST & S~ of its schema such that every relation symbol from St occurs
only positively and every relation symbol from S~ occurs only negated in Q. <

Let ST(Q) and S~ (Q) denote the respective (disjoint) subschemas. If the query is
clear from the context, we usually simply write ST and S™.

Note, in particular, that for unions of conjunctive queries, the definition demands
from every disjunct to adhere to the same division of relation symbols. That is, query
Q = Q1UQ2 with subqueries Q1 = H() < R(x),~S(z) and Q2 = H() < S(y), "T(y)
is not polarised although both its disjuncts are.

In the following, we study conditions and provide characterisations of both parallel
completeness and parallel soundness for polarised queries. Eventually, we complete
the picture by showing that both problems are II5-complete.

3The name is inspired by the name of a graph concept introduced in the context of the containment
problem for conjunctive queries with negation [LMO7]. There, the queries that we call ‘polarised’
correspond to ‘pure polarised’ graphs.
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Characterisation

For conjunctive queries without negation, Condition (PComp) provides a characterisa-
tion of parallel completeness in terms of minimally requiring valuations. An obvious
question is whether this notion of minimality, which simply ignores prohibited facts,
is also suitable for conjunctive queries with negation. Unsurprisingly, this is not the
case, as the following example demonstrates.

Example 3.3.11. Let Q be the polarised query
H(.QT, y) — R(.Z‘, l‘), R($, y)) R(u> U)v _'T(u)a _‘T(U)
and let

P {k} x {R(1,1), R(1,2),T(1),T(2)}
U {kQ} X {R(Q’ 1)aR(272)aT(1)7T(2)}

be a non-skipping policy with universe {1,2}. This policy P has, for each minimally
requiring valuation, a node that is responsible for the required facts. However,
query () is not parallel-complete under P, as argued in the following.

First, minimally requiring valuations that can derive H(1,1) or H(2,2) solely
require fact R(1,1) or R(2,2), which can be found on node k; or ks, respectively. Fur-
thermore, minimally requiring valuations that derive H(1,2) require only facts R(1,1)
and R(1,2), which can be found on node k;. The argument for minimally requiring
valuations that derive H(2,1) is analogous (with node k3).

Second, query @ is not parallel-complete under policy P on instance

G = {R(1,1),R(1,2), R(2,2), T(1)},

as witnessed by fact H(1,2), which is derived globally but not locally. Valuation
V=A{r— 1,y— 2,u— 2,0 — 2} requires all three R-facts in G and prohibits
only T'(2), which is not present in G. Hence V derives H(1,2) for query @ on the
global instance G. However, there is no locally satisfying valuation that derives the
same fact, as the following argument by contradiction shows. Assume that there is a
valuation V' that derives H(1,2) on node k; or on node k2. Since both nodes are
responsible for the prohibited and present fact T'(1), valuation V maps u and v to 2
and thus requires fact R(2,2). Since the valuation derives H(1,2), it additionally
requires fact R(1,1). Obviously, neither node k; nor node ks is responsible for both
these facts, contradicting the assumption. Therefore, query @ is not parallel-complete
under policy P. [}

The negative outcome of the previous example motivates the quest for a different
notion of minimality for valuations, and hence for a different preorder on valuations.

We extend Definition 3.2.1 of preorder <" by a third condition. This condition
takes into account also the negated atoms of the query or, more precisely, the facts
prohibited by the valuations.
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Definition 3.3.12 (Preorder <g). For a query @) € UCQ™7, the preorder < relates
valuations for Q. If V, V' are valuations for @, then V' <g V’ holds if

1. both valuations derive the same fact,
V(head(Q)) = V'(head(Q));
2. valuation V requires only facts that V' requires,
V(pos(Q)) € V'(pos(Q)); and
3. valuation V prohibits only facts that V' prohibits,
V(neg(Q)) € V'(neg(Q)). <

It is obvious that the extended definition agrees with the restricted definition on every
query @ € UCQ”, where neg(Q) = 0. This justifies the use of the same notation
above.

As before, preorder <q naturally induces an equivalence relation =g and a strict
preorder <¢. In particular, a valuation can be strictly smaller for one of two reasons,
fewer required or fewer prohibited facts. More precisely, V1 <g V2 holds

o if V1 <@ Vi and Vi(pos(Q)) C Va(pos(Q)) holds; or
o if V) < V5 and Vi(neg(Q)) C Va(neg(Q)) holds.

Again, this preorder induces a notion of minimality.

Definition 3.3.13 (Minimal valuation). For a fixed query Q € UCQ ™7, a valuation
is minimal if it is minimal with respect to <q, that is, if there is no valuation U
for @ such that U <q V. <

As before, every fact f that is derived by an arbitrary valuation on some instance Z,
is also derived by a minimal valuation on Z. Testing minimality remains coNP-
complete: The upper bound is easily extended and hardness already holds for CQs
(cf. Section 3.2.1).

Note that the set of required facts and the set of prohibited facts can behave
in an antagonistic fashion, as the following example indicates. In particular, for a
given polarised query with negated atoms, a minimally requiring valuation is not
necessarily minimal and vice versa.

Example 3.3.14. Consider again the polarised query from Example 3.3.11.
Q= H(z,y) + R(z,z), R(z,y), R(u,v), T (u), T (v)

For data values a and b, the mapping V,; S {z— 1,y — 2,u— a,v+— b} defines a
valuation that can, if satisfying, derive fact H(1,2) for Q.

Valuation Vi 2 is not minimal because there is a valuation V; ; that requires the
same set Vi 1(pos(Q)) = {R(1,1), R(1,2)} = V1 2(pos(Q)) of facts while it prohibits
strictly less facts: Vi 1(neg(Q)) ={T(1)} C {T(1),T(2)} = Vi,2(neg(Q)). Moreover,
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valuation V11 is minimal because it prohibits only one fact and requires only facts
that are necessarily required for the derivation of H(1,2). However, both valuations
are minimally requiring.

A third valuation, namely V3 9, is also minimal for @ although it requires strictly
more facts than V; 1. Indeed, it requires facts V2 2(pos(Q)) = {R(1,1), R(1,2), R(2,2)}
and prohibits V52(neg(Q)) = {T'(2)}. This valuation is minimal because it only
prohibits a single fact that is different from 7°(1) and every such valuation requires
three facts because variables u and x have to be mapped differently. However, it is
not minimally requiring (because Vi 1 <P% V3 3). [ |

Interestingly, this—canonical—generalisation of minimality to valuations for queries
with negation is adequate to formulate a characterisation for parallel soundness but
not for parallel completeness. We turn to the positive result first and consider the
negative result thereafter.

Condition (PSound-pol)

Assumptions: Let Q be a polarised UCQ™# and let P be a policy.
For every minimal valuation V' for @ over P and every node k € net(PP)
that is responsible for the required facts, V(pos(Q)) C P(k),

this node is also responsible for the prohibited facts, V (neg(Q)) C P(k).

This condition yields a characterisation of parallel soundness for polarised queries.

Proposition 3.3.15 (Characterisation of parallel soundness). Let ) be an arbitrary
polarised query from UCQ ™7 and let P be an arbitrary policy. Query @ is parallel-
sound under P if and only if Condition (PSound-pol) is satisfied for @ and P.

Proof. We prove both implications of the equivalence separately.

» Only if. Assume that @ is parallel-sound under P. We show that @ and P satisfy
Condition (PSound-pol). Let V' be an arbitrary minimal valuation for @ and let
k € net(P) be an arbitrary node that is responsible for all facts required by V. If there
is no such node, then valuation V' is trivially conform with Condition (PSound-pol).

It suffices to show that node k is responsible for all facts prohibited by the
valuation, V' (neg(Q)) C P(k). Towards a proof by contradiction, let us assume
that this is not the case. Then, F~ « V(neg(Q)) N P(k) is a strict subset of
V (neg(Q)). Now, we define a global instance G & GT UG~ where G+ < V (pos(Q))
and G~ & facts(S™, univ(P)) — F.

Obviously, valuation V' satisfies query @ on the local instance (P> G)(k) of node k.
Furthermore, since @ is parallel-sound under P by assumption, there is a valuation W
that derives the same fact as V' and satisfies @ globally, on G. This implies that
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W (pos(Q)) C G = V(pos(Q)) and W (neg(Q))NG~ = () because query @ is polarised.
The latter furthermore implies W (neg(Q)) C F~ = V(neg(Q)) NP(k) € V(neg(Q))
and thus contradicts the assumed minimality of valuation V.

Therefore, Condition (PSound-pol) holds if query @ is parallel-sound under
policy P.

» If. Assume that Condition (PSound-pol) is satisfied for query @ and policy P. We
show that @ is parallel-sound under P. To this end, let G be an arbitrary instance
over the domain of P and let V' be a valuation that satisfies () on the local instance
(P> G)(k) of some node k.

Then, there exists a minimal valuation V* such that V* < V. In particular, this
valuation satisfies V*(pos(Q)) C V(pos(Q)) € (P>G)(k) € G and V*(neg(Q)) N
(P>3G)(k) C V(neg(Q))N(Pr>G)(k) = 0. Indeed, the latter implies V*(neg(Q))NG =
0 because V*(neg(Q)) € P(k) by Condition (PSound-pol). Thus, valuation V*
satisfies @ on the global instance and witnesses that the derivation of fact V (head(Q))
is correct.

Therefore, query @ is parallel-sound under policy P if Condition (PSound-pol)
holds.

Hence, query @ is parallel-sound under policy P if and only if Condition (PSound-pol)
is satisfied. O

Although we have just shown that the notion of minimality that is based on the
generalised preorder (Definition 3.3.12) is appropriate for a characterisation of
parallel soundness, it is unfortunately mot appropriate for a characterisation of
parallel completeness.

The reason for this is that—depending on the policy—mnot necessarily all valuations
that are minimal in this sense are relevant. The next example illustrates that.

Example 3.3.16. Consider the polarised query
Q = H(z,y) « R(z,y), R(u,v),=S(x), ~S(v)

and policy P = ({k} x {R(1,1), R(2,2)}) U ({£} x {R(1,2)}) U ({m} x {R(2,1)}) with
universe {1,2}, which partitions all R-facts over three nodes and skips all S-facts.
Query @ is parallel-complete under this policy. However, it is not true that for every
minimal valuation there is a node that is responsible for the required facts.

First, query @ is parallel-complete under P because, for every valuation V that
derives a fact H(a,b) globally, there is a valuation V' that agrees with V on the
head variables x,y and maps V'(u) = V(x) and V'(v) = V(y). Valuation V' requires
only the single fact R(a,b) that is also required by V and can be found in one of
the local instances by definition of P. Furthermore, valuation V' satisfies Q on the
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corresponding node because the local instance does not contain any (prohibited)
S-fact.

Second, valuation W* & {z — 1,y — 2,u > 2,0 — 1}, which requires facts R(1,2)
and R(2,1) and prohibits fact S(1), is minimal since every valuation that derives
H(1,2) and prohibits S(1) requires two facts. However, no node in the network of P
is responsible for both required facts. |

Note that, in the example above, it is not essential that policy P is skipping. Altern-
atively, there could be a fourth node responsible for both S-facts, allowing to come
to the same conclusion.

The notion of minimality based on preorder < can thus be too fine to capture
parallel completeness for some policies. Next, we adjust Definition 3.3.12 to the
possible influence of the policy. The basic idea is to distinguish, for a fixed policy P
and a fixed node k in its network, the facts prohibited by a valuation V for a query Q:

o the set of facts V(neg(Q)) NP(k) that are effectively prohibited and
e the set of facts V(neg(Q)) — P(k) that are ineffectively prohibited.

Ineffectively prohibited facts can be present in the global instance while the valuation
remains satisfying on the local instance, to the possible benefit of parallel completeness.
The following preorder extends the previous one in that respect—by Property (3b).

Definition 3.3.17 (]P’-relativised preorder). For a query Q € UCQ ™" and a fixed
policy P, the preorder <Q relates valuations for Q). If V, V' are valuations for @, then
\%4 §[5 V' holds if

1. both valuations derive the same fact,
V(head(Q)) = V'(head(Q));
2. valuation V requires only facts that V' requires,
V(pos(Q)) € V'(pos(Q)); and,
3. one of the following properties is satisfied,
a) valuation V prohibits only facts that V' prohibits,
V(neg(Q)) € V'(neg(Q)); or
b) there is a node k € P~1(V(pos(Q))) such that
o V(neg(Q)) NP(k) € V'(neg(Q)) and
o V(neg(Q)) NP(k) € V'(neg(Q)) NP(¢)
for every node £ € P~1(V'(pos(Q))). <

This relation is indeed a preorder, as shown in the appendix (Lemma A.2). Clearly,
if V. <g V', then also V' Sg V', As usual, an equivalence relation and strict preorder
can be derived from the P-relativised preorder. In particular, V' <% V'’ holds

o if V<oV or
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o if V<{, V' and
— if V((pos(Q)) S V'(pos(Q)) or
— if there is a node k € P~1(V(pos(Q))) such that
+ V(neg(Q)) NP(k) € V'(neg(Q)) and
* Vineg(Q))NP(k) C V'(neg(Q)) NP(¢) for every £ € P~H(V'(pos(Q))).

Obviously, this definition is rather involved due to the interaction between valuations
and the policy. Nevertheless, it reflects parallel completeness, as argued below.
Furthermore, in some situations—with additional a priori knowledge about the
policy (e.g., if it is skipping all facts over certain relations in S~ )—it becomes simpler.
In extreme cases, for instance if all S™-facts are skipped, it even becomes equivalent
to <P%. In any case, this preorder yields another notion of minimality.

Definition 3.3.18 (P-minimal valuation). For a fixed query Q € UCQ ™ and a fixed
policy P, a valuation V for @ is P-minimal for @ if there is no valuation U for Q
such that U <15 V. <

Both notions, minimality and P-minimality, are incomparable. This is witnessed by
the following two examples. The first example shows that the minimal valuation W*
that is problematic in Example 3.3.16 is not P-minimal.

Example 3.3.19. Valuation W* & {z — 1,y = 2,u — 2,v — 1}, which requires
facts R(1,2) and R(2,1) and prohibits the single fact S(1) only, is minimal for query
Q< H(x,y) « R(x,y), R(u,v), ~S(x), ~S(v), as we have argued in Example 3.3.16.

However, for the policy P considered there—which skips all S-facts—, valuation W*
is not P-minimal because W < W* for valuation W & {z—1y—2,u— 1,0~ 2}
First, valuation W requires fewer facts, namely only R(1,2). Second, valuation W
effectively prohibits only facts effectively prohibited by W*, that is,

Wneg(Q)) NP(€) = {5(1),52)} N0 =0 = {S1)} N0 = W (neg(Q)) NP(£)

holds, on the only node £ responsible for the required fact. |

The second example demonstrates conversely that a P-minimal valuation is not
necessarily minimal.

Example 3.3.20. For the polarised query
H(x7 y) <~ R(l‘), R(y)7 R(U), R(U)v —|S(U), —|S(’U),

both valuations, Vi and Vs, where V, & {z— 1lLy— lL,u— 1,v— a} for a €
{1,2}, are P-minimal given the S-fact skipping policy P < {k} x {R(1), R(2)} with
universe {1,2}. They are P-minimal because they require the facts R(1) and R(2),
necessary for the derivation of H(1,2), and effectively prohibit no fact on node k.
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3.3. Unions of conjunctive queries with negation

Valuation V5 is not minimal though because valuation V; prohibits fewer facts and
thus satisfies V] < V5. [ |

Testing P-minimality of a valuation is in coNP for policies from Pqet (as before, the
universally quantified extra input is used to consider alternative valuations, and the
properties from Definition 3.3.17 can be checked on the polynomial-size network in
polynomial time).

Now that we have seen that neither minimally requiring valuations nor minimal
valuations are suitable to characterise parallel completeness for polarised queries, we
can finally provide a characterisation. This characterisation is, as to be expected,
based on P-minimal valuations.

Condition (PComp-pol)

Assumptions: Let Q be a polarised UCQ™# and let P be a policy.
For every P-minimal valuation V for @) over P,
there is a node in net(IP) that is responsible for all facts required by the valuation.

Proposition 3.3.21 (Characterisation of parallel completeness). Let () be an ar-
bitrary polarised query from UCQ ™7 and let P be an arbitrary policy. Query Q is
parallel-complete under P if and only if Condition (PComp-pol) is satisfied for @
and P.

Proof. We prove both implications separately.

» Only if. We assume that the polarised query @ is parallel-complete under policy P
and show that Condition (PComp-pol) holds. To this end, let V' be an arbitrary
P-minimal valuation for (). Furthermore, let universe U be the set of data values
referred to by V.

From valuation V, we define the global instance G ' G+ w G~ where gt &
V (pos(Q)) consists of all facts required by V and G~ & facts(S~,U) — V(neg(Q))
is the complement of all facts prohibited by V. The global instance is designed
such that valuation V satisfies query @ on G. Parallel completeness of () under P
thus guarantees the existence of a node k € net(IP) and of a valuation W for @ such
that W derives the same fact as V' on the local instance of node k. More precisely,
the following three properties are satisfied: first, W (head(Q)) = V' (head(Q)); second,
W(pos(Q)) C (P> G)(k); and third, W (neg(Q)) N (P>G)(k) = 0.

The second property implies W (pos(@))) C G in particular and, because of po-
larisation, even W(pos(Q)) C G* = V(pos(Q)). Obviously, valuation V is con-
form with Condition (PComp-pol) if W (pos(Q)) = V(pos(Q)) or, independently,
P~1(V(pos(Q))) # 0 holds. Next, we show that another case does not exist. Towards
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a contradiction, assume that W(pos(Q)) € V(pos(Q)) and P~1(V(pos(Q))) = 0.
Since valuation V' is P-minimal, and Properties (1) and (2) in Definition 3.3.17 are
satisfied by W and V', Property (3b) has to be violated. This particularly implies
W(neg(Q)) NP(k) € V(neg(Q)) because the second subproperty trivially holds since
P~1(V(pos(Q))) = 0. Hence, valuation W prohibits a fact that is present in P(k)
and G O G, contradicting its choice. The arbitrarily chosen P-minimal valuation V'
hence satisfies the considered condition.
Therefore, Condition (PComp-pol) is satisfied for query @ and policy P.

» If. We now assume that Condition (PComp-pol) is satisfied for Q and P and prove
that this implies that @ is parallel-complete under IP. Let G be an arbitrary instance
over IP and let V be a valuation that satisfies () on G, deriving some fact f.

Let V* be a P-minimal valuation such that V* <P V. This implies V*(pos(Q)) C
V(pos(Q)) C G. By Condition (PComp-pol), we can additionally conclude that there
is a node k € net(P) where V*(pos(Q)) C P(k) holds. Furthermore, V* <P V implies
that valuations V* and V satisfy Property (3a) or Property (3b) in Definition 3.3.17.
In the former case, where V*(neg(Q)) C V(neg(Q)) holds, valuation V* is clearly
satisfying on node k since valuation V is satisfying on the global instance and thus
no fact from V' (neg(Q)) is present in G. Hence, valuation V* derives f on node k. In
the latter case, there is a node ¢ € P~1(V*(pos(Q))) such that V*(neg(Q)) NP(¢) C
V(neg(Q)), that is, V*(neg(Q)) N (P> G)(¢) = 0. Hence, valuation V* derives fact f
on node /.

Therefore, every globally derived fact is derived also locally, that is, query Q is
parallel-complete under policy P.

Hence, query @ is parallel-complete under P if and only if Condition (PComp-pol) is
satisfied. 0

This completes the picture on characterisations of parallel soundness and parallel
completeness for polarised queries. A characterisation of parallel correctness trivially
results as the conjunction of both Conditions (PSound-pol) and (PComp-pol).

Complexity

The conditions established above allow to decide parallel correctness and its vari-
ants along the same lines as for negation-free conjunctive queries, as described in
Section 3.2.1. Notably, without difference in the worst-case complexity (at least for
‘deterministic’ policies) and without restriction to queries over schemas that obey a
fixed arity bound.

Theorem 3.3.22. For every P € Pget, the following problems are IT5-complete for
every query class Q € {CQ [pol], CQ ™7 [pol], UCQ [pol], UCQﬂﬁé[pol]}.

e PSouNnD(Q,P)
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3.3. Unions of conjunctive queries with negation

e PComp(Q,P)
e PC(0,P)

Proof. The lower bound for PComp and PC follows from the hardness result for par-
allel completeness for conjunctive queries, which already holds for policies from Pijgt
(Proposition 3.2.13). For PSounp, the lower bound is proven below, in Corol-
lary 3.3.24.

The upper bounds follow by simple adaptations of algorithm A (page 30) such
that now Conditions (PSound-pol) and (PComp-pol) are checked instead of Con-
dition (PComp) for soundness and completeness, respectively. Clearly, parallel
correctness can then be checked by successive application of both algorithms. O

The II5-hardness of PSounD for unions of conjunctive queries with negation would
be implied by a IT5-hardness result for the containment problem and the reduction in
the proof of Proposition 3.3.7. Indeed, hardness already holds for polarised queries
without disjunction, as proven in the appendix (Proposition A.3).

Proposition 3.3.23. PSounD(cQy,,, P« ), restricted to polarised queries, is II5-hard,
even over a single-node network.

Just like for parallel completeness and negation-free queries, the lower bound can be
achieved without the use of constants.

Corollary 3.3.24. PSOUND(CQ [pol],Prue) 18 Hg—hard, even over a three-node network.

Proof. The reduction in the constant-elimination lemma (Lemma 3.2.12) does not
only preserve parallel completeness but also parallel soundness, as shown in the
appendix (Lemma A.4). O

Possible generalisations. At the beginning of this section, we have identified two
sources for the rise of complexity from IT5 for conjunctive queries without negation
to coNEXPTIME for conjunctive queries with negation: the unbounded arity of at
least one relation and the simultaneous occurrence of a positive and a negated atom
referring to a common relation. Indeed, both aspects need to coincide on the same
relation.

In this case, the naive approach to construct a global instance that witnesses the
violation of the considered parallel property by addition of ineffectively prohibited
facts can lead to an exponentially long chain of alternative valuations that derive
the same fact. The syntactical restriction to polarised queries is an obvious way to
prevent such chains completely, which again allows more efficient algorithms.
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3. Parallel correctness

However, it is a comparatively strong restriction and it is not hard to see that
other restrictions (orthogonal to full and polarised queries) allow equally efficient
algorithms. From a complexity-theoretic point of view, it suffices if the length of
chains is constrained by a constant or even a polynomial. Examples include the
following queries.

e Partially polarised queries: queries that need to be ‘polarised’ only on those
relations with an arity higher than an a priori bound «. As an example, for
arity bound a = 2, the query

H() « R(x,y),~R(y,x),S(z1,---,2n), " T(21,...,2n)

is ‘partially polarised” with respect to relations S and 7.

e Negation-full queries: queries that only contain head variables in negated
atoms. As an example, if the boolean query @, from Example 3.3.1 is altered
by making y1, ..., ¥y, head variables, this yields a non-full query

H(y1, ... yn) < R(x1), ..., R(xn), R(y1), - - -, R(yn),
S(:Elv"' 7$n)a_'5(yla--->yn)

where the length of the chains is bounded by 2.

The exact boundaries for fragments of query classes determined by the complexity of
the parallel correctness problem and its variants are currently unknown. In the next
and last section of this chapter, we turn away from such considerations and towards
other settings and related problems.

3.4. Related work and bibliographical remarks

Parallel correctness is a fundamental property that can be studied in several settings.
Possible parameters are the query language, the database model, the communication
model, the policy formalism and the distributed evaluation process.

This work focuses on basically one such setting: conjunctive queries—sometimes
with unions, disequalities and negation—for relational databases under set semantics
in the one-round MPC model with distribution policies that are defined on the
granularity of a fact. Here, distributed evaluation happens independently on each
node, and is defined as the union of the local results. Meanwhile, some other settings
have been studied. We give a brief overview of results in publications known to the
author next.
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Bag semantics [KNV18]. As often in the literature, this thesis follows Codd’s
initial approach and views relations in the usual mathematical sense, as sets. In
practical database management systems however, they are often modelled as multisets
(or bags), where each fact is associated with a multiplicity—representing the number
of occurrences.

The following is known about parallel correctness of queries from CQ” under bag
semantics due to Ketsman, Neven and Vandevoort [KNV18].

Since each valuation contributes to the multiplicity of a derived fact in this setting,
parallel correctness is not characterised in terms of minimal valuations only. Instead,
a query is parallel-correct under a policy if, for each valuation, there is exactly one
node that is responsible for the required facts.

Deciding parallel correctness under bag semantics is coNP-complete for conjunctive
queries and policies from Pget: for each valuation, the number of nodes that are
responsible for the required facts has to be counted.

In general, parallel correctness under bag semantics implies parallel correctness under
set semantics but not vice versa. Both notions are equivalent in a restricted case
however: for strongly minimal queries under policies that are non-replicating (where
at most one node is responsible for each fact). Let us consider this point in a little
more detail.

Parallel correctness under bag semantics is stronger than under set semantics.
The asymmetrical relationship between the two notions is conform with the following
point of view. For bag semantics, parallel completeness could be defined as an approx-
imation from above—each fact is derived locally at least as often as globally—and
parallel soundness as an approximation from below—each fact is derived locally at
most as often as globally. Then, different from set semantics, parallel soundness is
non-trivial under bag semantics, even for queries without negation. Hence, paral-
lel completeness is a strictly weaker property than parallel correctness under bag
semantics.

We note that the previous argument is one reason for the difference between the
settings, but it is not the only one. Indeed, the implication from set semantics to bag
semantics even fails if restricted to parallel completeness. For instance, the boolean
query H() < R(u), R(v) is parallel-complete under policy P = {(k, R(a)), (¢, R(b))}
with respect to set semantics but not with respect to bag semantics: for the global
instance G = {R(a), R(b)} there are four globally satisfying valuations but only
two locally satisfying valuations (one on each node). Problematic here is that non-
minimal valuations are neglected. Circumventing this problem, we claim that parallel
completeness under set semantics implies parallel completeness (in the sense of an
overapproximation, as described above) under bag semantics for strongly minimal
queries.

We return to the results of Ketsman et al. Interestingly, the parallel-correctness
property renders some queries ‘non-parallelisable’ under bag semantics. In general,
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this could mean that there is no asymptotical runtime benefit in distributing the
data because, for every size bound n € N, there exists a database D of size ©(n) such
that at least one node k receives Q(n) facts. Here, however, this holds in an even
stronger sense that prevents already a speed-up by a constant factor because some
node receives basically all relevant facts!

As an example, for query H(x,y) < R(z,u), R(u,y), all the facts required by some
valuation have to be located on the same node. The exact complexity of deciding
whether a query is ‘parallelisable’ is currently unknown, but we provide an upper
bound in Section 5.2.

Furthermore, if the distributed evaluation is coordinated such that each valuation
contributes only once to the result—based on an order on the network—, then parallel
correctness can be characterised by Condition (PComp-naive), that is, by extension
of Condition (PComp) to incorporate all—mnot just minimal—valuations. In this
scenario, queries are trivially ‘parallel-sound’ (in the sense of an underapproximation).

Datalog [KAK18, NSSV19]. Parallel correctness has been studied also for Datalog
programs and a more elaborate policy formalism [ICAK18]. In the work of Ketsman,
Albarghouthi and Koutris, ‘production’ policies guide the local derivations and
‘consumption’ policies guide the distribution of facts, possibly over multiple rounds.

Since Datalog programs are monotonic, parallel correctness reduces to parallel
completeness. In terms of expressibility, Datalog is incomparable to conjunctive
queries with negation. It is, however, more expressive than unions of conjunctive
queries (without negation). Indeed, it is so expressive that the parallel completeness
problem is undecidable—already for very simplistic policies that distribute facts
by the relation symbol only. As noted in the context of Corollary* 3.3.8, this
complexity /undecidability transfer follows a more general pattern.

The possibility for ‘recursion’ in Datalog programs raises further questions. In
particular, it raises the question whether the program can be evaluated within a
fixed number of communication rounds, regardless of the global instance. This is
the ‘distributed’ analogon of the classical boundedness problem for Datalog, where
the bound refers to the height of derivation trees, which is known to be undecid-
able [GMSV93]. Some variants of the distributed boundedness problem are also
undecidable, again already for fairly simple Datalog programs and policies—at least
for more than one communication round—, others are decidable in polynomial
time [KAK18, Theorem 7.4].

The aforementioned undecidability of parallel completeness results from the unde-
cidability of query containment for Datalog programs. Follow-up work by Neven,
Schwentick, Spinrath and Vandevoort has shown that undecidability also results
for weaker fragments with a decidable containment problem, namely for ‘monadic’
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and ‘frontier-guarded’ Datalog [NSSV19]. There, infeasibility arises not only from
the queries but also from their interaction with policies. Notably, the facts are not
necessarily distributed in an instance-independent fashion. To a certain extent this is
already true in the setting of Ketsman et al. because the communication of derived
facts naturally depend on facts in derivation trees for that fact. In some settings
studied by Neven et al., however, instance-dependency is also an explicit property of
the distribution policies.

The studied classes of communication policies are either hash-based or building
on ‘data-moving constraints™®. For restricted forms of policies, that solely rely on
hash-based policies or on ‘modest’ data-moving constraints, the problem is 2EXPTIME-
complete however for both fragments of Datalog. The same holds for the boundedness
problem, but only for ‘frontier-guarded’ Datalog and only under the restriction to
communication policies defined by modest data-moving constraints. For general
data-moving constraints the problems are undecidable.

Another remarkable point was revealed by the authors: although each monadic
Datalog program can be transformed into an equivalent frontier-guarded Datalog
program, parallel completeness is undecidable for the former and decidable for the
latter under certain conditions [NSSV19, Proposition 26].°

Document spanners [DKM19]. A large portion of the data analysed today is
not relational but textual. Document spanners have been introduced as a means to
query text documents declaratively [FKRV15]. In practice, information is extracted
from texts often in a spatially restricted fashion: many queries address only small
segments of the document (e.g., paragraphs, sentences or N-grams). This offers the
possibility to parallelise the extraction process.

Doleschal et al. have studied the problems split correctness and splittability for
different representations of spanners [DKM ' 19]. Notably, the distribution of segments
in this framework is guided by spanners too—unary spanners, called splitters. The
splittability problem is a generalisation of parallel correctness. It asks, for a given
query @ (spanner) and a policy P (splitter), whether there is a—possibly different—
query @’ (spanner) such that, for each document D, query @ yields the same result
on D as query @’ on the documents D1,..., D, induced by D under IP. The special
case where Q' is required to equal @, is called self-splittability and corresponds with
the notion of parallel correctness in this thesis. In the split correctness problem,
query Q' is not existentially quantified but provided as part of the input.

4Data-moving constraints correspond to a restricted form of distribution tuple-generating depend-
encies, defined and studied in Chapter 5.

5This gap between the serial and the parallel setting results by the addition of relations in the
standard transformation from monadic to frontier-guarded Datalog, which is not faithfully reflected
in the policy.
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Split correctness is PSPACE-complete when spanners are defined by regular ex-
pression formulas or variable-set automata (even if functional and deterministic).
Interestingly, the lower bound for regular expression formulas is again obtained
via a reduction from the corresponding containment problem. Furthermore, the
restriction of split correctness to policies (splitters) that are guaranteed to induce
disjoint distributions is in PTIME.

Under the disjointness restriction, splittability is also PSPACE-complete, again for
regular expression formulas and variable-set automata. However, the authors leave
open the problem to determine the decidability (and complexity) of splittability in
general. The picture is more complete on its variant, self-splittability. This problem
is PSPACE-complete in general and in PTIME for functional deterministic variable-set
automata.

Bibliographical remarks. The notions of parallel correctness on a single instance
(similar to Definition* 3.1.1) and on all instances induced by a policy (Definition* 3.1.3)
have been introduced by Ameloot et al. [AGK ™15, AGK " 17a] for conjunctive queries.
Subsequently, they have been refined to parallel soundness and completeness for
conjunctive queries with negation [GKNS16, GKNS19].

Parallel completeness has been characterised via minimal valuations (Theorem* 3.2.5,
Definition* 3.2.2) for conjunctive queries first [AGK™'15], and later generalised to
unions of conjunctive queries with disequalities [GKNS16]. Strongly minimal queries
(Section 3.2.2) have been considered from the very start [AGK™15] and strong parallel
completeness has been introduced as ‘strong saturation’ [AGK17a] by the same
authors.

The upper and lower complexity bounds in Theorem 3.2.7 are due to the au-
thor. The upper bound was given first for CQs [AGK™"15] and then generalised to
UCQs with disequalities [GKNS16]. The hardness proofs here (Propositions 3.2.10
and 3.2.14) are similar to the original ones [AGK™'15] but use constants in the first
place; the results for constant-free queries are then obtained again by the use of
the previously unpublished ‘constant elimination’ technique (Lemma 3.2.12). This—
hopefully—makes the core argument more clear and is also useful in other places
(e.g., in the proof of Proposition 3.3.23).

The coNEXPTIME-bounds for UCQs with negation [GKNS16] (Theorem 3.3.4)
are also due to the author. Notably, an early version of the lower bound proof
inspired the coNEXPTIME-hardness proofs for the containment problem by Ketsman
(Theorem™ 3.3.5) and has been changed afterwards to the reduction from containment.
(Technically, the reduction in this thesis has been slightly improved to require only a
constant rather than a linear number of nodes.)

Furthermore, the coNP-lower bounds for full UCQs with negation (Proposition 3.3.7)
have been originally contributed by the author [GKNS16]. In this thesis, we have
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changed the second reduction (to parallel completeness) such that it resembles more
the reduction for Datalog by Ketsman et al. [KAK18, Theorem 5.2]. Both later
reductions base on the same main idea—provided in the original proof by the author.
The latter proofs, however, result in a stronger version of Corollary* 3.3.8, which the
author deems a notable result that seemingly has not been stated explicitly before.
Section 3.3.3 exclusively contains previously unpublished results by the author.
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4. Parallel-correctness transfer

Like parallel correctness, the transfer of parallel correctness is a basic property that
allows high-level optimisation in distributed query evaluation. In both cases, the goal
is to determine whether the communication phase can be omitted without impairing
the evaluation—which would reduce the overall computation time. Let us quickly
consider the differences between both approaches.

e Parallel correctness. Here, the policy P for the last computation round is
assumed to be known and query (s is to be evaluated in the next round.

If a query )2 is parallel-correct under policy P, then the current distribution is
suitable for the evaluation of Qs.

e Parallel-correctness transfer. Now, it is known that query 1 has been evaluated
correctly in the previous round and query ()2 is to be evaluated in the next
round.

If parallel correctness transfers from @1 to ()2, then the current distribution is
suitable for the evaluation of Qs.

Optimisation based on parallel-correctness transfer is thus possible on a higher level,
even before concrete policies have been determined.

Clearly, transfer of parallel correctness demands the transfer of its constituent
properties, parallel soundness and parallel completeness. The former is trivial for
monotonic queries but deserves a separate investigation for non-monotonic queries.

Structure of this chapter. We provide a formal definition of transfer in Section 4.1.
Then, we start with the study of (unions of) conjunctive queries in Section 4.2 and
continue with the extension of this query class to UCQs with negation in Section 4.3.
Section 4.4 concludes the chapter with an overview of related results.

For queries in UCQ7, parallel-correctness transfer is equivalent to parallel-completeness
transfer, which again can be characterised by minimally requiring valuations (The-
orem* 4.2.3). Using this characterisation, we prove the problem to be II5-complete
in general (Theorem 4.2.4). The complexity decreases by one or two levels, how-
ever, if query (1 is known to be strongly minimal. While it has been shown to
be NP-complete for unions of conjunctive queries without disequalities (Proposi-
tion* 4.2.8), complexity increases again to IT5-completeness if disequalities occur
(Proposition 4.2.15).
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For queries in UCQ ™7, parallel-soundness transfer is not trivial anymore. However,
the complexity analysis for—monotonic—CQs and UCQs relies crucially on the
characterisation via minimal valuations. Lacking a comparable characterisation for
general CQs and UCQs with negation, we turn immediately to a fragment: for
polarised queries, we provide a characterisation in Section 3.3.3. Furthermore, we
prove the ITI5-completeness of parallel-soundness transfer for this class of queries
(Theorem 4.3.4). Parallel-completeness transfer remains open for this fragment.

4.1. Definition

We start with a formal definition of the central notions in this chapter.

Definition* 4.1.1 (Parallel-correctness transfer). Let (91 and Q2 be queries. Parallel
correctness transfers from @1 to Qo if the following implication holds for every
policy P:

if ()1 is parallel-correct under P, then Q5 is parallel-correct under P.

Transfer of parallel soundness and parallel completeness is defined analogously. <«

Example 4.1.2. Parallel completeness transfers from query Q1 = H() < R(x,y), S(y)
to query Q2 = H() + R(y,y), S(y). Both queries are strongly minimal by Lemma 3.2.16,
that is, all its valuations are minimal. The argument below implies transfer by Con-
dition (PComp).

Let P be a policy under which )7 is parallel-complete. Then, for each valuation V;
for )1, there exists a node that is responsible for the facts required by V;i. Furthermore,
each valuation V5 for Q5 can be identified with a valuation for Q1—which maps both
variables z and y to the same value. Hence, for each valuation V5 for (02, there exists
a node that is responsible for the facts required by V5. [

In the previous example, the queries satisfy the containment relation Q2 & Q.
Though it might be tempting to think of a general relationship between containment
and parallel-correctness transfer, both concepts are incomparable [AGK ™" 17a]: neither
does containment guarantee transfer of parallel-correctness nor vice versa. For
instance, for query Q) = H() « R(z,y), containment Q2 T @1 C @} holds but
parallel correctness does neither transfer from @] to query Q1 nor to query Q9 since
the latter queries require S-facts to be placed on some nodes while the former does
not.

Parallel-correctness transfer can, however, be seen as a generalisation of parallel
correctness. The following definition generalises the variants of the parallel-correctness
property from a single policy to a family of policies.
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4.2. Unions of conjunctive queries

Definition* 4.1.3 (Parallel correctness under a policy family). Let P be a family
of policies. Query Q is parallel-correct under P if it is parallel-correct under every
policy in P. The notions of parallel-soundness and parallel-completeness under a
policy family are defined analogously. <

A particularly interesting case arises from families of policies that benefit a fixed
query Q. More precisely, let Psound(Q) and Peomp(Q)) denote the families of policies
under which query @ is parallel-sound and parallel-complete, respectively. Similarly,
let Peor(Q) o Psound (@) N"Peomp (Q) denote the family of policies under which query @
is parallel-correct.

Then, parallel-correctness transfers from a query @ to a query @2 if and only
if 9 is parallel-correct under Peor(@Q1). The next table lists the correspondences
more generally.

property condition
parallel-soundness transfer Psound (@Q2) C Psound (Q1)
parallel-completeness transfer  Peomp(Q2) € Peomp(@1)
parallel-correctness transfer Peor(Q2) € Peor(Q1)

Below, we study the complexity of the following decision problem.

Parameters: query classes O and Qo

Input: query Q1 € 91,
query Q2 € Qo
Question: Does parallel-correctness transfer from @1 to Q27

If both query classes Q1 and Qs are identical, we simply write PC-T(Q;) or omit the
class completely, if it is clear from the context. Of course, variants for the transfer of
parallel soundness and parallel completeness are defined analogously and denoted
PSounD-T and PCowMmP-T, respectively.

4.2. Unions of conjunctive queries

In Section 3.2, we started the study of parallel correctness with the observation that,
because of monotonicity, unions of conjunctive queries are trivially parallel-sound.
Clearly, the same observation also trivialises parallel-soundness transfer: parallel
soundness transfers from Q; to Qs for all queries Q; and Q- from UCQ#. Hence,
we consider, being equivalent to the transfer of parallel-correctness, the transfer
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4. Parallel-correctness transfer

of parallel completeness in this section only. For ease of description, we make an
additional assumption.

Remark 4.2.1 (Irredundancy of UCQs). In the following, we silently assume that
every union Q1 U...U @, of conjunctive queries is irredundant: no subquery @Q; is
contained in another subquery @; for i,j € {1,...,n} where i # j.

Deciding this property is coNP-complete [CM77] and thus not harder than most of
the problems considered below.

We begin with the general case (arbitrary unions of conjunctive queries with dis-
equalities) in Section 4.2.1. Building on a characterisation via minimally requiring
valuations, we obtain that parallel-completeness transfer is I§-complete. After-
wards, we consider the restriction to strongly minimal queries (for input @i, the
right-hand query (2 can be arbitrary) in Section 4.2.2. Under this restriction,
parallel-completeness transfer is NP-complete for queries without disequalities and
[I5-complete for queries with disequalities.

4.2.1. General case

We quickly recapitulate how parallel-completeness transfer can be characterised and
then determine the complexity of the associated decision problem.

Characterisation

Minimality of valuations is the key notion used to tackle parallel completeness for
UCQs in Section 3.2.1. Not astonishingly, they are also useful to characterise the
transfer of parallel completeness. Since transfer relates two queries, it seems natural
to relate valuations for these queries. The next definition formalises a corresponding
notion.

Definition* 4.2.2 (Covering valuation). Let Q and Q' be queries from UCQ”. A
valuation V' for Q' covers a valuation V for @ if it satisfies both of the following
conditions.

1. Fact condition: V' requires all facts required by V/,
that is, V(pos(Q)) C V'(pos(Q’)).
2. Domain condition: V' refers to the same data values as V,
that is, dom(V (pos(@®))) = dom(V'(pos(Q’))).
A valuation V' that satisfies the fact condition, is called fact-cover of V. |

Using the notions of ‘minimality’ and ‘covers’, a simple characterisation of parallel-
completeness transfer can be formulated.
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4.2. Unions of conjunctive queries

Condition (PComp-T)

Assumptions: Let Q; and Q, be queries from UCQ™.
For every minimal valuation V5 for @9,
there is a minimal valuation V; for Q1 that covers V5.

This condition is indeed a characterisation, as stated in the following theorem.

Theorem* 4.2.3 (Characterisation of parallel-completeness transfer). For all quer-
ies Q1, Q2 from UCQ7, parallel completeness transfers from Q; to Qs if and only if
Condition (PComp-T) is satisfied.

Condition (PComp-T) provides a valuable tool to establish matching upper and
lower complexity bounds for PComP-T, to which we turn now.

Complexity

The statement in Condition (PComp-T) directly suggests a V3-structure and thus
the second level of the polynomial hierarchy. Indeed, the requirement for valuation V;
to be minimal makes an additional level of quantification necessary.

Theorem 4.2.4. Decision problem PCowmp-T(Q) is IT4-complete for every query class

Q € {CQ,CQ7*,UCQ,UCQ”}.

Proof. The upper bound results from the upper bound provided by Proposition 4.2.6
for the most general query class UCQ”. The lower bound follows from the lower
bound from Proposition 4.2.7 for the least general query class CQ. O

Two ideas are decisive for the algorithm for PComp-T(ucQ#) presented below. First,
Condition (PComp-T) frees us from the consideration of (possibly infinitely many)
policies. Second, although the condition formally refers to an infinite set of valuations,
it suffices to test the existence of covers for a finite subset of valuations. The latter
idea is formalised in the next lemma.

Lemma 4.2.5. Let Q1 and Qs be queries from UCQ” with a maximum number s
of variables (per disjunct). The following conditions are equivalent, for domg =

{1,...,s}.

(1) For every minimal valuation V5 for Q2 over dom,
there is a minimal valuation V7 for ()1 over dom such that V5 is covered by Vj.

(2) For every minimal valuation Wy for Q2 over domg,
there is a minimal valuation W7 for Q1 over domg such that W5 is covered
by Wl.
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4. Parallel-correctness transfer

Proof. We sketch both implications independently.

» Condition (1) implies Condition (2). For a direct proof, assume that Condition (1)
holds. Let W3 be a minimal valuation for query Q2 over doms. By Condition (1),
there is a valuation Vi for query Q1 over the unrestricted domain dom that cov-
ers Wy. The notion of a cover guarantees, first, Wa(pos(Q2)) € Vi(pos(Q1)) and,
second, dom (W (pos(Q2))) = dom (Vi (pos(Q1))). The latter particularly implies that
valuation Vj refers to data values from domsg only. Therefore, Condition (2) holds.

» Condition (2) implies Condition (1). Assume now that Condition (2) holds and let V5
be a minimal valuation for query @) over the unrestricted domain dom. Since Q2
contains at most s variables, there exists a permutation 7 : dom — dom such that

7(dom (Va(pos(Q2)))) C doms

holds. Consequently, valuation Ws %' 0 Vh is a minimal valuation for (2 that refers
only to values from doms. Hence, by Condition (2), there is a valuation W; for
query @1 that covers Ws. Then, a valuation V; L r-1o W7 that covers V5 exists
because application of the bijection 7! preserves the set relationships guaranteed
by W covering W, yielding

Va(pos(Q2)) = (' o Wa)(pos(Q2)) € (w7~ o W1)(pos(Q1)) = Vi(pos(Q1))

and, similarly, dom(V2(pos(Q2))) = dom(Vi(pos(Q1))). Therefore, Condition (1)
holds.

Since both conditions mutually imply each other, they are equivalent. O

As mentioned above, we are now ready to prove the upper bound for parallel-
completeness transfer constructively.

Proposition 4.2.6. Decision problem PComp-T(ucQ#) is in I1E.

Proof. The following algorithm, A%2%S  decides parallel-completeness transfer for
unions of conjunctive queries with disequalities, using three levels of quantified extra
input.

Algorithm A% is correct by Theorem* 4.2.3 and Lemma 4.2.5. We briefly argue
how transfer of parallel completeness is verified—falsification of transfer follows in a
similar fashion.

Condition (PComp-T) states a requirement only for minimal valuations for Q9. If
a valuation V5 for )2 is not minimal, then there is a valuation Wy witnessing that.
Since it is of size linear in |Q2|, it can be ‘guessed’ as part of the existential input. In
the positive case, the algorithm accepts in Line 2 because a non-minimal valuation V5
does not contradict the condition.
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4.2. Unions of conjunctive queries

If valuation V5 is minimal however, there has to be a valuation V; for )1 that is
minimal and a cover of V5. This valuation V7 is also ‘guessed’ with the existentially
quantified extra input. Since it satisfies the conditions of a cover and, by minimality,
there is no valuation Wj that derives the same fact with fewer required facts, the
‘reject’ statement in Line 4 is not reached, and the algorithms accepts.

Algorithm Atrans

Input: query Q; € UcQ7,
query Q, € UCQ”
Quantified extra input:
v valuation V3 for Q2 over doms (where s = ||Q1]| + ||Q2]])
3 valuation Wy for Q2 and V; for )1 over domg
v valuation W; for ()1 over domg

if Wy <g;s Vs then {ignore non-minimal valuations for Q2 }
accept

if Wy <I?QOIS V1 or V7 is not a cover of V5 then
reject

accept

Clearly, for each combination of extra input, the test can be accomplished in
polynomial time. For the comparisons with respect to preorder <P° and the ‘cover
conditions’, the sets of induced facts have to be computed and tested for equality or
subset relationship, respectively. We have described the details for similar tests in
Algorithm A for parallel completeness (page 30). O

The lower bound stated in the next proposition results by a polynomial reduction
from the following problem, known to be IT5-complete [Sto76].

1;-QBF

Input: Formula ¢ = Vax3yvz ¢(x,y, z),
where v is a propositional formula in 3-DNF over propositions
x=(r1,...,2),y=(y1,...,ys) and 2 = (z1,..., 2)
Question: Does, for every truth assignment 3, on x,
exist a truth assignment 3, on y such that,
for every truth assignment (5, on z,
truth assignment 8, U 8y U B, satisfies 1?
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4. Parallel-correctness transfer

Proposition 4.2.7. Decision problem PComp-T(cQ) is IT15-hard.

Proof. We define a mapping from inputs for II3-QBF to inputs of PComp-T(cQ) and
show that it is a polynomial reduction.

Every input formula ¢ = Vx3yvz ¢ (x,y, z) for lI3-QBF with a quantifier-free
subformula v in 3-DNF is mapped to a pair (Q1,Q2) of queries in the following
way. Let ¢ = (z1,...,2,), y = (y1,...,ys) and 2 = (z1,..., 2) be the propositions
of ¢ and let v consist of clauses Ci,...,C, where Cj = (¢;1 A {j2 A {;3) for every
j €{1,...,p}. Without loss of generality, we assume that each proposition occurs in
at least one clause.

The schema for the queries contains unary relations Res, False, True for ‘result’
and truth values and also unary relations XValy,YVal;, for every h € {1,...,r}
and every i € {1,..., s}, for mappings of the propositions. Additionally, there is a
binary relation Neg, a ternary relation Or and a quaternary relation And to guide the
‘evaluation’ of the represented subformula .

Query @2 refers to ‘truth variables’ wg, w1, intended to represent truth values false
and true, and it refers to variables x1,...,x, for the respective propositions. The
query is defined by

head(Q2) e H(wy,wy,x1,...,2,) and
pos(Qz) = An, UAY' U {Res(wy)},

where the sets of atoms

Asy = {False(wp), True(w;)} U {XValy(zp) | h € {1,...,r}} and
Ay & {yVal,(wo), Yal;(wy) | i € {1,...,s}}

are intended to fix the values of the query’s variables, in the case of Agy, and provide
both truth values for variables 1, ..., ys, in the case of .,42’1. Note also that query Qo
is strongly minimal because it is full.

Query @ refers to the same variables as Q2 and some additional variables. First,
it refers to ‘literal variables’ m, 7 for every m € {T1,...,Tr, Y1, -, Ysy 21y -+, 2t}
Second, it refers to variables ai,...,q, and wi,...,wp, with the intention that
variable o represents the truth value of clause C; and variable w; represents the
truth value of the partial disjunction Cy V...V Cj for every j € {1,...,p}. The
query is defined by

head(Q1) & H(wo, w1, @1, ..., & Y- --,Ys) and
pos(Q1) = Ag, U Ay U Asar U Ay U {Res(wp),Res(w,)},

where Agy is the set of atoms defined before and the other sets of atoms are defined
next. Set A, = {YVal;(y;), YVal;(5;) | i € {1,...,s}} is intended to force a mapping
of positive and negated literal variables to complementary truth values. Set
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Asar = {Neg(wo, wr), Neg(w1,wo) }
U {And(w, wo) | w € W~} U {And(wq, w1, wy, w1)}
U {0r(wo, wo, wo), 0 (wo, w1, w1 ), 0r(wy, wo, wy ), Or(wy, wy, wy)}

represents the logical functions negation, conjunction and disjunction if the last
position is considered as the output for the previous positions. To this end, the set
W~ < {wg, w1} — {(w1, w1, w;)} contains all triples of truth variables with at least

one false component. Finally, set

Ay = {Neg(m,7) | for each proposition 7 in 1}
U {And(éj,l,ﬁj,g,ﬁj,g, ij) | j € {1, - ,p}}
U {0r(aq, a1, w1), 0r(wi, ag, ws), . .., 0r(wp—1, ap,wp) }

is intended to represent the literals of subformula 1) as well as its (conjunctive) clauses
and the results of their partial disjunctions.

The pair (Q1, Q2) of queries can obviously be computed from formula ¢ in polynomial
time and the mapping defined in this way is total. Before we continue with a proof
of the reduction property, we shortly illustrate the mapping and its workings.

Hlustration. The claimed reduction maps the following II3-QBF-formula
o= leﬂyl,ygv,zl((ml Ay1 Az1) V (—z1 Aya A zl))

to a pair (Q1, Q2) of conjunctive queries. The latter query @2, with head H (wp, w1, x1)
and body

False(wy), True(w;),XValy(xy), Res(wy),
YVa11 (wo), YVa11 (wl), YVa12 (’UJ()), YValg (wl),

is intended to represent the first block of universally quantified variables (Vz1). As
mentioned, this query is strongly minimal because it is full.
The former query @1, with head H(wp,w1,x1,y1,y2) and body

False(wy), True(w;),XValy(x1),Res(wp), Res(w2),

YVal, (yl), YVal, (gl), YValg(yg), YValo, (gg),
Neg(wp, wy), Neg(wy,wp), and the remaining atoms from Agqt,
Neg(x1,71), Neg(y1,71), Neg(y2, y2), Neg(21, 21),
And(z1,y1, 21, 1), And(Z1, Y2, 21, a2), 0, a1, w1 ), O (wi, a2, w2),

is intended to represent the second block of existentially quantified variables (Jy1,y2)
and also the third block of universally quantified variables (Vz1). Here, minimality
helps to capture universal quantification via a single mapping by a dual perspective:
if there exists a non-satisfying extension, then it requires fewer facts; otherwise all
extensions are satisfying, and require the same additional fact.

For these inputs, both ¢ ¢ II3-QBF and (Q1,Q2) ¢ PCoMP-T(cQ) hold.

79



4. Parallel-correctness transfer

The former is easy to see. Formula ¢ is not in I13-QBF because, regardless how a
truth assignment for x; and y1, ys is defined, its extension on the universally quantified
variable z1 by z; — 0 is not satisfying for 1 since both conjunctive clauses contain the
literal z1. In particular, this argument works for the truth assignment S, = {z1 — 0}.

The latter is a consequence of the following observation: there is a minimal valuation V5
for @2 that is not covered by any minimal valuation V; for Q1. We define valuation V5
based on the truth assignment [, mentioned above, let V5 £ {wo — 0,wy — 1,21 —
0}. This valuation, which is minimal, requires facts

False(0), True(1l),XVal;(0),Res(1),
YVal; (0), YVali(1), YVals(0), YValy(1)

for query Q2. Let us now assume, towards a contradiction, that there exists a
minimal valuation V; for @1 that covers V5. Then, the first four facts above imply
that Vi (wo, w1, 21,w2) = (0,1,0,1) holds. Analogously, the latter four facts imply
that Vi(y1,91) and Vi(y2,%2) are either (0,1) or (1,0) and thus induce a (valid)
truth assignment §, on y, namely [, S {y1 —= Vi(y1),y2 — Vi(y2)}. The mapping
Vi(wg,w1) = (0,1) guarantees by Vj(Asat) that Vi requires all Neg-, And- and Or-facts
that represent the corresponding logical connectives, the ‘logical facts’. The assumed
minimality of V; then only allows V;(ws) = 0, the desired contradiction, as argued
next. If V3 (wq) = 1, then there is a valuation W; that agrees with V4 on the previously
mentioned variables, maps (z1,2z1) — (0,1) and maps the variables ay, as,wy,ws all
to 0—according to their intended meaning. This valuation W; then requires only
facts

False(0), True(1),XVal;(0),Res(0),
YValq(0),YValy (1), YValy(0), YVala(1),
Neg(0, 1), Neg(1,0)

and the remaining ‘logical facts’, contradicting the minimality of V.

Therefore, fact Res(1) is required by V5 but not by V3. Hence, the assumed valuation V;
does not exist and thus (Q1, Q2) ¢ PComP-T(cq) because the queries do not satisfy
Condition (PComp-T).

Let us turn back to the reduction property. Not astonishingly, we are interested in
valuations with range {0,1} and particularly in such that map (wg,w1) to (0,1) and
(m,7) to either (0,1) or (1,0) for each proposition w. We call these valuations boolean.
To facilitate the following arguments, we call a boolean valuation V; for query (1
compatible if it respects the intended meaning of the query’s other variables: variables
ai,...,o0p and wi,...,wp are mapped to the truth values of the represented clauses
and partial disjunctions, which is unambiguously possible for boolean valuations.
Thus, a boolean valuation V; for @ is compatible if and only if Vi (Ay) C Vi(Asat)
holds.
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We will repeatedly define a boolean valuation V from a truth assignment g and
vice versa. It is in this sense that we say that the mappings are induced. This means
that V(wo,w1) = (0,1) holds and also V(w) = () for every proposition 7 in the
context—implicitly defined by the mapping or stated explicitly. If valuation V is for
the left-hand query @1, it is furthermore required to map 7 to the complement of
V() for every 7 under consideration.

With the previous observation, we show in the remainder of this proof that the
mapping defined in the beginning satisfies the reduction property, that is, ¢ € II3-QBF
holds if and only if (Q1,Q2) € PComp-T(cQ). As usual, we prove both implications
separately.

» If. For a proof by contraposition, we assume that ¢ ¢ II3-QBF and show that
Condition (PComp-T) is violated for the pair (Q1,Q2) of queries for .

By our assumption ¢ ¢ II3-QBF, there exists a truth assignment (3, for x such
that, for every truth assignment 3, for y, there is a truth assignment /3, for z such
that the combined assignment 8, U By U 3, does not satisfy subformula 1 of ¢. Using
this assignment 3., we define valuation V5 for Q2 by

def

Vo = {wO = 0wy — 1,21 — /Bm(xl)a cey XTp 2 Bm(xT)}a
which is minimal since ()9 is strongly minimal.

There is however no valuation V; for (); that is both minimal and covering for V5.
Towards a proof by contradiction, assume that such a valuation V; exists. The
fact-condition then particularly implies Va(pos(Q2)) C Vi(pos(Q1)), and hence the
following three properties.

(P1) Valuation V; agrees with V5 on variables wg, w1 and 1, ..., z,.

(P2) Valuation Vi maps w, to 1.

(P3) Valuation Vi maps (y;,y;) either to (0,1) or to (1,0) for every i € {1,...,s}.
Property (P1) is implied because of the atoms in Agy, which are the only atoms
that refer to relations True, False and XValy, for h € {1,...,r}. Property (P2) is
implied because V2(Res(wi)) can only be covered by Vi(Res(wp)), not by the only
other Res-fact Vi (Res(wg)) = Res(0). Finally, Property (P3) is implied because, for
each i € {1,...,s}, facts YVa1;(0),YVal;(1) are required by V5 due to Ajy'. They
can only be required by Vj if variables y;, ¢; are mapped to complementary values

from {0, 1}.
Since Property (P3) holds, valuation V; unambiguously induces a truth assign-
ment 3y on y, where By(y1,...,ys) = Vi(y1,...,ys). From our starting assump-

tion, it follows that there is an assignment (3, such that (8, U 3y, U 3, does not
satisfy . Let Wi be the compatible valuation induced by 3, U 8, U 5,. We claim
that Wi <g, Vi, which contradicts the assumed minimality of V;. First, both
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valuations obviously agree on the head variables. Second, they require the same facts
for Agy, Ay and Agae. If Vi is not compatible, then Wy <g, Vi is clear. Otherwise,
both valuation are compatible and thus require no additional facts for A,. However,
Wi(wp) = 0 by the choice of 3, while V;(w,) = 1, and thus W) requires one Res-fact
less than V4. Valuation Vj is hence not minimal, the desired contradiction.

Therefore, Condition (PComp-T) is violated and parallel completeness does not
transfer from query ()1 to query Q.

» Only if. Assume that ¢ € II;-QBF. We show that every (minimal) valuation V5
for ()2 has a covering minimal valuation V; for Q.

Let V5 be an arbitrary valuation for (2, which maps the truth variables to some
data values Va(wp) = ¢ and Va(wq) = ¢1. Without loss of generality, we may assume
that co = 0 and ¢; € {0,1} because the cover conditions are not affected by the
application of a bijection over dom on both valuations. We distinguish three cases,
depending on how V5 maps the head variables wg, w1, x1, ..., T,.

» 1. Case (V4 is boolean). Valuation V5 induces a truth assignment /35 on @. Since
¢ € II3-QBF, there is an assignment 3, on y such that, for every assignment 3,
on z, it holds B U By U B, = 1. In particular, this holds for the assignment 3,
that maps every proposition z1,...,2; to 0. Let V; be the compatible valuation
induced by these assignments, 35, 8y and 8,. We claim that this valuation
covers V5 and that it is minimal.

That Vi covers V5 follows from the next two observations. First, both valu-
ations are boolean and thus refer to the same set of data values, namely to
{0,1}. Second, both valuations agree on variables wg, w1, 21, . .., x, by definition
and thus V5(Asx) = Vi(Afx). Furthermore, Vg(Ag’l) = Vi(Ay) because V; is
boolean. Compatibility of V; and the choice of 3, further ensure that V;(wp) = 1.
Therefore, the only additional fact Va(Res(w;)) = Res(1) required by V3 is also
required by V;. Hence, Va(pos(Q2)) C Vi(pos(Q1)).

Valuation V; is also minimal. Towards a contradiction, assume that a valu-
ation U; with Uy <%Ols V1 exists. Clearly, both valuations require the same facts
for the atoms in Agy U Agai. They also require the same facts for A,. This is
immediate for head variables y1,...,ys. For their counterparts 1, ..., ys, this
follows from the observation that V;(Agat U Ay) = Vi(Asat) and the assumption
that U; requires no Neg-facts except for Neg(0,1) and Neg(1,0). Hence, valu-
ation U; encodes truth assignments [z, 3y and 3, on the respective propositions,
which particularly agree with the defining ones for Vo on x4, ..., 2z, and y1, ..., ys.
Strict containment Uj(pos(Q1)) € Vi(pos(Q1)) then implies Uj(wpy) = 0 and
compatibility of U;. Compatibility, in turn, witnesses that 8, U 3y U . does
not satisfy 1, a contradiction to the choice of j,.

Therefore, valuation V; is minimal and covering for V5.

» 2. Case (Va(wy) =0 and Va({z1,...,2,}) € {0,1}). Let Wi be the valuation
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for ()1 that agrees with V5 on variables wg,w; and x1,...,x, and that maps all
other variables to 0. Let V7 be a minimal valuation with V; <g, Wj. Then, V;
also agrees with V5 on the head variables of Q2, implying Va(Agyx) = Vi (Asx). By
the case assumption, valuation V5 requires only facts {YValy(0),...,YVals(0)}
for A%l, which are also required by V; for Ay because Vi agrees with W; on
the head variables yi, ..., ys. Finally, fact Va(Res(w;)) = Res(0) is also required
by Vi because of Res(wp) € pos(Q1). Furthermore, valuation Vj refers to data
value 1 only if valuation V, does (for some ;). Hence, valuations V; and V3
refer to the same set of data values, either to {0} or to {0, 1}.
Therefore, valuation V; is minimal and covering for V5.

» 3. Case (Va({z1,...,2zr}) € {0,1}). To show that there is a covering valuation
for V5, we have to deal carefully with the data values from V5 that are not
interpreted as false or true. The following argument works independently of the
mapping Vao(wy) € {co,c1} € {0,1}.

By the case assumption, there is at least one variable x; that is mapped
by V5 to a data value different from 0 and 1. We call each variable xj; with this
property foul. Similarly, we call a clause foul if it contains xj, or —xj for a foul
variable xj. Furthermore, we fix one of the data values that a foul variable is
mapped to, say d o Va(zp) for the minimal index h of a foul variable.

As an intermediate step, we define a valuation W; for @), which is not
necessarily minimal, in two steps. First, valuation W satisfies the following
equations on the truth and literal variables

Wi (wo, wi, @1, ..., x) = Va(wo, wy, 21, ..., 2T,)
WY1y ey Ysy 215+ 5 2¢)
Wl(gjl,...,gjs,il,... }):

)
)

where ¢y = ¢; and ¢; = ¢y. Second, valuation W is successively defined on the
remaining variables. For each j from 1 to p,
e variable «; is mapped to
— 1 if clause C} is foul or all its literals are mapped to 1, and to
— 0 otherwise;
e variable w; is mapped to
— 1if Wi(a;) =1 for some i € {1,...,7}, and to
— 0 otherwise.

Although valuation Wj covers valuation V3, it is not necessarily minimal. In the
remainder of this proof, we show that each minimal valuation ‘below’ W7 is also
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a cover of V5. To this end, let Vi be a minimal valuation such that Vi <g, Wi
holds. We claim that V; covers V5.

First, we consider the domain condition. Because of Equation (4.1), valu-
ation Wy refers to all data values that valuation V5 refers to. These include
co,c1 and d, to which all remaining variables are mapped to by Wj. Therefore,
both valuations refer to the same set of data values. Since wg,wi,x1,...,, are
head variables of @1 and Vi <g, W1, this also holds for V;.

Next, we consider the fact condition. Valuation Vj requires all of the facts
from Vo(Agx U Ag’l) for the atoms in Agy, U A, because of the agreement on
variables wg,w; and z1,...,z, and Equations (4.2) and (4.3). It remains to
show that V; also requires fact Va(Res(w;1)) = Res(cq).

By the case assumption, there is an index jo € {1,...,p} such that the jo-th
clause is foul because of the foul variable x; with minimal index h. Without
restriction, we assume that xj is referred to in position 1. Then, valuation V;
requires a fact of the form And(d, -, -, ). More concretely, this fact is of the form
And(d,-,-, c1) because Vi <g, W; and valuation W; by definition only requires
And-facts with value d that have value ¢q in the last position. Thus, Vl(ajo) =c.
Finally, valuation W; only requires Or-facts from Wi (Asat), where value ¢; in
one of the first two positions enforces value ¢q in the last position. Thus, we
can even conclude Vi(wj,) = ¢1. By the same argument, this holds for every
j > jo and thus for j = p in particular. Therefore, valuation Vj requires fact
Vi(Res(wp)) = Res(c1), as claimed.

Hence, valuation V7 is minimal and covering for V5.

This concludes the case distinction and proves that every valuation V5 for ()2 has a
minimal covering valuation for ()1. Therefore, parallel completeness transfers from Q1

to QQ.

The mapping provided is thus indeed a polynomial reduction. O

For conjunctive queries, or unions thereof, transfer of parallel completeness thus
has a higher complexity than parallel completeness for a single, given policy: in
the polynomial hierarchy, we jump from II5 to IT§. However, there are cases where
transfer can be decided more efficiently. One such case is formed by strongly minimal
queries, which we address next.

4.2.2. Strongly minimal queries

The need for a third level of (universally quantified) extra input in Algorithm Atans
for PComp-T(ucQ#) arises from the minimality test for valuations for @)1. Accordingly,
for a strongly minimal query Q1—where every valuation is guaranteed to be minimal—
, a decrease of the worst-case complexity can be expected. Somewhat surprisingly,
the problem drops not by one but even two levels in the polynomial hierarchy.
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4.2. Unions of conjunctive queries

Proposition* 4.2.8. PComp-T(uCQpsm},uCQ) is NP-complete, and NP-hard already if
inputs are restricted to queries from CQ.

Two aspects contribute to this decrease in complexity. First, for strongly minimal
queries, parallel-completeness transfer is equivalent to a weaker form. Second, the
weaker form of parallel-completeness transfer can be characterised by a relatively
simple structural relationship between queries. More formally, the weaker form of
transfer is defined as follows.

Definition* 4.2.9 (Weak parallel-completeness transfer). Let 1 and Q3 be queries
from UCQ”. Parallel completeness transfers weakly from Qi to Qs if the following
implication holds for every policy P: if ()1 is strongly parallel-complete under P,
then @2 is parallel-complete under P. <

Note the restriction to strong parallel completeness—which refers to the left-hand
side of the implication (only). Weak parallel-completeness transfer, in turn, can be
characterised by syntactical containment relationship, as in the next proposition.

Proposition* 4.2.10. For all queries Q1 and @2 from CQ, parallel completeness
transfers weakly from @)1 to Q)2 if and only if there exists an endomorphism ¢ and a
substitution o where £(pos(Q2)) C o(pos(Q1))-

The upper bound for UCQs in Proposition 4.2.8 follows by a simple generalisation of
the argument for CQs. Basically, for irredundant UCQs, endomorphisms and substi-
tutions have to exist from every disjunct of 1 to some disjunct of ()2. For redundant
UCQs, where the previous condition is sufficient but not necessary, an irredundant
equivalent subset of disjuncts from Q)1 can be ‘guessed’ first, via homomorphisms.

However, the characterisation in Proposition 4.2.10 does not extend (directly) to
queries with disequalities. For these, the complexity rises again by one level, as we
prove below. The IT5-lower bounds in Proposition 4.2.15 already hold for conjunctive
queries (without union). Furthermore, they even hold when the use of disequalities
is restricted to only one of the queries, either ()1 or Q2.—At least, after overcoming
a technical obstacle, as described next.

Parallel-completeness transfer, as defined above, is a relatively strong condition.
This is partially in accordance with the intention: whatever the global instance
and the concrete policy are, does complete evaluation of () already guarantee
complete evaluation of Q27 There are some borderline cases however where only
very restricted policies prevent transfer—policies that can be deemed impractical.
These cases arise from an ‘imbalanced use’ of constants or disequalities between the
queries, as demonstrated next.

Let us consider the use of constants first. A necessary condition for the transfer
of parallel completeness from a query Q1 to a query (2 is that @1 refers only to
constants that also occur in ()2. For instance, parallel completeness does not transfer
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4. Parallel-correctness transfer

from the boolean query Q1 = H() + R(c),S(z),T(d) to the boolean query Q2 =
H() + R(c), S(z). This is witnessed by policy P = {(k1, R(c)), (k2, S(c)), (k3, T(c))}
with universe univ(P) = {c}.

On the one hand, query @) is trivially parallel-complete under P because there
is no globally satisfying valuation over this universe. Query Q2 on the other hand
is not parallel-complete under P because the facts R(c) and S(c), required by the
(unique) minimal valuation {z — ¢}, do not meet at any node.

The previous argument is easily generalised, and culminates in the following claim.

Claim 4.2.11. Let )1, Q2 be queries from UCQZléom. If parallel completeness transfers
from Q)1 to @2, then every constant in ()1 also occurs in Q9.

For queries with disequalities, the situation is similar. Parallel completeness does not
transfer from the boolean query Q1 = H() <+ R(z), S(z), R(y),z # y to the boolean
query Q = H() < R(x), S(x), as witnessed by policy P = {(k1, R(a)), (k2,S(a))}
with universe univ(P) = {a}.

Since every consistent valuation for @)1 refers to two data values, query @ is
trivially parallel complete under P because there is no globally satisfying valuation
over this universe. Query ()2, however, is not parallel-complete under P because
facts R(a) and S(a), required by the minimal valuation {z — a}, do not meet at any
node. However, for each policy P’ with a universe that contains at least two data
values, query Qs is parallel-complete under P’ if so is query Q1.

Again, the previous argument can be generalised.

Claim 4.2.12. Let @ and Qs be queries from UCQ?. If parallel completeness
transfers from ()1 to (J2, then every minimal valuation for ) refers to at least as
many data values that some minimal valuation for @), refers to.

Note that Claim 4.2.12 refers to constant-free queries only. Since the main contribu-
tion of this work on parallel-completeness transfer for strongly minimal queries are
the lower bounds stated in Proposition 4.2.15, which already hold for constant-free
queries, we restrict our attention to these.

Contrary to the condition in Claim 4.2.11, it is not a priori clear how complex it
is to determine algorithmically whether the Condition in Claim 4.2.12 is satisfied.
We neglect this question here, because the motivation for this detour is to rule out
cases where only ‘impractical’ policies contradict transfer.

In practice, the database is usually orders of magnitude larger than the query to
be evaluated. Accordingly, the number of data values is usually greater than the
number of variables of a query—the latter being a simple bound for the number of
data values a valuation can refer to. This motivates the following definition.

Definition 4.2.13 (Mild transfer). Let Q; and Q3 be queries from UCQ” and let s be

the maximum number of variables in a disjunct of J1. Parallel correctness transfers
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4.2. Unions of conjunctive queries

mildly from Q1 to Qo if the following implication holds for every policy P with at

least s data values: if ()1 is parallel-correct under PP, then Q9 is parallel-correct

under P.

Mild transfer of parallel soundness and parallel completeness is defined analogously.
|

Mild transfer of parallel completeness can be characterised in a similar way as
the standard transfer. The only difference between Condition (PComp-T) and the
condition below is that the valuations do not have to satisfy the domain restriction
additionally required by covers (Definition 4.2.2).

Condition (mPComp-T)

Assumptions: Let Q; and Q2 be queries from UCQ7.
For every minimal valuation V5 for Qs,
there is a minimal valuation V7 for ()1 that is a fact-cover of V5.

This condition is sufficient and necessary for mild transfer of parallel completeness.

Proposition 4.2.14 (Characterisation of mild transfer). For queries Q;, Q2 € UCQ7,
parallel completeness transfers mildly from @1 to @9 if and only if they satisfy
Condition (mPComp-T).

The proof is a simple adaptation of the proof for unrestricted transfer and thus
deferred to the appendix (Proposition A.5). We are now ready to state the hardness
results for conjunctive queries with disequalities precisely.

Proposition 4.2.15. The following two problems are IT5-complete.

1. MPCoMP-T(CQ#[sm],CQ)
2. PComP-T(CQ[sm],CQ7)

Proof. The upper bounds follow by a simple adaptation of Algorithm A®" (page 77),
ignoring the third level of (existentially) quantified extra input and the test related
to valuation Wj. For mild transfer, another change is required: valuation Vj is
tested only of being not a fact-cover. The resulting algorithms are correct by
Conditions (PComp-T) and (mPComp-T), respectively.

For the lower bounds, we provide polynomial reductions from II,-QBF to each of the
variants of the parallel-completeness transfer problem. In both cases, a pair (Q1, Q2)
of queries is derived from an input formula ¢ for II,-QBF. This formula is assumed to
be of the form ¢ = VeIyy(x,y), where ¢ is a propositional formula in 3-CNF with
clauses C1,...,Cy over propositions € = (z1,...,y,) and y = (y1,...,ys), where
Cj = (41 VL2V L3) for each j € {1,...,p}.
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Following the pattern of previous reductions, the queries refer to ‘truth variables’
wp, wy and ‘literal variables’ ® = (z1,...,z,) and y = (y1,. .., ys) for positive literals
as well as & = (z1,...,%,) and y = (¥1,...,Ys) for their negated counterparts.

We start with the reduction to MPCompP-T(CQ#[sm],CQ), where disequalities are only
allowed in the left-hand query, and later provide a reduction to PComP-T(CQ[sm],CQ7),
where disequalities are only allowed in the right-hand query.

» Hardness of MPComP-T(CQ#[sm],CQ). Apart from the already mentioned variables,
query @ refers to an additional variable a. Query )2, which does not use disequalities,
is defined by

head(Q2) = H (wo, wy, ©,Z),
pos(Q2) = Ap UAy UAY' U Awr U A,

and query ()1 is defined by

head(Ql) d:ef H(w07w17w7:_vay7@7a)7
pos(Q1) == Ag U Ay U Ayt U Ag U AR,
diseq(Q1) = {OK 7& wo, & 7é w1}7

using only two disequalities. Query ()1 is strongly minimal because it is full.

The first three sets of atoms are similar to those used in the proof of Proposi-
tion 4.2.7, with relations XValy, and YVal; being binary now however. More concretely,
these sets of atoms are defined by

Agxe = {False(up), True(wn)} U {XValy (e, 21) | h € {1,....r}},
Ay = {YVali(yi %), YVali(yi, yi) | i € {1,...,s}} and
Ayt {¥Val;(wo, wy), YVali(wr,wo) | i € {1,...,s}}.

The remaining atoms refer to relation symbols Cy, ..., C, of arity 5+ 27 and represent
clauses under a given assignment for truth and literal variables. Set

-Asat d:ef {Cj(wo,wl,ac,i',w) | w € W+,j S {1, e ,p}},

encodes satisfied clauses—where W consists of all triples of truth variables, except
for (wo, wg, wo)—, while set

Ay = {Cj(wo, w1, @, 2, 61,652, 53) | § € {1,...,p}}

represents the clauses of 1. The last set ALY of atoms however does not resemble
any set of atoms used before. It is specifically geared to deal with valuations for Qo
that do mot represent a truth assignment or do not do so unambiguously. This can
happen for one out of three reasons. First, truth and false cannot be distinguished if
Va(wp) = Va(wy). Second, literals do not represent truth values if Va(x;) or Va(z;)
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equals neither Vo(wp) nor Va(wi). Third, complementary literals do not represent
complementary values if Va(xp) = Va(zy,) for some h € {1,...,7}.

To facilitate notation, for a sequence v of variables and variables u, v, let v[v — u]
denote the sequence where every occurrence of v is replaced by u. Then, set

iny def

sat — {Cj(w(),wo,x,:i,gjjl,fj’g,gjg) ‘j S {1,. . .,p}}

@) {Cj(wo,wl,m[azh — Oé],i!,fj@,ijg,gj’g) | h € {1, R ,T},j € {1, ... ,p}}
@] {Cj(wo,wl,az,i[fh — a],€j71,€j72,€j73) ’ h e {1, o ,T},j € {1, .. ,p}}
@] {Cj(wo,wl,ili,:f)[fh — xh],€j71,€j72,€j73) | h e {1, - ,’r’},j € {1, . ,p}}

handles all three cases mentioned above.

The mapping from ¢ to (Q1,Q2) is clearly total and computable in polynomial time.
Next, we show that it also satisfies the reduction property: ¢ € II,-QBF holds if and
only if (Q1,Q2) € MPCOMP-T(CQ#[sm],CQ).

» If. For a proof by contraposition, assume that ¢ ¢ II,-QBF. We show that
parallel completeness then does not transfer mildly from @1 to QJ2. By our
assumption, there exists a truth assignment [, for x such that, for every truth
assignment 3, for y, the combined assignment 3, U 3, does not satisfy 1. Fix
such an assignment (3. Then, fix a truth assignment 3, such that 8, U 3,
minimises the number of unsatisfied clauses in .

These assignments induce a valuation V for Qo that is minimal but lacking a
fact-covering valuation for Q1. Let Vo map (wg, w1 ) to (0,1) and 7 to (85 U By)(m)
and 7 to the corresponding complementary value for every proposition .

First, valuation V5 is minimal. Assume, towards a contradiction, that there
exists a valuation U, for @2 such that Uz <g, V2. Agreement on the head
variables immediately implies that both valuations require the same facts for
AﬁXUAg’luAsat. Furthermore, Uy <¢, V2 implies Ug(AyU.Ag’l) - Vz(AyUAg’l),
which is contained in Va(Ay') by definition of V5. Valuation Us hence also
describes truth assignment (5, on x and some assignment ﬁ;; on y, but such
that Us requires fewer facts than Vs for Agas U Ay. This can only happen if
Bz U ﬁ; is unsatisfying for fewer clauses of ¥ than 3, U 3,, which contradicts
the choice of assignment [3,.

Second, there is no valuation V; for )1 that covers V. Every such valuation
agrees with V5 on variables wg,w; and @, T because of the atoms in Agy. It
also satisfies Vo(Ay) C Vi(Asar U Inv) because there are no other Cj-facts
in Q1. Indeed, this implies even V5(Ay) C Vi(Asat) because valuation Vi is
boolean and thus no atom from ALY can cover an atom from A,. This, however,
contradicts the definition of V5, which is induced by the unsatisfying truth
assignment (3, U 3y for 1.

Therefore, queries @1 and Q2 do not satisfy Condition (PComp-T) and hence
parallel completeness does not transfer mildly from @ to Q.
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» Only if. Assume that ¢ € II,-QBF. We show that parallel completeness
transfers mildly from @1 to Q2 via Condition (mPComp-T). For that purpose,
let V5 be an arbitrary minimal valuation for ()2. We distinguish three cases,
depending on the mapping of the head variables, and show that in each of them,
a fact-cover exists.
>1. Case (Va(wg) = Va(wy) or Va(xy) = Va(zy) for some h € {1,...,r}).
Let V1 be a valuation for () that agrees with V5 on variables wg, w1, @, @, Y,y
and that maps variable a to some fresh value. Because of the partial variable
agreement, the mappings trivially require the same facts for Agy, Ay, Ag’l
and Asat. Therefore, to prove that V7 is a fact-cover of Vb, it suffices to
show that Va(Ay) C Vi(Asat UALY). Indeed, even Va(Ay) C Vi(ALY) holds
because every Cj-fact in V2(.Ay) has, by the case assumption, value Vi(wyp)
in its first two positions or value Vi(zj) in the positions of z;, and zj. In
both cases, the fact is required by V; for ALY too: in the former case be-

cause of atom C;(wo, wo, T, x,{;j1,/;2,%;3), in the latter case because of atom
Cj(wo, w1, @, T[Tp, = xn], 1,452, 4j,3)-

For the remaining two cases, we implicitly assume Va(wg) # Va(wy) and Va(xp) #
Va(zp,) for every h € {1,...,7}. More particularly, we assume that valuation V5
maps variables wp,w; to values 0,1, respectively (for other data values, the
argument is analogous).

>2. Case (Va(zp, xp) ¢ {(0,1),(1,0)} for some h € {1,...,r}). Fix an index h
that witnesses the case assumption. Then xzj; or Z; is mapped to a value
different from 0 and 1 because Va(zp, zp) € {(0,0),(1,1)} is already handled
in the first case. Let us assume the former—for the latter, we can argue
analogously. We define valuation V; to agree with V5 on all variables but «,
and to map « to Va(xy). Note that this yields a consistent valuation since
Vi(a) # 0 = Vi (wp) and Vi (a) # 1 = Vi (wy).

Furthermore, valuation V; is a fact-cover for V5. Once more, the partial
variable agreement readily implies that both valuations require the same facts
for atoms in Agy, Ay, A?;l and Agyg. Hence, it suffices to argue Va(Ay) C
Vi (ARY), This containment relationship clearly holds because every fact
required for atom C;(wo, w1, x,®,;1,¢;2,¢;3) in Ay is also required for an

atom in A1Y namely for Cj(wo, w1, m[:ch — a], z, 01,42, @73).

sat
> 3. Case (otherwise). In this case, valuation V5 induces a truth assignment [
for &, and it does so unambiguously. Since ¢ € II,-QBF, there is an as-
signment 3, for y such that 3, U 3, satisfies subformula . Let V; be the
valuation induced by B, U 8, such that it maps o to 2. We claim that V;
is minimal and that it is a fact-cover for V5. First, valuation V7 is minimal
because it requires only facts Vi(pos(Q)) C Vi(Agx U AV U Agar U ALY)

sat

where Vi (Agx U ./42’1 U Agat) are required by every valuation Wi for @ that
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agrees with V] on the head variables and Wj obviously cannot require fewer
facts than V3 for ALY because of variable . Second, valuation V; is a fact-
cover for Vo because Va(pos(Q2)) C Va(Agx U Ay U Agat) holds, as argued
next, and the right set is equivalent to V;(Agyx U .,48’1 U Agat) by agreement
of Vi1 and V5 on the head variables of (). The containment relationship
Va(pos(Q2)) C Va(Agsx U .,42’1 U Agat) follows since otherwise Vi, interpreted
as a valuation for @), contradicts the assumed minimality of V5.

This completes the case distinction. In every case, Condition (mPComp-T) is

satisfied and, thus, parallel completeness transfers mildly from (1 to Q.

Therefore, the specified mapping is indeed a polynomial reduction.

» Hardness of PComMP-T(cQsm),cQ#). The mapping defined next maps an input ¢
for TI,-QBF to a pair (Q1,Q2) of queries and works similar to the reduction above.
Instead of a single additional variable «, however, both queries refer now to two
sequences & = (ag,...,q,) and & = (@, ...,q,) of new variables whose lengths
equals the number r of z;-propositions. The intention of these variables is to capture
mappings of * and & that cannot be interpreted meaningfully as a truth assignment.
Accordingly, additional unary relation symbols XInvy; and XInvy are used for every
he{l,...,r}

Query Q- is defined as

head(Q2) = H(wo, w1, z, Z)
pos(Qa) % Age UAM U A U A, UAY' U Agi U Ay
. def — _
diseq(Q2) = {an # wo, ap # wo, ap # wi,ap Zwy |h € {1,...,r}}

and query (1, which does not use disequalities, is defined as

head(Q1) def H(wo, w1, x, T, a, &),
pos(Q1) % A AR U AR U Ay UAY! U Ay U ALY

with the following sets of atoms. Sets

AR = XInvy, (2), KInvy (25) | b € {1,...,7}},
A = X Invy (o), XInvp(an) | h € {1,...,7}}, and
ARY % {XInvy (wo), XInv (wo), XInvy (wr), XInvy (wi) | b € {1,...,r}}

are used with the following intentions. The first two sets in combination with the
disequalities, and set ALY of atoms defined below, enforce that a minimal valuation V3
for Q2 maps variable «y, to the same value as x, if the latter does not encode a truth
value, Va(zp) ¢ {Va(wo), Va(w1)}. In this case, only a mapping that maps xp and oy,
identically does not require any additional fact, compared with the facts required

for gg and Agat, while a different mapping does require at least one additional fact.
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For instance, for a mapping Vo with Va(wg, w1, x1, 1) = (0,1, 2, 3), four XVal;-facts
are required. The argument for ap and Tp is analogous.

All other sets of atoms are defined as in the previous reduction, with the exception
of AINY, which is altered such that each literal variable xj, and Zj, is replaced by a
distinct variable aj, and &y, respectively.

i def
inv 2¢!
sat T {C

i (wo, wo, ®, 2, 01,452,053) | j €1{1,...,p}}

U {Cj(wo,wl,x[xh — Oéh},ii,gj’l,ej’g,gj’y)) ‘ j € {1, R ,p},h € {1, .. .,7'}}

U {Cj(wo,wl,m,i[fh — @h],fj,1,€j72,€j73) | j e {1, - ,p},h S {1, .. .,T}}
(

U {Cj wo,wl,w,i[ih — $h],€j’1,€j’2,€j73) |j S {1,. . .,p},h S {1,. . .,7"}}

Query Q1 is strongly minimal because it is full. Furthermore, both queries have
identical sets of variables and thus every valuation for one of them is also a valuation
for the other.

Again it is clear that this mapping is total and computable in polynomial time. In
the remainder of this proof, we hence show that it satisfies the reduction property:
¢ € II,-QBF holds if and only if (Q1,Q2) € PCoMP-T(CQ[sm],CQ7).

» If. Assume ¢ ¢ II,-QBF towards a proof by contraposition. Then, there
is a truth assignment [, for x such that no assignment 3, for y satisfies
subformula 1) in combination with 3,. Let 8, be a truth assignment such
that 8, U 3y minimises the number of unsatisfied clauses of .

Let V3 be the valuation for ()2 induced by this combined assignment 3, U 3,
and the equalities Va(ay) = Va(ap) = 2 for every h € {1,...,r}. Valuation V5
is minimal but has no cover V; for @)1, as argued next. Therefore, Condi-
tion (PComp-T) is violated and parallel completeness does not transfer from ¢y
to QQ.

First, valuation V5 is minimal. Assume, towards a contradiction, that there
is a valuation Us for ()2 such that Uy <g, V2. Then, agreement of the head
variables ensures that both valuations require the same facts for the atoms in
Agx U A U Ag’l U Agas. They also require the same facts for A because Vs
maps all variables in & and & to the same value 2 and V; also has to map
them to a value different from 0 and 1. Furthermore Us(A,) C Va(A, U Ay')
ensures that Us encodes a truth assignment 5:/1:,3, on x and y that agrees with 3,
on x. Hence, we can infer Us(Agas U Ay) C Va(Asar U Ay) and that that ,B’m’y
is unsatisfying for a strict subset of the clauses unsatisfied by 3, U 8y, which
contradicts the choice of 8, and S,.

Second, valuation V5 has no fact-covering valuation Vi for ;. Assume,
towards a contradiction, that such a valuation V; exists. Then, Va(pos(Q2)) C
Vi(pos(Q1)) implies Vo(Agx) € Vi(Agfx) such that V; encodes the same truth
assignment on x. Furthermore, Va(ARY U ALY) C Vi(AJY U ARY) holds because
there are no other sets of atoms with XInvy,- and XInvy-facts. This, in turn,
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guarantees that V] also maps all variables in a and & to 2. Then, V;(ALY)

is disjoint from V5(Ay) and the latter has to be covered by Vi(Asat), which

proves 3, U By to be satisfying for 1 and thus contradicts the choice of 3.
Hence, there is no minimal fact-covering valuation V; for @)1 for valuation V53,

which is minimal for @2, and Condition (PComp-T) is violated.

» Only if. For a direct proof, assume now ¢ € II5-QBF. We show that each
minimal valuation for Q)2 has a cover. Indeed, we show that every Va for Qo
covers itself, seen as a valuation Vi = V5 for )1. These valuations clearly obey
the domain condition since both queries refer to the same variables. Furthermore,
valuation Vj is minimal since query @) is strongly minimal. In the remainder
of this proof, we hence argue that V; is a fact-cover for V5. For this, we can
immediately neglect the facts required by valuation V3 for the sets Ag,, ALY,
Ay, ./42’1 and A, of atoms common to both queries. Accordingly, it suffices to
prove Va(A™ U Ay,) C Vi(pos(Q1)).

Let V5 be an arbitrary minimal valuation for (). For ease of description,
let V1 denote the same mapping, associated with ()1. We distinguish three cases.

> 1. Case (Va(wo) = Va(wy) or Va(xp) = Va(xy) for some h € {1,...,r}). First,
we can conclude that Va(ARY) C Vi(ARY UALY) because, as mentioned above,
every minimal valuation for Q2 maps variable «y, identical to variable zy, if
Va(zp,) is different from Va(wo) and Va(wi). Thus, every fact Vo(XInvy(xp))
required for AV equals one of the facts Vi(XInvy(wp)), Vi (XInvy(wi)) or
Vi(XInvy (o)) required for AR U ALY, The argument for fact Va(XTnvy(Z4))
is analogous. Second, Va(Ay) C Vi(ALY) holds by an argument analogous
to that in the first case for the previous reduction, using variable oy instead
of a.

Once more, we implicitly assume Va(wp) = 0 # 1 = Va(w1) and Va(zy) # Va(zh)
for every h € {1,...,r} in the remaining cases.

>2. Case (Va(zp,xp) ¢ {(0,1),(1,0)}). By the case assumption, valuation V3
maps xp or Zj to a value different from 0 and 1. Without loss of generality,
we assume Va(zy) ¢ {0,1}. Minimality of V5 then implies Va(xp) = Va(ay,).
Containment Va(AZY) C Vi (AR} UARY) can be argued as above. Furthermore,
Va(Ayg) C Vi(ALY) holds because of atoms of the form Cj(wo, wy, z[zp —
Oéh}, i, fj’l, fj’z, €j73) in Alsg}g

> 3. Case (otherwise). Valuation V5 now induces unambiguously a truth as-
signment 3, on x. For this, an assignment (3, on y exists such that 8, U 3,
satisfies subformula 1 because ¢ € T1,-QBF. The case assumption directly
implies that Va(zp, Tp) equals either (0,1) or (1,0) and this, in turn, ensures
Vo(ARY) C Vi(ARY). Furthermore, since V5 is minimal for Qy, it satisfies
Vo(Ay) € Vi(Asat), as shown by the following contradiction. If containment
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does not hold, then a valuation W5 that agrees with V5 on all variables but
Yis---5Ys, Y1, - - -, Ys and represents [, as above, requires strictly fewer C;-
facts, namely only those from Wy (Asat). Therefore, valuation V; satisfies also
Va(Ay) = Vi(Asat) € Vi(pos(Q1)) and is a fact-cover for V5 indeed.
This completes the case distinction and shows that Condition (PComp-T) is
satisfied. Therefore, parallel completeness transfers from @1 to Q2.

As claimed, the given mapping is a polynomial reduction. n

This concludes our investigation of parallel-completeness (and parallel-correctness)
transfer for monotonic queries from UCQ?. In the next section, we address non-
monotonic queries and, as a consequence, also parallel-soundness transfer.

4.3. Unions of conjunctive queries with negation

So far, basically all published results on the transfer of parallel-correctness deal
with monotonic query classes—and thus neglect the transfer of parallel-soundness in
particular. The work on parallel-correctness transfer under bag semantics [KNV18]
can be partly seen as an exception, as discussed in Section 4.4.

In this section, we use the characterisation of parallel-soundness for polarised queries
via Condition (PSound-pol), presented in Section 3.3.3, to establish a characterisation
of parallel-soundness transfer between such queries.!

Parallel-completeness transfer for monotonic queries from UCQ” has been charac-
terised by Condition (PComp-T). This condition demands that, for every minimal
valuation V5 for (s, there is a minimal valuation V; for Q1 that covers V.

Parallel-soundness transfer for the larger class of polarised queries from ucQ ™7,
can be characterised based on the similar notion of guarding valuations. This notion
differs from that of covering valuations (Definition 4.2.2) in two aspects. First, this
notion refers not only to positive but also to negated atoms. Second, a valuation can
require multiple guards.

Definition 4.3.1 (Guarding valuations). Let Q and Q' be queries from UCQ™7. A
valuation V for @ is guarded by valuations VY, ..., V! for )’ if the following conditions
are satisfied.

1. Requirement condition: V{,..., V) require only facts required by V,
that is, V{(pos(Q")), ..., V/(pos(Q")) C V(pos(Q)).

2. Prohibition condition: V{,..., V) together prohibit all facts prohibited by V/,
that is, V(neg(Q)) C V{(neg(Q")) U ... UV/(neg(Q")). <

'For parallel-completeness transfer between polarised queries and for all variants of transfer between
queries with negation in general, it remains open to determine the complexity.
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We remark that—different from covers—there is no condition on the domain for
guards.

Example 4.3.2 (Guarding valuations). Consider the following two polarised queries.

Q1 = H(z,y) < R(z), R(y), R(u), S (u)
Q2 = H(x7 y) — R(x)? R(y)v ﬁS(x)v _'S(y)

Then, valuation V5 o {z — 1,y — 2} for Q2 is guarded by two valuations for Q,
namely Vi 1 = {r—1,y—2,u— 1} and Vi o {zx— 1,y — 2,u — 2} because the
requirement condition is satisfied,

Vi,1(pos(@1)) = Vi2(pos(Q1)) = {R(1), R(2)} € {R(1), R(2)} = Va(pos(Q2)),

as is the prohibition condition,

Va(neg(@2)) = {S(1),5(2)} € {S(1)} U{S(2)} = Vi1(neg(Q1)) U V12(neg(Q1)).

However, valuation V5 is not guarded by a single valuation for ()1 because it prohibits
two facts, while every valuation for Q1 prohibits a single fact only. Note also that all
three valuations are minimal for the respective queries.

The next proposition shows that parallel soundness transfers from Q7 to Q2. W

Exchanging the notion of a ‘cover’ for that of a ‘guard’ in Condition (PComp-T)
yields the following condition.

Condition (PSound-T-pol)

Assumptions: Let Q1 and Q2 be polarised queries from UCQ 7.
For every minimal valuation V5 for @2,
there are minimal valuations Vi 1,... V1, for Q1 that guard V5.

This condition is necessary and sufficient for transfer of parallel-soundness between
polarised queries, as stated next.

Proposition 4.3.3 (Characterisation of parallel soundness-transfer). Let @1 and Q2
be arbitrary polarised queries from UCQ™#*. Parallel soundness transfers from
query @1 to query Q9 if and only if Condition (PSound-T-pol) is satisfied for Q;
and Q9.

Proof. As usual, we prove both implications of the equivalence separately.

» If. Let Q1 and Q2 be polarised queries that satisfy Condition (PSound-T-pol). We
show that parallel soundness transfers from Q1 to Q.
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To this end, let P be an arbitrary policy such that query ); is parallel-sound
under P. Furthermore, let V5 be a minimal valuation for Q2 and let k € net(IP) be
an arbitrary node that is responsible for all facts required by V5. If there is no such
node, then this valuation is conform with Condition (PSound-pol). Otherwise, it
suffices to show that this node is also responsible for the facts prohibited by V5.

By Condition (PSound-T-pol), there are minimal valuations Vi 1,..., Vi, that
guard valuation V5. This implies that Vi ;(pos(Q1)) C Va(pos(Q2)) € P(k) for each
i€ {l,...,r}. Since @ is parallel-sound under P, Condition (PSound-pol) ensures
that node k£ is responsible for all facts prohibited by valuations Vi 1,..., V1. Thus,
guardedness also implies Va(neg(Q2)) € Vi 1(neg(Q1)),...,Vir(neg(Q1)) C P(k).
Therefore, query (2 and policy P satisfy Condition (PSound-pol). In particular,
query (s is parallel-sound under P and parallel soundness transfers from )1 to Qo.

» Only if. For a proof by contraposition, assume that arbitrary queries ()1 and @2 do
not satisfy Condition (PSound-T-pol). We show that then parallel soundness does
not transfer from Q1 to Q.

Let V5 be a minimal valuation for query )2 that has no guards for query Q.
Then, if Vi 1,...,Vi, are all minimal valuations for @); that only require facts
required by V, for @2, there is a fact f € Vi(neg(Q)2)) that is not contained in
Vi,1(neg(Q1))U...UV] . (neg(Q1)) because valuation V3 has no minimal guards. Note
that » = 0 is possible and r € Ny can be assumed by our restriction to safe negation
in queries (at some point, additional valuations do not prohibit additional facts).
Based on this fact f, we define a single-node policy

P& {k} x (VQ(pos(Qg)) U (facts(S—,U) — {f}))v

where U is the set of data values referred to by Va. Policy P is designed such that
query ()1 is parallel-sound under P but query ()2 is not.

First, by assumption, valuations V; 1,..., V1, are the only minimal valuations
for 1 such that node k is responsible for the facts they require. Furthermore, by
definition of policy PP, the single node k is responsible for the facts prohibited by the
minimal valuations among them, because none of them prohibits fact f. Hence, by
Condition (PSound-pol), query )y is parallel-sound under P.

Second, query @3 is not parallel-sound under P. This is witnessed by the global
instance G = GT UG, comprising G* et Vo(pos(Q2)) and

G~ = (facts(S™,U) — Va(neg(Q2))) U {/},

which contains all facts over the negative schema that are not prohibited by V5,
with the exception of fact f. Obviously, valuation V5 satisfies query Q2 on the local
instance of node k because this node is not responsible for the only prohibited fact f
that is also contained in G. However, there is no valuation W5 that derives the same
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fact as V5 on the global instance because this implies Wa(pos(Q2)) C Va(pos(Q2))
and Wa(neg(Q2)) C Va(neg(Q2)) — {f} € Va(neg(Q2)) by polarisation and thus
contradicts minimality of V5.

Therefore, there is a policy P such that query ()1 is parallel-sound under P but
query @2 is not. In particular, parallel soundness does not transfer from Q1 to Qs.

Hence, parallel soundness transfers from @) to @9 if and only if the queries satisfy
Condition (PSound-T-pol). O

Note that Condition (PSound-T-pol) does not require both queries to adhere to
the same bipartition of the underlying schema. If parallel-soundness transfers
from Q1 to Q2, then this implies ST(Q1) € ST(Q2) and S~ (Q2) € S™(Q1). This
is also satisfied for queries Q1 = H(z) + R(z),~S(z), ~T(z) and Qo = H(z) +
R(x),S(x), =T (x), where relation S belongs to S™(Q1) and to ST(Q2), respectively,
and parallel soundness transfers from @) to Q2.

We conclude by determining the complexity of the associated decision problem.

Theorem 4.3.4. Decision problem PSounn-T(Q) is I15-complete for every query class
Q € {CQ[pol], CQ "7 [pol], UCQ[pol], UCQ "7 [pol] }.

Proof. The upper bound follows by a simple adaptation of Algorithm A" where

the test for the cover property is replaced by the test for guardedness. The correctness
of this algorithm can be argued by a modified version of Lemma 4.2.5.

The lower bound follows from Proposition A.6 in the appendix, which is similar to
the IT5-hardness result for the transfer of parallel completeness (Proposition 4.2.7). O

4.4. Related work and bibliographical remarks

Just like for parallel correctness, it is possible to consider the transfer of parallel
correctness in different settings by variation of the query language, the database
model, the evaluation semantics and other parameters (cf. Section 3.4). So far,
the focus of the literature seems to be on parallel correctness not on its transfer.
However, to the best of the author’s knowledge, two variants of transfer have been
studied—with results as summarised next.

Hypercube policies [AGK"17a]. In Section 4.1, we argued that transfer of parallel-
completeness can be viewed as a generalisation of parallel completeness. More
precisely, parallel completeness transfers from a query @1 to a query ()2 if and only
if query ()2 is parallel-complete under the family Peomp(Q1) of all policies under
which @1 is parallel-complete. Hence, if query Q2 is parallel-complete under a
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subfamily P C Peomp(Q1), this can be considered as a restricted form of parallel-
completeness transfer.

The hypercube algorithm, introduced by Afrati and Ullman [AU10], is a worst-case
optimal algorithm for the distributed one-round evaluation of multi-way joins on
skew-free relational databases in the MPC model [BKS17, BKS14]. Moreover, this
algorithm serves as an important tool in more recent algorithms where the restrictions
to one round and to skew-free databases are dropped while keeping worst-case load-
optimality for cycle and chain queries or full binary queries, respectively [KBS16,
KS17].

For a brief introduction of the hypercube principle, we refer to Section 5.1.3.
Here, it suffices to say that this algorithm determines, for a given query @ € CQ, a
distribution policy Hg that describes a partition of all valuations for the query over
some domain. The exact policy depends on the size of the network and a choice of
(hash) mappings. Variation of these parameters therefore induces a family H(Q) of
policies. Each of these policies guarantees strong parallel completeness of @), that is,
H(Q) € Peomp(Q) holds.

Due to their highly regular distribution pattern, transfer of parallel completeness
restricted to hypercube policies is easier than for conjunctive queries in general: the
problem is NP-complete [AGK T 17a].

Bag semantics [KNV18]. The initial results from Ketsman, Neven and Vandevoort
on parallel correctness under bag semantics, as described in Section 3.4, are accom-
panied by the following results on the transfer of parallel correctness [KNV18]. It may
be helpful to remember our remark in in Section 3.4 that parallel correctness under
bag semantics does not only ask for an overapproximation as parallel correctness
under set semantics but for an ezact evaluation.

We already discussed that parallel correctness under bag semantics implies parallel
correctness under set semantics but not the other way around. Thus, it may seem
surprising on the first glance, that for transfer of parallel correctness, there is no
implication in any direction—both notions are incomparable. The authors exemplify
this by some queries from CQ” [KNV18, Figure 1].

Transfer under set semantics is incomparable to transfer under bag semantics.
Indeed, this can be argued already with simpler queries, even without disequalities.

On the one hand, transfer under set semantics does not imply transfer under bag
semantics. Query @ = H() < R(u) is parallel-complete (and thus parallel-correct)
under set semantics for policy P = {(k, R(a)), (¢, R(a))}, while—the same query—Q
is not parallel-correct under bag semantics for P because the policy replicates the fact
required by valuation V = {u — a}.

On the other hand, transfer under bag semantics does not imply transfer under
set semantics. Under bag semantics, for a query like @Q; = H() + R(u), R(v),
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which is non-parallelisable, parallel-correctness transfers to query Q2 = H(z,y, z) <
R(z), R(y), R(z) because all R-facts have to be located on the same node. Under set
semantics, however, parallel-correctness does not transfer from @1 to @2, as witnessed
by policy P = {(k, R(a)), (¢, R(b))}, under which @, is parallel-complete but Qs is

not.

An exception is formed by the case where both queries Q1 and )2 are strongly
minimal and only non-replicating policies are considered—then, transfer under bag
semantics and transfer under set semantics coincide.

As the non-parallelisability of queries like ()1 under bag semantics indicates, the
responsibility of some node k for the facts required by a valuation V' for query @) can
imply the responsibility of this node for additional facts, dependent on the query.
Let Fg v denote these ‘implied’ facts. Ketsman et al. characterise transfer of parallel
correctness from @1 to Q2 under bag semantics by the following condition [KNV18,
Lemma 4.5].

Condition (PC-T-bag)

Assumptions: Let Q1 and Q2 be queries from CQ7.
For every valuation V5 for (Q2, there is a valuation V; for (0
such that V5 requires all facts required by Vi but only such from Fq, v;.

The first part (Va2 requires all facts required by V;) ensures that the facts required
for V5 are not replicated and the second part (V2 requires only facts from Fq )
corresponds with the fact-cover property in Condition (PComp-T). Using this
characterisation, an EXPTIME-upper bound has been provided (without matching
lower bound), whose complexity is mainly determined by the computation of the
implied facts.?

Motivated by the non-parallelisability of some queries under the naive evaluation
strategy, a more sophisticated strategy for the distributed evaluation is studied
additionally. Here, the network is ordered and at most one node (the ‘smallest’)
derives a fact for each valuation. In this setting, parallel correctness is characterised
by Condition (PComp-naive) and transfer is characterised by a similar variation of
Condition (PComp-T), which extends the scope from minimal to arbitrary valuations.

Bibliographical remarks. Transfer of parallel correctness (Definition* 4.1.1) has
been introduced by Ameloot et al. [AGK ™15, AGK"17a] for conjunctive queries. The
presentation here, which incorporates unions and disequalities, is a straightforward
generalisation.

2In Section 5.1.3, we show that this upper bound can also be derived via a reduction to the
implication problem for distribution dependencies.
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While the characterisation of parallel-completeness transfer (Theorem* 4.2.3)
has appeared earlier [AGK™"15], the key notion of a cover (Definition* 4.2.2), in-
cluding the—subtle, but important—domain condition, has been provided a little
later [AGKT17a].

The IT5-complexity bounds (Theorem 4.2.4) for CQs and UCQs in general are a
result of the author. They have been published together with initial results (Pro-
positions* 4.2.8 and 4.2.10) by his co-authors on the transfer from strongly minimal
queries [AGKT15]. Later, the complexity analysis has been extended to strongly
minimal queries with disequalities. The II5-completeness result (Proposition 4.2.15)
is due to the author and has been published before. The original statement in
the publication [AGK T 17a, Proposition 5.21], which refers to (standard) transfer
instead of mild transfer (Definition 4.2.13) is technically not correct for the case
(CQ7[sm], CQ), as explained in Section 4.2.2 (the proof is basically the same however).

Section 4.3 exclusively contains previously unpublished results by the author.
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With parallel correctness and parallel-correctness transfer, we have studied static
analysis problems that refer to the evaluation of queries over distributed relational
data in Chapters 3 and 4. In the current chapter, we follow a more general approach
to reason about the placement of distributed relational facts via constraints. To
this end, we adapt the well-known formalisms of tuple- and equality-generating
dependencies to account explicitly for distributed databases.

Our study focuses on the complexity of a core problem in the context of constraints:
the implication problem. This problem asks, for a given set ¥ of constraints and a
single constraint 7,

does every data set that satisfies ¥ also satisfy 77

Although interesting in its own right, the implication problem gains importance also
as a natural subproblem for other problems. This is particularly true for the ‘chase’
procedure that is commonly used to obtain upper bounds for the implication problem,
which is also useful for tasks like query rewriting under views, the computation of
solutions in data exchange or of certain answers in data integration settings.

Structure of this chapter. We start with a recapitulation of classical dependencies
and their adaptation to distribution dependencies in Section 5.1, where we also discuss
applications like the description of common partitioning schemes or the modelling
of properties like parallel completeness. In Section 5.2, we study the implication
problem for several variants of data-full distribution dependencies. Lastly, we provide
an overview of related results in Section 5.3.

Two syntactic restrictions are the key to the complexity results in Chapter 5.2.
Both restrictions are based on a separation of two types of variables, node variables
and data variables—and the positions where they may occur. The first restriction,
data-fullness, allows existential quantification only on node variables, which yields
a fragment where the implication problem is decidable in exponential time. The
second restriction bases on bounds for the arity of relations and the context sizes
of node variables. Intuitively, the context size bounds the amount of data that can
be referred to on a specific node. The number and position of occurrences of node
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variables with unbounded context in distribution dependencies affects the complexity
of the implication problem. The most restricted fragment is shown to be NP-complete
in Section 5.2.2. Consecutive relaxations then lead to a PSPACE-complete fragment,
discussed in Section 5.2.3, and several fragments that are EXPTIME-complete, in
Section 5.2.4.

5.1. Definition

First, we recapitulate the necessary preliminaries for (classical) tuple- and equality-
generating dependencies in Section 5.1.1. Then, in Section 5.1.2, we define variants
of these dependencies that are specifically geared to the modeling of distributed
relational data and, in Section 5.1.3, show how they can be used to capture common
distribution patterns.

5.1.1. Tuple- and equality-generating dependencies

Tuple-generating and equality-generating dependencies are well-known formalisms
for constraints on relational data. A tuple-generating dependency (tgd) o = A — A’
comprises two finite sets of atoms, its body and its head, denoted body(c) = A
and head(o) &' A, respectively. An instance Z satisfies a tgd A — A’ if, for every
valuation V for A where V(A) C Z, there is an extension V' to the variables in A’
such that V/(A") C Z. An equality-generating dependency (egd) o0 = A — (£ = 1)
comprises a finite set of atoms and an equality term over variables in these atoms,
its body and its head, denoted body(o) < A and head(o) S (& = n), respectively.
An instance Z satisfies an egd A — (£ = n) if, for every valuation V for A where
V(A) C Z, equality V(£) = V() holds.

An instance 7 satisfies a set ¥ of dependencies if it satisfies every dependency in X.

The rule-based descriptions of tgds and egds represent first-order logical formulas of
the form Va, y(p(x,y) — 3z (x, 2)), where ¢ is a conjunction of (positive) relation
atoms and 1) is either, for tgds, also a conjunction of (positive) relation atoms or, for
egds, an equality atom. The existentially quantified variables (often called ezistential
variables for short) in a tgd A — A’ are exactly those variables that occur in A’ but
not in A. For example, the tgd R(z,y), S(z) — T(x,21),T(22,x) can be regarded
as the formula Vz, y[(R(z,y) A S(x)) — 321, 22(T (2, 21) A T(22,x))]. Following this
correspondance, the usual notions of implication and equivalence from formulas carry
over to depenencies. For two sets ¥ and ¥’ of dependencies, X implies ¥/, denoted
Y ¥/, if every instance that satisfies ¥ also satisfies ¥'. For singleton sets ¥ = {7},
we also simply write ¥ = 7. Furthermore, the sets are equivalent, denoted ¥ = ¥/ if
they mutually imply each other.
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Remark 5.1.1. In particular, a tgd A — A" with multiple atoms in its head A’ =
{A1,..., Ay} can be transformed into an equivalent set {A — A;,..., A — A,} of
tgds—given that the head atoms refer to pairwise disjoint sets of existential variables.
For example, the tgd R(z,y),S(x) = T(x,21), T (22, ) from above is equivalent to
the set of tgds that consists of R(x,y),S(z) = T(z,21) and R(z,y), S(x) — T(z2, ).

We can now define distribution dependencies as a syntactic extension of tuple- and
equality-generating dependencies.

5.1.2. Distribution tuple- and equality-generating dependencies

Tuple- and equality-generating dependencies can be used to model constraints based
on the equality of certain data values of facts. They allow, for instance, to model
constraints like the following.

1. For each order, there exists an address record of the customer.

2. The address record is unique for each customer.

The intention behind distribution dependencies is to allow additionally to refer to
the location of facts, as in the next examples.

1. For each order, there exists an address record of the customer on some node
where the order is located too.

2". For each customer, all orders are located on the same node.

Our approach to cover constraints as these two is simple: relational atoms in tgds and
egds can be annotated by node variables (inspired by the notation in Webdamlog?).
Remember that, in Section 2.1, we have defined the set var of variables as the disjoint
union of two sets xvar and nvar of data and node variables. This distinction is crucial
in the following as it leads to ‘semi-typed’ dependencies: node variables cannot be
compared or unified with data variables. Furthermore, each atom can be annotated
by at most one node variable.

Eventually, the purpose of atoms (annotated or not) is to refer to facts under a
given valuation. Next, we introduce a representation of distributed relational data
by annotated facts and then turn to the annotation of atoms.

Let D = (G,LL) be a distributed database with global instance G and a distribution
L € N x G over some network N. A distributed fact fak consists of a fact f and a
node k. We write fak € D if fact f is located on node k, that is, if f € L(k) holds.
Similarly, for a fact f (without annotation), we write f € D if f € G. More generally,
for a set F = {fiaky,..., frak.,g1,...,9s}, we write F C D if f;ak; € D and g; € D
for every i € {1,...,r} and every j € {1,...,s}.

'See Section 5.3 for more details on the relationship to Webdamlog.
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Analogously, a distributed atom Aak consists of an atom A (over data variables)
and a term &, which is either a node variable or a data value. The notion of valuations
is extended canonically: a mapping is a valuation for a distributed atom or a set of
atoms if it it preserves data values and if it maps all (data and node) variables to
data values. Then, a valuation V for a distributed atom A@x induces the distributed
fact V(dak) £ V(A)aV (k).

Node variables are usually denoted by Greek letters like x, A and u and nodes by
Latin letters like k, £ and m. For brevity, Aax denotes the set {4 @k, ..., A,akr} of
distributed atoms for a set A = {A;,...,A4,} of atoms and, analogously, Fak the
set {fiak,..., frak} of distributed facts

Distribution tgds and egds are basically defined like their classical counterparts, but
allowed to contain also distributed atoms.

Definition 5.1.2 (Distribution tgd). A distribution tuple-generating dependency
(dtgd) 0 = A — A’ comprises two sets A and A’ of distributed or non-distributed
atoms.

A distributed database D satisfies o if, for every valuation V for A where V(A) C D,
there is an extension V/ of V' to the variables in A’ such that V/(A") C D. Then, V'
witnesses the satisfaction of o relative to V. If there is no such extension, then V'
witnesses the violation of o in D. <

The definition of degds follows the same lines. The equality atom may refer to data
or to node variables, but only in a restricted fashion.

Definition 5.1.3 (Distribution egd). A distribution equality-generating dependency
(degd) 0 = A — (£ =n) comprises a set A of distributed or non-distributed atoms
and variables &, 7 in A that are either both data variables or both node variables. In
the former case, the degd is data-identifying, in the latter case, it is node-identifying.

A distributed database D satisfies o if, for every valuation V for A where V(A) C D,
equality V' (§) = V(n) holds. Otherwise, V' witnesses the violation of o in D. |

Syntactically, distribution tgds and egds form an extension of standard tgds and egds.
However, the annotation by node variables is syntactic sugar only and distribution
tgds and egds conversely induce a (strict) fragment of standard tgds and egds. This
relationship is discussed in more detail in Section 5.3.

Before we turn to the complexity theoretical investigation of the implication
problem, we illustrate the usefulness of distribution dependencies by a few examples.

Example 5.1.4. The constraints 1’ and 2’ mentioned above can be modeled by
distribution tgds and distribution egds.

e Distribution tgd ¢ = Order(i,c¢) — Order(i,c)ak,Addr(c,a)ax models the
constraint ‘For each order, there exists an address record of the customer on
some node where the order is located too.
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e Distribution egd 7 = Order(ij, c)ak,Order(iz, c)a\ — (k = \) models the
constraint ‘For each customer, all orders are located on the same node’

Consider a complete distribution L over two nodes with the following local instances.

L(k1) = {Order(’Printer’,’John’), Addr(’John’, ajomn)}
L(kg) = {Order(’Paper’,’John’),Addr(’ John’, ajonn)}

The corresponding distributed database ID satisfies dtgd ¢ because, for both Order-
facts, there exists a node where the order and the address of the customer is located.
On the contrary, the database violates degd T because orders for customer > John’
are located on different nodes. |

We conclude this section with a closer look on possible applications of distribution
dependencies.

5.1.3. Applications of distribution tgds and egds

Distribution dependencies allow to model various common distribution patterns. They
allow to model simple range and hash partitionings [OV11] but also more advanced
patterns, like co-partitionings [DGS*90, FKT86], hierarchical partitionings [SVS™13,
SCH™18], predicate-based reference partitionings [ZBS15] and partitionings that
base on the hypercube principle [ABGA11, BKS17].

Below, we exemplify this for some cases. We neglect other cases, like range parti-
tionings, because they are more naturally modelled using constants and comparison
atoms like <, which have been studied too [GNS20] but which we do not consider in
this thesis. Before, however, we explain how parallel correctness relates to distribution

dependencies.

Parallel correctness

Each conjunctive query can be viewed as a full tuple-generating dependency—without
existential variables in the head (which would lead to ‘invented’ values in derived
facts). Therefore, it is not very surprising that distribution dependencies can model
the derivation process, globally as well as locally.

We consider two approaches to capture parallel correctness via distribution depend-
encies and illustrate them for the same example query Q = H(z,y) < R(x,u), S(u,y)
from CQ. Note that, as argued in Section 3.2, parallel correctness is equivalent to
parallel completeness for monotonic queries, which we consider here.

In the first approach, we derive a single dtgd 7¢ from query @ such that @ is

parallel-complete under a distributed database D if and only if D satisfies 7q.
Generally, such a dependency is of the form 7g = body(Q) — h(body(Q))ax for

some injective homomorphism that maps the existential variables of ) to fresh
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variables (and preserves the head variables). For our example query, this may yield
dependency
7@ = R(z,u), S(u,y) = R(z,v)ak, S(u',y)er,

via homomorphism h = [u/u/].

Indeed, database D = (G, L) satisfies 7¢ if @ is parallel-complete under D, as the
following argument shows (the converse direction is similarly simple). If there is a
valuation V' where V (body(7g)) C G, then this valuation is, in particular, a satisfying
valuation for ¢ on G because body(Q) = body(7g). Thus, parallel-completeness
ensures that there exists a valuation V' that derives the same fact on LL(k) for some
node k. Derivation of the same fact implies agreement of V' and V on the head
variables x and y of @ and local satisfaction implies V/(body(Q)) C L(k). Finally,
from V' we can derive the extension V" < V[u' — V'(u), s — k] of V such that

V" (head(7g)) = (V' o h ™! o h)(body(Q))ak C D,

which proves that I satisfies 7q.

We remark that the use of homomorphism A is necessary in general—in particular,
but not only, to account for the case where the globally satisfying valuation V' is not
minimal. For full queries, however, it is obviously needless. In these cases, we can
use 7¢ = body(Q) — body(Q)ax, which is even a data-full dtgd (see Definition 5.2.2,
below). For non-full CQs, the latter dependency asks only for strong parallel
completeness instead (Definition 3.2.6).

Unfortunately, this first approach cannot be extended to unions of conjunctive
queries. As Example 3.2.3 shows, parallel completeness of a UCQ cannot cannot be
characterised by parallel completeness of its disjuncts: satisfaction of 7g, and 7q,
under D implies parallel completeness of Q@ = @1 U Q2 under D but it is not necessary.

The second approach derives a set XpUXg and a dependency 7¢ from D and @ such
that @ is parallel-complete under I if and only if Xp U X implies 7¢.

The idea is to encode the database I in the set ¥p and, furthermore, the global
and the local derivations of facts for ) in Xg. For ease of description, we keep
the transformation as direct as possible by allowing constants in dependencies.?
Then, the database corresponds with a set of dtgds with empty body that state the
unconditioned presence of facts. For instance, if a fact f is in the local instance LL(k)
of some node k, then this yields a dtgd o with body(of) = () and head(cf) = fak.
Set Xp contains one such dependency for each global and each distributed fact in D.
Additionally, set ¥p contains a dependency of the form R(x)ax — R(x) for each
relation R, which models the presence of all local facts in the global instance (in
accordance with Definition 2.2.1).

2Tt is possible to avoid the use of constants by the use of additional variables.
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Set ¥ contains two dtgds, body(Q) — head(Q) and body(Q)ar — head(Q)ax,
which describe the global and local derivation of facts, respectively. We claim that
YpU3Xg implies 7 = head(Q)) — head(Q)ax if and only if query @ is parallel-complete
under D.

More concretely, for our example query, set X contains R(z,u), S(u,y) — H(z,y)
and R(z,u)ak,S(u,y)ax — H(x,y)arx and we ask for implication of H(z,y) —
H(xz,y)ak, that is, whether each globally derived fact appears in some local instance
too.

Notably, this approach also works for arbitrary unions of conjunctive queries,
where two dependencies are added to X per disjunct.

Furthermore, it is possible to extend this approach from single distributed databases
to rule-based policies. In that case, set Xp is replaced by a set ¥p. If P contains

a rule of the form R(7,...,7.) — k, then Xp contains a dependency of the form
R(m1,...,77) = R(7m1,...,7)@k. Also, to restrict to valuations over the policy’s
universe, set X contains a dtgd with an empty premise and head Dom(a1), ..., Dom(as)

for univ(P) = {ai,...,as}. Similarly, the bodies of the dependencies in ¥ that
describe the global and local derivation, respectively, are amended by an atom Dom(z)
for each data variable x.

Parallel correctness under bag semantics

In Sections 3.4 and 4.4, we discussed the work of Ketsman, Neven and Vandevoort on
(transfer of) parallel correctness under bag semantics [KNV18]. When a query @ is
evaluated naively, parallel correctness demands that, for each valuation V for @), there
is exactly one node responsible for the required facts, V(pos(Q)). This condition is
easily captured by two dependencies,

e a dtgd ¢/ = body(Q) — body(Q)ax,
which demands that there is at least one responsible node; and

e a degd ¢” = body(Q)ak,body(Q)aX — (k= )),
which demands that there is at most one such node.

Evidently, a conjunctive query @ is parallel-correct on a distributed database that
satisfies both ¢’ and ¢”, derived from Q. The same holds for rule-based policies.

Moreover, implication captures parallel-correctness transfer. If o}, o] are derived
from @1, as described above, and o}, 0 are analogously derived from @, then
parallel-correctness transfers from @ to @2 (under bag semantics) if and only
if {o},07} E {0},05} holds. In combination with Theorem 5.2.3, we can thus
reconstruct the EXPTIME-upper bound provided originally [KNV18], at least for
queries without disequalities.?

3For queries with disequalities (and other comparison atoms), this is also true, as the extended
study on distribution dependencies shows [GNS20].
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As we mentioned in Section 3.4, our example query is non-parallelisable: all facts
required by some valuation have to be located on one node. This question can also
be translated into an instance for the implication problem. We illustrate this for
example query Q = H(z,y) <+ R(x,u), R(u,y). This query is non-parallelisable
because set {¢’, "} implies degd

R(x1,u1)eky, R(ur, y1)ek, R(zg, uz)aks, R(uz, yo)aky — (k1 = k2),

which states that all pairs (V;, V2) of valuations for @) are located on the same node.
Hence, we get an EXPTIME-upper bound via Theorem 5.2.3 for the ‘parallelisability’
problem too.

Hierarchical partitionings

Attempting to provide performance and consistency under updates, some modern
database systems, like Google’s F1 [SCH'18, SVS™13], use hierarchical partitioning
schemes. These schemes are a variant of co-partitioning schemes [SKN18], which
have been introduced under the name predicate-based reference partitioning [ZBS15].

The idea is to hash partition a relation S after the distribution of another relation R
according to the following two conditions.

e Every S-fact is located at some node.
e [f an S-fact matches an R-fact on a predefined set of attributes, then this S-fact
is located at every node with matching R-facts.

Distribution dependencies allow to model these conditions. For instance, the
‘AdWords’ example for F1 [SVS™*13], which refers to customers, advertising campaigns
and adword groups, can be modelled by the next two dependencies.

o1 = Cust(cust, x)ak, Camp(cust, ca, y) — Camp(cust, ca, y)ax,
o9 = Camp(cust, ca, y)ax, AdGrp(cust, ca, z) — AdGrp(cust, ca, z)ax

Moreover, distribution dependencies can be used to specify more elaborate co-hashing
strategies since they allow multiple atoms (and, in particular, multiple relations) in
their bodies. As an example, the distribution of Camp-facts, described by o1, could
be conditioned on the existence of a supplier whose ‘nation’ key equals that of the
customer.

Cust(cust, nat, )@k, Camp(cust, ca, y), Supp(s, nat, z) — Camp(cust, ca, y)ax

Analogously, distribution tgds do not require the head atom to occur in the body.
Thus, a dependency like

Cust(cust, nat, )@k, Camp(cust, ca, y) — Camp*(cust, ca)ak,

referring to a new relation Camp*, can model the co-hashing of derived facts.
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Hypercube partitionings

We already mentioned the hypercube principle as an important building block for the
distributed evaluation of multi-way joins [AU10, BKS14, KS17]. Now, we describe
this principle by an example and show how essential properties can be modelled via
distribution dependencies. Note that hypercube partitionings are an advanced type
of hash-based partitionings. Accordingly, the modelling of simpler hash partitionings
via distribution dependencies is also possible.

The ‘triangle’ query Q & H(z,y,z) + R(z,y),S(y,2),T(z,x) is evaluated by the
Hypercube algorithm over a three-dimensional network {1,...,p1} x {1,...,p2} X
{1,...,p3} with p; - pa - p3 servers. The responsibility of nodes for facts from the
global instance is defined by hash functions hq, ha, hs for the dimensions. Each hash
function h; : dom — {1,...,p;} maps a single data value a to a slot h;(a) in the
range {1,...,p;} associated with the respective dimension.

The behaviour of a hypercube policy can be modeled by a distribution policy. We
illustrate this for query @ and a network where p; = 6, p2 = 4 and p3 = 3. Policy Hg
behaves as follows (assuming some fixed universe), see Figure 5.1 for a visualisation.

Figure 5.1.:

Hypercube policies arrange nodes concep-
tually in a multi-dimensional grid. Each
dimension corresponds to a variable of
the query to be computed, that is, to a
join over the corresponding attributes.
If at all, facts are replicated in a struc-
turally restricted fashion: along a line,
a plane or a hyperplane. This figure il-
lustrates the replication of facts R(a,b),
S(b,c), T(c,a), as required by a valuation ~ h2(b) =3 {
for the triangle query, for some made-up

choice of hash functions. Fact R(a,b)

is replicated along the third axis (top),

fact S(b, c) along the first axis (middle)

and fact T'(c,a) along the second axis

(bottom).

Note that all facts meet at the node

with coordinate (hi(a), ha(b), hs(c)) =

(4,3,1). Therefore the fact H(a,b,c) can S NEE N
be derived locally, as desired. — -
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e Hyp(R(a,b)) = {hi(a)} x {ha(b)} x {1,2,3} for all data values a, b
o Hg(S(b,c)) ={1,...,6} x {ha(b)} x {h3(c)} for all data values b, c
o Ho(T(c,a)) ={hi(a)} x {1,...,4} x {h3(c)} for all data values a,c

Regardless of the specific choice of hash functions, the hypercube principle ensures
that query @ is strongly parallel-complete under policy Hg), that is, for every—mnot
necessarily minimal—valuation V for @, there is a node that is responsible for all
facts required by V. In other words, the policy satisfies the following constraint.

og = R(%,y),5(y,2),T(z,z) = R(z,y)ak, S(y, z)ok, T (z,r)ak

Indeed, this dependency covers only a part of the hypercube properties; others are
missing. For example, by Lemma 3.2.16 and Proposition 4.2.10, parallel completeness
transfers from Q to query Q' & H'(z,y,z) < R(x,y),S(y, z). Hence, policy Hg also
satisfies the next constraint.

oo = R(z,y),S(y,2) = R(z,y)ak, S(y, z)ak

However, dependency o¢ is not implied by dependency og (because of possibly
missing T-facts). Even worse, in general there can be additional queries that are
parallel-complete under Hg even though parallel-completeness does not transfer
from @ to them [GNS20].

A natural question that arises from these observations is, whether the properties
of the hypercube principle can be modelled directly via distribution dependencies.
The answer is positive if we abstract from the choice of hash functions. Technically,
every choice of mappings hq,...,hq with signatures as above yields a hypercube
with d dimensions. Since these hash functions are often chosen randomly, it may
seem appropriate to neglect the ‘incidental’ meeting of facts that is purely caused
by collisions for a (specific) choice of hash functions, but rather consider only
those meetings that are ‘structural’. This idealisation leads to the equivalence
a1 = ay <= hi(a1) = hi(az) for all data values aj,aq, while practically only the
implication from left to right holds. This approach can be viewed as an ‘abstract’
infinite hypercube with a d-dimensional network N = dom?, where each hash
function h; is the identity mapping.

In distribution dependencies, the hash values can then be represented as tuples
in a d-ary relation H such that a distributed fact H(ay,...,aqs)@k marks node k
as responsible. An additional unary atom Dom is used to handle replication and to
enforce completeness of the policy, that is, to prevent skipping of facts.

Given a conjunctive query @, the following set Xg of dependencies describes
the ‘abstract’ hypercube. First, for every relation R in @) with arity n, set ¥q
contains global dependencies R(x1,...,z,) — Dom(z;) for every i € {1,...,n} to
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capture the (active) domain. Second, ¥ contains a dtgd Dom(x1),...,Dom(z4) —
H(x1,...,z4)ak that ensures that there is at least one responsible node for each
combination of data (or hash) values. Finally, there are dependencies that model
the placement and replication of facts. We exemplify this for query @ from above,
where ¥ contains three additional dependencies—one for each atom of the query.

R(z,y),Dom(z), H(z,y, z)ar — R(z,y)ak
S(y, z),Dom(z), H(z,y, z)ar — S(y,z)ak
T(z,z),Dom(y), H(z,y,2)ar — T(z,x)ak

This set X captures the essence of hypercubes for query @): it implies exactly those
dependencies that are satisfied in every actual hypercube, independent of the size
of the network and the choice of hash functions. For instance, using our example
queries from above, set ¥ implies dependency o, whereas og [~ o¢.

Now that we have discussed some exemplary uses of distribution dependencies, we
are ready to investigate the complexity of the implication problem for some fragments
of them.

5.2. Complexity of implication

The implication problem is a fundamental problem in mathematical logic and the-
oretical computer science, since many problems can be reduced to it, and thus has
attracted a lot of attention. In this section, we study the worst-case complexity of
the implication problem for different fragments of distribution dependencies.*

ImP (D)

Parameters: dependency class D

Input: finite set ¥ C D of dependencies,
dtgd or degd 7
Question: Does ¥ imply 77

Note that dependency 7 is not required to belong to the class D but may be an
arbitrary distribution dependency, since this does not affect the following upper
bounds. Indeed, we mostly consider a variant, ImP, (D), of the implication problem,
where the arity of the relations referred to by dependencies ¥ U {7} is at most «, for
a parameter o € Np.

4Technically, two variants can be distinguished: finite and unrestricted implication. Here, we study
the finite implication problem because instances (databases) are finite.
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Unfortunately, the implication problem for first-order formulas is undecidable and
this is also true for the restricted form of implicational formulas underlying tgds and
egds.

Theorem* 5.2.1 ([BV81, CLM81]). The implication problem is undecidable for
untyped and typed embedded dependencies.

Although formulated for the more general ‘embedded’ dependencies, these results
hold for (untyped and typed) tuple-generating dependencies too [F'V84].

This negative result motivates the study of fragments of dependencies in an attempt
to explore the boundaries of the implication problem’s decidability and complexity.

It has been noted early that the use of existentially quantified variables has a
significant influence on the decidablity and—in the positive case—the complexity of
the implication problem. Therefore, various restrictions have been considered in the
literature.

An obvious and rather strong restriction is to renounce the use of existential
quantification completely. A tgd 0 = A — A’ without existentially quantified
variables, that is, a tgd where var(A") C var(A) holds, is called full. Slightly less
restrictive is the prohibition of existential quantification of data variables only.
Notably, many examples of dtgds in Section 5.1.3 adhere to this restriction.

Definition 5.2.2 (data-full dtgds). A dtgd 0 = A — A’ is data-full if xvar(A") C
xvar(A). The class of all data-full dtgds is denoted DTGDIdf]. <

In the following, we study data-full dtgds and (arbitrary) degds. Since only node
variables are quantified existentially, without loss of generality, we assume from now
on that the head of each dtgd either contains no node variable, only one universal node
variable or only one existential node variable, using a generalisation of Remark 5.1.1.
This leads to the distinction of three types of data-full dtgds.

1. A dtgd is global if it has no node variable in the head.
2. A dtgd is data-collecting if it has a universal node variable in the head.
3. A dtgd is node-generating if it has an existential node variable in the head.

The first type comprises dtgds with distributed atoms, like R(z), S1(x)ak, So(x)ak —
T'(x), and purely global dtgds without distributed atoms, like R(z), S(z) — T'(z).
The latter correspond to full classical tgds. For the first two types, using Remark 5.1.1
again, we may assume without restriction that the head consists of a single atom.

The restriction to data-full dtgds has the benefit of a decidable implication problem
and thus allows the automatic reasoning.

Theorem 5.2.3. ImP(DTGD[flUDEGD) is EXPTIME-complete.
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We defer the proof of this theorem to Section 5.2.4, where we show, in particular,
that the lower bound already holds for schemas with maximally binary relations.

Before we turn to the corresponding lower bound, however, we focus on upper
bounds. To this end, we describe how the chase procedure can be used on distribution
dependencies to obtain algorithms for the implication problem.

5.2.1. The chase for distribution dependencies

The chase procedure is the algorithmic tool for deciding implication ¥ = 7 on tgds
and egds [BV84], with several other applications like query rewriting under views or
the computation of solutions for data exchange scenarios.

Often, the chase is applied to instances with two types of data values, named
constants’ and ‘labelled nulls’. However, for the implication problem, which we
consider here, it is more straightforwardly applied to sets of atoms. To this end, we
generalise our basic notions canonically.

3

o Distributed databases (Definition 2.2.1). A database D = (G,L) consists of a
finite set G of atoms and a finite relation L. over nodes and atoms.
In this sense, the original definition can be seen as ground databases.

e Distributed dependencies (Definitions 5.1.2 and 5.1.3). Satisfaction of dtgds and
degds over sets of atoms is formulated with respect to arbitrary homomorphisms
instead of valuations—as is their violation.

To decide implication of 7 under ¥, the chase is roughly used in the following way. In
a first step, we start with a database D, induced by 7, and check repeatedly whether
a dependency in Y is violated. If no dependency is violated, then D clearly satisfies
all of them; the procedure stops. Otherwise, the violation is considered more closely.
If it is possible to repair D with respect to the violation, then the repair is applied
and the procedure continues. If it is impossible to repair D, the procedure fails. If
the chase terminates, then it terminates either failing or it succeeding. If the chase
succeeds, then DD satisfies ¥ after (finitely many) repairs. In a second step, two cases
are distinguished.

o [f the chase fails, then dependency 7 is trivially implied by 3 because there is no
database that contains facts corresponding to the initial atoms and satisfies 3.

e If the chase succeeds, then dependency 7 is implied by ¥ if and only if 7 is
satisfied on the repaired database D.

Indeed, for the algorithms below, the process is a little simpler, as explained later.
Nevertheless, the basic concepts remain the same and thus are defined next. We
start with the formalisation of a ‘repair’, first for degds, then for dtgds.
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Definition* 5.2.4 (Application of degds). Let D be a distributed database. A degd
o=A— (£ =n)is applicable to D with homomorphism h if h witnesses the violation
of o and at least one of the terms h(&) and h(n) is a variable. The application of (o, h)
yields a distributed database I that results from DD by replacing every occurrence
of h(n) by h(&), if h(n) is a variable, or by replacing every occurrence of h(&) by h(n),
otherwise. <

Example 5.2.5. The degd 0 = R(z,y)ak, R(z,z)aX — (y = z) states that the first
attribute of relation R is a key—irrespective of the location of these facts: If there
are two R-facts with the same value in the first attribute, then their values in the
second attribute have to be identical too. Dependency o is applicable, for instance,
to the distributed database D = (G, L) with a global instance G = {R(1,y), R(1,2)}
and distribution L = {(k, R(1,v)), (¢, R(1,2))}. This is witnessed by homomorphism
h={zw— 1,y — y,z+— 2,k — k,\ — £} because h(y) = y is a variable, while
h(z) = 2 is not. Application of (o, h) on D yields the distributed database D' = (G’, L")
with G = {R(1,2)} and L = {(k, R(1,2)), (\, R(1,2))}. [

For tuple-generating dependencies, we distinguish two types of applications, ‘oblivious’
and ‘restricted’ applications.

Definition* 5.2.6 (Application of dtgds). Let D be a distributed database. A dtgd
o=A— A is obliviously applicable to D with homomorphism h if h(A) C D and h
maps existential variables in ¢ to fresh variables not occurring in D. It is restrictedly
applicable to D with h if, additionally, h witnesses the violation of ¢ on ID. The
application of (o, h) yields a distributed database I’ that results from D by addition
of the facts h(A") to D, that is, only to G, if o is global, and otherwise to some local
instance L(k) of the node k targeted by (o,h). In the latter case, the fact is also
added to G if not already present. <

Note that a restricted application (o, h) requires that there is no other homomorph-
ism A’ that agrees with h on the body variables of o and satisfies h'(head(o)) C D.
This has an influence on the complexity of algorithms (at least for non-full dtgds)
that we discuss further below. Let us illustrate the application of a full dtgd first.

Example 5.2.7. Consider the distributed database D = (G,LL) with a global instance
G ={R(z,y),S(x),S(y)} comprising three atoms with two of them distributed over
local instances: L = {(x, S(x)), (A, S(y))}.

There, the data-collecting dtgd 0 = R(u,v), S(v)eu — R(u,v)apu is applicable to D
via homomorphism h = {u — z,v — y, u — A}. Application (o, h) yields the distrib-
uted database D' = (G,L') where L' = {(k, S(x)), (A, S(y)), (A, R(x,y))} contains an
additional atom R(z,y) in the local instance of A. In particular, application (o, h) is
restricted. |
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Applicability corresponds with the need for a repair. The application of a repair is
‘local’ in the sense that it only refers to one example of a violated dependency—other
repairs may be necessary. Moreover, the application of a repair may entail the need
for further repairs. Therefore, we consider sequences of applications.

Definition* 5.2.8 (Application sequence). Let Dy be a set of distributed atoms
and X be a set of dtgds and degds. An application sequence for Dy under ¥ is

a sequence a = (ay,as,as,...) of successive applications: each a; = (o;, h;) is an
application for some o; € ¥ to D;_1 that yields DD; for every index ¢. The sequence is
restricted if it only contains restricted applications of dtgds. <

Within an application sequence a, the combination of an application a; together with
the previous and the resulting database, ID;_; and I;, is commonly called a chase
step. In the following, we usually keep these intermediate databases implicit and refer
to application sequences also as chase sequences—ignoring the subtle distinction.

Definition* 5.2.9 (Chase result). Let a be a finite application sequence (a1, ..., a,).
The chase result under a is defined as chaseq (D) ' D, the database resulting after
the last chase step.

Sequence a is successful if the chase result satisfies ¥, that is, if no dtgd is
restrictedly applicable and no degd is applicable. It is failing if the chase result
violates a degd 0 = A — (£ = 1), witnessed by h, and (o, h) is not applicable to
it—because both h(§) and h(n) are data values. A chase sequence that is either
successful or failing is called saturated. Otherwise, it is unsaturated, meaning that
further restricted applications are possible. <

The following example illustrates chase sequences.
Example 5.2.10. Let ¥ = {07, 09,03} be a set of distribution dependencies with

e 01 = R(x,y) — (x = y), a data-identifying degd;
e 0y = R(x,x) — S(z), a global dtgd; and
e 09 = R(x,z),S(x) = R(z,x)ak, S(x)ak, a node-generating dtgd.

Consider the following chase sequence for a starting database Dy = (Gp,Lg) with
Go = {R(z,y)} and Lo = 0.

1. Dependency oy is applicable to Dy as witnessed by the identity homormorph-
ism id. Application a; = (o71,id) results in the unification of z and y and thus
in the distributed database Dy = (G1,1L1) with G; = {R(x,z)} and L; = 0.

2. Now, dependency o5 is applicable to Dy, witnessed again by id. Application
az = (02,id) results in the addition of the global atom S(z) and thus in the
distributed database Dy = (G2, La) with Go = {R(z,z),S(z)} and Ly = 0.
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3. Finally, dependency o3 is applicable to Dy via id, where id(k) = k is fresh
since it does not appear in Dy. Application ag = (o3,id) results in a new
local instance, yielding D3 = (Gs,L3) with Gz = {R(z,z),S(z)} and L3 =
{(r, R(z,2)), (r,5(x))}.

No dependency in X is restrictedly applicable to D3 and no degd is violated. Hence,
the finite chase sequence a = (a1, as, ag) is successful. [ |

In general, chase sequences may be infinite due to the introduction of fresh variables.
Furthermore, since there is no order on the dependencies or homomorphisms to
choose for applications or on the choice of fresh variables, different chase sequences
may result from the same starting database under the same set of dependencies. This
does not matter though for our purpose, basically because of the following theorem
for restricted chase sequences on classical dependencies, which is easily extended to
distribution dependencies (by the translation discussed in Section 5.3).

Proposition* 5.2.11 (Properties of the restricted chase [FKMP05]). Let Dy be a
distributed database and let X be a set of dtgds and degds.

1. If some finite chase sequence for X starting from Dg is failing, then every
saturated finite chase sequence for ¥ starting from Dy is failing.

2. The chase results D = chase,(Dg) and D' = chasey (D) for arbitrary finite
successful chase sequences a,a’ € stepsy,(Dy) are homomorphically equivalent.

3. Let D,, = chasey (Do) be the chase result for a successful chase sequence a and
let D be a database that satisfies ¥.. If there exists a homomorphism hg from Dy
to D, then there exists a homomorphism h,, from D,, to D.

These properties guarantee that each saturated chase sequence faithfully represents
all saturated chase sequences: either all of them are failing or all of them are successful.
If they are successful, then they yield essentially the same results (with respect to
their structure), a property that is called ‘universality’.

Eventually, we want to use chase sequences to reason about the implication of a
dependency 7 under a set 3 of dependencies. We start with an illustration of the
approach.

Example 5.2.12. Consider again the set ¥ from Example 5.2.10 and the corresponding
chase sequence a = (a1, a2,a3). This sequence proves that ¥ implies the node-
generating dtgd 7 = R(z,y) — R(z,y)ek, S(y)ak, as we argue next.

The procedure starts with the canonical database associated with 7, that is,
Dy = body(7). The first dependency applied is the degd o1, which unifies variables x
and y. This unification is captured by the equality-generating homomorphism & that
maps y to z and is the identity on all other variables in body(7).

In particular, degd o1 demands that V(z) = V(y) holds for every valuation V'
with V(body(7)) € D on a database D that satisfies ¥ because V(body(o1)) C
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V(body(7)). Thus, for all such databases, 7 is satisfied if and only if 7/ = R(z,z) —
R(z,x)ak, S(zr)ak is satisfied. Notably, dependency 7’ equals dependency e(7) =
£(body(7)) — e(head(7)).

After the other applications, dependency 7' is ‘certified” by chaseq (Do) = Dj
because there is an extension &’ of €, which maps the existentially quantified variable x
to itself, such that £'(head(7’)) C Djs. [ |

In general, a chase sequence may induce several equality-generating homomorphisms,
which affect the certification of 7 combinedly. Given a finite chase sequence a =

(a1,...,ay) starting from a database Dy and yielding a database D,,, consider exactly
those applications a;,, ..., a; of degds that replace occurrences of (node or data)
variables in Dy. Let €1, ...,e, be the homomorphisms underlying these replacements.

They induce a homomorphism e(a) = e,0- - -oe; that describes the overall unification
of the variables in Dy.

Definition 5.2.13 (Certifying sequence). A finite application sequence a certifies T
if it starts from body(7) and yields a chase result D such that

o if 7is a degd A — (£ =1n), then ¢(§) = ¢(n), and
o if 7 is a dtgd A — A’, then there is an extension ¢’ of ¢ with &/(A") C D,

for the homomorphism ¢ = ¢(a). <
We are now ready to relate chase sequences to the question of implied dependencies.
Proposition 5.2.14 (Characterisation of implication). For every set XU {7} of data-

full distribution dependencies, implication ¥ = 7 holds if and only if there is a
certifying application sequence for 7 under X.

The proof is deferred to the appendix (Proposition A.7). Note that the characterisa-
tion requires the chase sequence neither to be saturated nor to be restricted. Both
aspects are crucial for some of the upper bounds provided below.?

More particularly, we study different fragments of data-full distribution dependencies.

Remark 5.2.15 (Constant-free dependencies). In the following, we study implica-
tion only for distribution dependencies that do not contain constants.

The fragments are defined by syntactic criteria that are based on the following notion.

The restricted chase was introduced by Fagin et al. [FKMPO05] and is also known as the ‘standard’
chase [Onel2]. Other variants such as the ‘oblivious’ [CGK13] or ‘semi-oblivious’ chase [Mar(09]
have been studied to eliminate some of its weaknesses.

One weakness of the restricted chase is that the condition for the applicability of a dtgd o with
existential variables with a valuation V demands that there is no other valuation V' that agrees
with V' on body(c), which is computationally more involved.
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5. Distribution dependencies and their implication problem

Definition 5.2.16 (Context). Let s be a node variable. For a set A of distributed
atoms, the k-context cont,(A) is the set of data variables that occur in a distributed
atom Aak € A. The k-context of a dependency is the context of its relational atoms:

e for a dtgd o, it is cont,(0) = cont,(body(c) U head(c)); and
e for a degd o, it is cont, () & cont,(body()).

For 8 € Ny, a node variable k has f-bounded (body) contezt in a distributed depend-
ency o if the context of (the body) of o contains at most 3 variables. <

The motivation for this definition is to bound the amount of data per ‘record’, a
subset that is distinguishable in some way in a set of atoms. In the simplest case,
records are formed by atoms. Then, restricting the arity of relations means restricting
the amount of data. However, this does not suffice anymore when fresh variables can
be introduced—as with the application of node-generating dtgds. In this case, the
fresh variable can serve as an identifier of a record spanning several atoms (and thus
exceed possible arity bounds).

Example 5.2.17. Variable k has 2-bounded body context and 3-bounded context in
dtgd o1 = R(z,y)ak, S(z)a\ — T'(z,z)ax while neither x nor A have g-bounded
context in dtgd o2 = Ri(z1)ak,...,Rgii(zgr1)an — S(z1,...,241)a for any
B € Np. [ |

The fragments of distribution dependencies studied in the next sections are defined by
restricting the number of node variables with unbounded context in the body or the
head, depending on whether the dependencies are node-generating or data-collecting
dtgds, or degds. Table 5.1 provides an overview of the types of dtgds and degds that
are considered more closely.

The upper bounds for our algorithms for the implication problem rely on the following
bounds for chase sequences.

Claim 5.2.18 (Bounds on chase sequences). Let ¥ be a set of data-full dtgds and
arbitrary degds and let Dy be an arbitrary distributed database. Every restricted
chase sequence for Dy under ¥ is finite. More precisely,

1. the global set G of atoms and each local set of atoms in the intermediate chase
results contains at most (||X| + ||Dol|) - [[Do]|* atoms; and

2. at most ||X]| - HDOHHEH node variables are generated; and
3. the chase sequence has length at most O (HEH2 : HID)OHHE”JFQ)

if o is the maximum arity of relations in X.
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5.2. Complexity of implication

| NP | PSPACE |  EXPTIME

(G1) [m ] [wr| =] v v
(G2) |wa | | =]« v v v v | v
(G3) |m | |ur|r|—] - v v
(G4) N v
(C1) |~ |m pr| = | w v v
(02) K| BL | e | B | — | K \/ /
(C3) |~ |n» =~ v
(E1) |~ | |m wrl = (K= M\) v v
(E2) || a|m||n|= (k=) v v
(E3) |~ |» — (k=2A) v
(E4) |~ ||~ — (k=2A) v

Theorem | 5.2.20 | 5.2.23 | 5.2.25

Table 5.1.: Overview of the fragments of data-full distribution dependencies studied
in this section. For NP and PSPACE, each column indicates the allowed
types of dtgds and degds and the corresponding complexity. For EXPTIME,
on the contrary, each column indicates the types that are sufficient to
yield hardness; allowing all types remains in EXPTIME.

Node variables that have to be bounded are shaded, others may be
unbounded.

Proof. The application of data-full dtgds does not introduce new data variables.
Thus, for each (intermediate) chase result, the number of data variables is bounded
by the number d of data variables in Dgy. For the following bounds, let r denote the
number of relation symbols that occur in 3 or Dy.

Property (1) holds because the global set G of atoms contains at most rd® atoms
over data variables from Dy, and likewise for each local set of atoms. Obviously,
both r and d are bounded by ||X|| and ||Dy||, respectively, which yields the bound.

Property (2) follows from the next observation. In a restricted chase sequence,
a new node is generated with an application (o,h) of a dtgd 0 = A — A'@k only
if h(A’) is not already present in the (intermediate) chase result. Since there are
at most [|o|| < ||X|| variables in A" and each of these variables has to be mapped
by h to a data variable from Dy, there are at most dI*!l possible homomorphisms h
for each dependency in . Therefore, the total number of such homomorphisms is
bounded by [3] - dIl < [|5] - |||,
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5. Distribution dependencies and their implication problem

Property (3) results from the former two bounds. By Property (2), a restricted
chase sequence comprises at most ||X|| - dl°ll applications of node-generating dtgds.
For each of these nodes, at most ||X]| - | Do]|* data-collecting dtgds can be applied by
Property (1). The same bound holds for the number of applications of global dtgds.
Furthermore, the number of applications (node- or data-identifying) degds doubles
the number of applications at most. O

Additionally, every saturated chase is successful—it cannot be failing because there
are no data values (that would have to be unified) because we assume dependencies
to be constant-free, see Remark 5.2.15.

In Section 5.2.2, we show that the implication problem can be decided in non-
deterministic polynomial time even for a fragment where saturated chase sequences
may necessarily comprise an exponential number of nodes. This fragment is sub-
sequently extended by an additional type of dtgds, for which we provide an algorithm
that requires polynomial space in Section 5.2.3. Finally, we show, in Section 5.2.4,
that basically all extensions by other types of dependencies make the implication
problem EXPTIME-hard, even for a fixed arity bound.

5.2.2. NP-Fragment

We start with a relatively simple observation. When only node-generating dtgds with
a [B-bounded head node variable—Type (G1)—are present in a set ¥ of dependencies,
among arbitrary data-collecting dtgds, global dtgds and degds, then the arity-bounded
implication problem is easily seen to be in NP, for every fixed arity bound «. First,
the canonical database body(7) induced by 7 provides at most ||7|| nodes and data
values. Second, the number of restricted applications of each node-generating of
Type (G1) is bounded by d”, where d < ||7|| is the number of data values. Thus, the
number of nodes increases only polynomially. Furthermore, other tuple-generating
dependencies can be applied at most rd® times to the global instance or to each local
instance, respectively, where r < ||X]| is the number of relation symbols. Along the
lines of the proof of Claim 5.2.18, this gives a polynomial bound on each instance
and, even, on the number of generated nodes variables.

Interestingly, the arity-bounded implication problem can also be decided by non-
deterministic polynomial time algorithms if node-generating dtgds with unbounded
head node variables are admitted. In that case, the body node variables have to be
bounded and not all types of degds and data-collecting dtgds may be allowed. The
following definition provides the exact conditions.

Definition 5.2.19 (Bounded context). Let 8 € Ny. The following types of dtgds
and degds have -bounded context.
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5.2. Complexity of implication

Node-generating dtgds where
(G1) the head node variable has #-bounded context or

(G2) all body node variables have S-bounded context.

Data-collecting dtgds where
(C1) the head node variable has S-bounded body context or
(C2) all other node variables have S-bounded context.
Data-identifying degds.
e Node-identifying degds of the form A — (k = \) where
(E1) both xk and X have -bounded context or

(E2) all node variables except for x have 8-bounded context.

Let DTGD[bc(B)] and DEGDIbc(8)] denote the class of all dtgds and degds with
[B-bounded context, respectively. <

Theorem 5.2.20. Ivp, (DTGDbe(8)] UDEGD[be(8)]) is in NP for fixed «v, 5 > 0. It is already
NP-hard for « =2 and 8 = 0.

Proof. The lower bound follows by a simple reduction from the containment problem
for conjunctive queries. For a pair (Q1,Q2) of such queries, @1 C Q3 holds if and
only if {o2} = 01, where dependencies o7 and o9 are dtgds such that

body(c;) < body(Q;) and head(o;) & head(Q;)

for both i € {1,2}. For instance, Q1 = H(z) + R(z),S(z) and Q2 = H(z) <+ R(z)
satisfy Q1 C Q2 and {R(z) — H(z)} = R(z), S(x) — H(x). The homomorphism id
that witnesses containment—because id(body(Q2)) C body(Q1) and id(head(Q2)) =
head(Q1) = H(z) holds—can serve in an application of o2 on the canonincal data-
base body(Q1), leading to the addition of the required atom H(x) after one chase
step.

The hardness proof for CoNTAIN(CQ,cQ) by Chandra and Merlin [CM77] is by
reduction from the graph coloring problem and requires only a binary edge relation
and no node variables, which gives « =2 and g = 0.

Now, we establish the matching upper bound. Fix an arity bound « and a context
bound § with a, 8 > 0. Let (X, 7) be an input for IMP,, (DTGD[bc(8)] U DEGD[bc(8)]) -

As explained above, although the restricted chase sequences for ¥ are guaranteed
to be finite, they may be exponentially long. For an NP-algorithm, it suffices to show
that if there is a chase sequence a that certifies 7, then there is a chase sequence a”
of polynomial length that certifies 7.

To this end, we proceed in two steps. First, we normalise a and yield an equivalent
chase sequence a’. This sequence does not generate fewer nodes but ‘simplifies’ the
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5. Distribution dependencies and their implication problem

interdependencies between applications. Second, we select a subsequence a” from a’
that generates only a polynomial number of node variables.

» Normalisation. Let a = (ay,...,a,) be a finite chase sequence. The normalisation
step attempts to reduce the number of witness nodes, that is, node variables that
appear in Vj(body(c;)) for some application (o;,V;). By successive inspection, we

define a chase sequence a’ = (aj,...,a,) that yields the same intermediate chase

’r'n
results but has a small number of witness nodes.
Let a; = (0;,V;) be the i-th application in chase sequence a, then the i-th
application in chase sequence a’ is defined as a = (04, V/), where valuation V/ is

determined dependent on the type of dependency o;.

e If 0; is a global dtgd or a dtgd of Type (G1) or a data-identifying degd, then V;
equals V;. In this case, both applications are identical, a} = a;.

e Ifo; is a dtgd of Type (G2) or (C2) or a degd A — (k = \) of Type (E2), then
all node variables except for the head node variable k have S-bounded context.
For every node variable u of o; different from &, if there is application a with
h < i such that o; = o3, and V;(z) = Vj(x) for every data variable x € cont,(0;),
then we define V;/ (1) = V3, (1) for the minimal such h. Furthermore, let V/ agree
with V; on all other variables.

e Ifo; is a dtgd of Type (C1) with head node variable k, then there may be further
node variables, with or without S-bounded body context.
If there is an application a; with h < i such that o; = op, and Vi(z) = Vj(x) for
every data variable x € cont,(0;), then we define V(1) = V3 () for every node
variable p different from s and the minimal such h. Furthermore, let V/ agree
with V3, on all remaining (node and data) variables.

o Ifo; is a degd A — (k = \) of Type (E1) but not (E2), then there may be
non-head node variables with S-bounded context.
If there is an application ap with h < i such that o; = o}, and Vj(z) = V}(z)
for every data variable x € cont,(0;) U conty(o;), then we define V/(u) = Vi, (u).
Furthermore, let V' agree with V; on all remaining (node and data) variables.

Note that valuation V' is well-defined and agrees with V; on the head variables of o;.
The latter ensures—as claimed—that a’ induces the same intermediate chase results
(Do, ...,D,) as a. In particular, sequence a’ generates as many nodes as a. However,
not all of these nodes are necessary to certify 7.

» Subsequencing. If the number of nodes referenced by chase sequence a’ is exponen-
tial, most of the nodes (and their local instances) are irrelevant for the certification
of 7. In the following, we show that a certifying subsequence with fewer nodes exists.

Let K” & K U KY, where K/ is the subset of node variables from I, that are
witnesses for a’ and K7 is the set of node variables that are in body(7) or certify 7.
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5.2. Complexity of implication

We define a” as a subsequence of a’ by removing each application (o;, V;) from a’
that references at least one node that is not in K”, while keeping all others (in the
induced order). This subsequence is indeed a chase sequence because, by definition,
it is contiguous and ordered: every application a/ refers only to nodes that exist
in D/, with the required facts. Moreover, subsequence a” still certifies 7. Hence, it
remains to show that a” has polynomial length and that each distributed database
in the corresponding chase sequence has polynomial size.

By Claim 5.2.18, the number of facts in the global instance and in each local
instance is bounded by (||X|| + ||7|])||7]]*, which is polynomial in ||(X,7)]|.

Furthermore, the number of nodes in K" is polynomial too. To prove this, we
consider all applications of each dependency ¢ in a” by the type of the dependency.
Let d denote the number of data variables in 7.

e If o is a data-identifying degd, then there are at most d applications of . Thus,
they have at most ||| - d witness nodes.

e If o is a global dtgd, then there are at most d* applications of o. Thus, they
have at most ||| - d* witness nodes.

e Ifo is a dtgd of Type (G1), then there are at most d® applications of o because
the head node variable is bounded. Thus, they have at most ||| - d° witness
nodes.

o If o is dtgd of Type (G2) or (C2) or a degd of Type (E2), then there are at
most d” valuations for each non-head node variable because these are bounded.
Thus, all applications have at most ||o|| - ° witness nodes.

e If o is a dtgd of Type (C1) with head node variable k, there are at most d”
valuations for the data variables in cont,(body(c)) and at most d* valuations
for the data variables in cont,(head(c)). Thus, all applications have at most
llo|| - d®+® witness nodes.

e Ifo is a node-identifying degd of Type (E1), then there are at most d® valuations
for the data variables of each head node variable. Thus, all applications have at
most ||o|| - d>? witness nodes.

The length of each dependency is trivially bounded by the encoding size of all
dependencies, ||o|| < ||X]|, and thus the bounds above can be weakened to the bound
=] - 171%° . Furthermore, the number of dependencies in ¥ is at most || and
d < ||7|| holds. In summary, this yields a bound of ||S|| - ||7]|**T**! on the number
of witness nodes.

Therefore, a polynomial-size chase sequence a” exists. A nondeterministic algorithm
can obviously ‘guess’ this sequence (at once), keep track of homomorphism e(a’”),
check the correctness of the sequence and ‘guess’ a certificate, all in polynomial
time. ]
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Our previous investigation has shown that, even if a set of dependencies implies
the existence of an exponential number of nodes, it might be that most nodes are
irrelevant for the certification of a dependency. The reason for this is the bounded
context of node variables, which restricts the amount of data that can be accessed
from a specific node. In a sense, Definition 5.2.19 allows unbounded context only
on one side (body or head) of each dependency and thereby restricts the ‘necessary’
interdependencies between nodes in chase sequences. Next, we depart from this
restriction.

5.2.3. PSPACE-Fragment

In the previous section, we have argued that interdependencies between nodes in chase
sequences are, in principle, rather simple for distribution dependencies with bounded
context. The intuitive reason for this is that only a very limited (context-bounded)
amount of data per node can be referred in the body or in the head of a dependency.

Now, we show that this does not hold anymore if (different) node variables with
unbounded context are allowed both in the body and in the head. Accordingly, the
complexity of the implication problem rises. However, if only one node variable with
unbounded context is allowed in the body, the complexity rises ‘moderately’ from NP
to PSPACE. Later, we show that other extensions lead to EXPTIME.

We start with a formalisation of the mentioned additional type of dependencies.

Definition 5.2.21 (Weakly bounded context). Let 5 € Ny. A distribution depend-
ency has weakly B5-bounded context if it has f-bounded context or it is a node-
generating dtgd such that

(G3) exactly one of its body node variables has not 8-bounded context.

Let DTGD[wbc(B)] denote the class of all dtgds with weakly S-bounded context. <«

Different from the dependencies in Section 5.2.2, chase sequences for dependencies of
Type (G3) may lead to the generation of exponentially many nodes such that all of
them are indeed required. We illustrate this next.

Example 5.2.22. Let n be a positive integer. We define a dtgd 7 and a set ¥ U {o}
of weakly-bounded dtgds such that ¥ U {o} implies 7 but every certifying chase
sequence has exponential length in n.

First, let ¥ = {09, ...,0n,-1} be a set where, for every i € {0,...,n — 1}, depend-
ency o; is a dtgd of Type (G3), defined by

body(c;) & {Bool(bn) .,Bool(b;+1),False(wy), True(wl)}
u {R,(by), .. H—l( i+1), Ri(wo), Ri—1(w1),. Ro 1)}ar,
head(o;) = {Ru(bn), - - ., Riz1(bit1), Ri(w1), Ri—1(wo), - - ., Ro(wo) }a .
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5.2. Complexity of implication

This set emulates the stepwise incrementation of a binary counter b,,, ..., by, repres-
ented by the R;-facts on some node k.
Second, dependency T is a dtgd of Type (G3) where

body(7) & {Bool(wp), Bool(w: ), False(wy), True(w:)}
de {Rn<’u}0>, ce Ro(wo)}@lﬁl,
head(r) = {S(w1)}

that provides the necessary atoms to initiate the incrementation process.
Lastly, the following dtgd ¢ with 2-bounded context,

body(o) j:ef {True(w)} U {Rn(w1), Rn_1(w1)}ar,
head(o) = {S(w1)},

which links the presence of a binary representation of the form 11--- to the existence
of fact S(1).

Evidently, a chase sequence from body(7), in the beginning, allows the restricted
application of dependencies from Y only: starting with the representation 0...0 on
a node, the intermediate chase result eventually contains 110...0 on some other
node. This is the first time that dependency o can be applied, which then certifies 7.
Overall, a certifying chase sequence requires at least 2" + 2"~! + 1 applications and
leads to the generation of 2" + 2"~ — 1 nodes. |

Nevertheless, most nodes are important only for a ‘short while’ and can be ignored
afterwards. This idea is made more precise in the proof of the following theorem.

Theorem 5.2.23. Ivp,, (DTGDwbc(8)]UDEGDbe(3)]) is in PSPACE for fixed «, 5 > 0.

Proof. Fix an arity bound a and a context bound § with a, 8 > 0. Let (X, 7) be an
input for IMP,, (DTGD[wbe()] U DEGD[be(8)]).

Since PSPACE = NPSPACE, it suffices to provide a nondeterminstic algorithm with
polynomially bounded space that tests for the existence of a chase sequence that
certifies 7 under . As illustrated above, even the shortest chase sequence may
have exponential length. Therefore, such an algorithm cannot ‘guess’ and verify the
sequence at once. A canonical attempt to bound the space is to guess successive
elements of the sequence and ‘forget’ those that are not needed anymore. However, to
verify the coherence of the sequence, the algorithm has to keep track of all facts that
are used in later chase steps—and the nodes where they are located. Unfortunately,
the previous example demonstrates that also the number of such nodes can be
exponential. Nevertheless, we show in the following that the ‘linear’ form of dtgds of
Type (G3) allows us to bound the number of nodes that are relevant for each step by
a polynomial, despite their possible interaction with dependencies with S-bounded
context. Intuitively, we bound the ‘width’ of the chase, not its ‘length’.
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We show that a well-behaved certifying chase sequence exists if some certifying
chase sequence exists. To this end, we rely on normalised chase sequences and an
observation on minimal such sequences.

» Normalisation. The normalisation defined in the proof of Theorem 5.2.20 can be
extended in the following way—considering, as before, all applications a; = (o, V;)
successively. Assume that o; does not have S-bounded context but is of Type (G3),
then the following modification is applied, yielding a; = (o;, V}).

e If g; has head node variable k, then, for every node variable p different from &,
if there is an application a; with h < i such that o; = o, and V;(z) = Vj,(z)
for every data variable z € cont,(o;), then we define V(1) = V() for the
minimal such h. Furthermore, let V; agree with V; on all remaining (node and
data) variables.

In the remainder of this proof, we show that if there is a chase sequence a that
certifies 7, then there is also a chase sequence a’ that certifies 7 such that a’ can
be guessed and verified in a linear fashion, requiring only polynomial space. To this
end, let a be a chase sequence that certifies 7 and that satisfies the following two
assumptions.

First, we assume, without loss of generality, that a is a restricted chase sequence.
Then, as argued in Claim 5.2.18, its length is bounded exponentially due to the
arity bound «, which is less than [|3|| + ||[Do||. This bound B = B(X, 7) is obviously
computable (even in polynomial time) and can be used by the verification algorithm to
guarantee termination: with each newly guessed application, a counter is incremented
by 1. If the counter exceeds B and 7 has not been certified, the algorithm rejects.
Clearly, this counter requires only polynomial space.

Second, we assume that a is a normalised chase sequence that certifies 7 of
minimal length. Then, the sequence contains only applications that are needed for
the certification of 7. In particular, it contains only applications of node-generating
dtgds such that the generated node participates in the certification of 7 or is referenced
by a later application.

Let us consider the set of nodes referenced in a as a bipartition K W £, where KC
contains each node that satisfies at least one of the following properties:

1. it is a witness node as in the proof of Theorem 5.2.20; or

2. it is a node that is referenced via node variables with 3-bounded context in
applications of dtgds of Type (G3); or

3. is is a node that participates in the certification of 7.

Then,—following the argument in the proof of Theorem 5.2.20 again—the size of
is still in O(||Z]|? - [|7]|*T2**!) because the number of witness nodes for dtgds of
Type (G3) is at most ||Z| - ||7]|°, thanks to the normalisation.
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Note that the set I is closed under predecessors in the previous proof while this is
not necessarily the case now. We further remark that set £ may contain nodes that
are introduced by the application of dtgds of Type (G3). Set L, however, contains
exclusively nodes that are generated via dtgds of Type (G3) due to the assumed
normalisation and minimality of chase sequence a.

» Properties of minimal chase sequences. Although we cannot bound the size of £
polynomially, we can bound the sizes of subsets Ly, ..., L, C L accordingly such
that, for every application a; in chase sequence a = (a1, ...,ay),

(P1) application a; requires only node variables in K U £;_1; and
(P2) for every node variable A € £, if A € L£;_1 but A ¢ L£;, then A ¢ L, U...UL,.

Sets L4,...,L, are defined inductively, from ¢ = n down to 1, as follows. For
formal reasons, fix £, 0. We distinguish two cases, based on the dependency in

application a; = (o;, h;).

1. If o; has B-bounded context, then h;(body(o;)) refers to node variables in I only
since a is normalised. In this case, let £; 1 e L;.

2. Otherwise, o; is a dtgd of Type (G3), which references exactly two node variables
A, X with unbounded context. Let A’ be the newly generated node variable.

a) If N e K, let £i1 < L; U{A}.
b) Otherwise, let Li_1 < (£; — {N'}) U{A}.

Property (P1) holds because, in Case 1), chase step a; requires only node variables
in K C KU L;—1 and, in Case 2), chase step a; requires only node variables in
KU{A} CKUL;_1, by definition of £;_;.

Property (P2) holds as the following argument shows. Towards a contradiction,
assume that there is a node variable A such that A € £;, and A € £;, but X ¢ L;,
for indices i1 < io < i3. Without loss of generality, we can assume that i3 = io + 1
and that 4 is maximal with that property. Then, in the construction of £;,, node
variable A has been removed from L;, in Case 2b), that is, in the role of node
variable X', which has been generated by application a;,. However, A\ € £;, implies
that the application of a;, +1 requires A. This is a contradiction, since a is a (valid)
chase sequence and A cannot have been generated before (more than once).

Furthermore, subsets Ly, ..., L, are sufficiently small. In Case 1), the size of £; ob-
viously remains the same, compared to £;11. This is is also true for Case 2b) because,
by minimality, the generated node variable X is required by a later application—if it
would be needed only to certify 7, then it would be in K. Finally, in Case 2a), the
size of L; increases by at most 1—if )’ has not already been in £;1. Notably, the
latter case occurs at most |K| times since every node is generated only once. Hence,
starting with £,, = 0, we have |£;| < |K| for every i € {0,...,n}, a polynomial
bound.
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To conclude the proof, we sketch the algorithm in more detail.

» Algorithm. An algorithm for ImPp, (DTGD[wbe(8)]UDEGDpe(8)]) can, if a certifying
sequence a for 7 exists, nondeterministically construct—step by step—a sequence a’
that certifies 7 and that resembles the restricted minimal sequence certifying 7, which
exists by the previous argument. In the i-th step, the algorithm has to keep track of all
node variables in LU L;_1 and KU L; and their local instances, respectively. For each
generated node, the algorithm nondeterministically determines whether it belongs
to K or L;. As argued before, both sets have polynomial cardinality. Furthermore,
the sizes of the corresponding local instances are also polynomially bounded since «
is fixed. As usual, the algorithm also keeps track of the homomorphism ¢ = ¢(a’),
which refers to nodes from body(7) only and thus also requires polynomial space.
After each step, certification can be checked—by guessing an extension &'—and the
algorithm proceeds at most B steps. Clearly, if no certifying sequence exists, then
the algorithm does not find any.

We emphasise that the algorithm neither verifies that sequence a’ is restricted nor
that it is minimal. An oblivious non-minimal sequence is fine as well—as long as it
certifies 7 and obeys the length bound B.

Therefore, IMP,, (DTGDwbc(8)]UDEGD[be(8)]) is in PSPACE, as claimed. O

Indeed, the implication problem for dtgds with weakly bounded context is com-
plete for PSPACE. This has been proven by a reduction from linear bounded auto-
mata [GNS20], similar to that for the implication problem for inclusion dependencies,
which is also PSPACE-complete [AHV95].

Proposition* 5.2.24. ImP, (DTGD[wbe(8)]) is PSPACE-hard for o > 1 and 8 > 0.

The last results indicate that allowing node variables with unbounded context in
both body and head of dependencies does indeed increase the worst-case complexity
of the implication problem, even though dtgds of Type (G3) are rather restricted. In
the last part of this section, we show for most of the other possible relaxations, that
the increase is even higher.

5.2.4. EXPTIME-Fragments

In our study of the implication problem for data-full distribution dependencies
above, we have ignored certain types of dependencies like the following, illustrated
in Table 5.1:

e dtgds where the head node variable and at least two body node variables have
unbounded context, like
— node-generating dtgds of Type (G4) or
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— data-collecting dtgds of Type (C3); and

e degds where at least both head node variables have unbounded context, like
— degds of Type (E3) or
— degds of Type (E4).

In the following we show that the extension of the previous fragments by one of these
types makes the interdependencies between nodes in chase sequence in the worst
case so complicated that it allows to model arbitrary problems that are solvable in
exponential time. Indeed, this already holds for smaller fragments, as shown further
below.

First, however, we prove the corresponding upper bound for arbitrary data-full
distribution dependencies.

Proof of Theorem 5.2.3. That ImP(DTGDflUDEGD) is in EXPTIME, follows quite dir-
ectly from the properties of restricted chase sequences for these dependencies provided
by Claim 5.2.18. Since the arity of relations is trivially bounded by the encoding size
of the dependencies, the length of such a chase sequence is in O (HZHQ : HIDDOH2HEH> ,
and hence exponential in the input. Clearly, an algorithm can determine valid re-
stricted chase steps (and keep track of the intermediate chase results) in exponential
time.

Hardness, in turn, is a consequence of Theorem 5.2.25. ]

Theorem 5.2.25. ImP(DTGDfluDEGD) is EXPTIME-hard. This lower bound already
holds if the input is restricted to one of the following combinations, even over schemas
with a maximal arity of 2, that is, for IMP(DTGD[¢f]UDEGD).

a) Node-generating dtgds of Type (G2) and data-collecting dtgds of Type (C3);
b) Node-generating dtgds of Types (G2) and (G4);

¢) Node-generating dtgds of Type (G2) and degds of Type (E4);

d) Node-generating dtgds of Types (G2) and (G3) and degds of Type (E3).

Proof. Without additional restrictions, the EXPTIME-hardness of IMP(DTGDI«f]) follows
from an early EXPTIME-completeness result for full (classical) tgds [CLM81]. This
result however relies on schemas of unbounded arity—for a fixed arity bound, the
problem is easily seen to be in NP. The arguments below show that in the presence
of node variables, hardness already follows for schemas with only nullary, unary and
binary relations.

For each of the four fragments, the argument follows the same line of reasoning. Fix
an EXPTIME-complete problem L and an alternating Turing machine M with linearly
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bounded space that decides L. We provide polynomial reductions from L based on
the general idea described next.®

Given a word w, an instance (X, 7) for ImMp, is computed such that the chase
simulates the computation of Turing machine M on input w. Basically, every node k
in the chase result represents a single configuration C'(k) of the Turing machine.

The dependencies in 3 are responsible for, first, the generation of the configuration
representations, and, second, to mark them accepting—if appropriate. As usual, for
an alternating Turing machine, a configuration C' referring to state ¢ is accepting if
one of the following conditions holds:

e state q is accepting; or
e state ¢ is universal and both its successor configurations are accepting; or

e state ¢ is existential and at least one of its successor configurations is accepting.
Finally, Turing machine M accepts input w if the initial configuration is accepting.

Let us consider this approach in more detail. We assume that the Turing machine
is of the form M = (Q, A, (41,02), g0, F') with a finite bipartite set @ = Q3 W Qv of
states that are either existential or universal. State gy € @ is the initial state and the
states in F' C @ are accepting. Furthermore, for each state ¢ € (Q and each symbol
a € A of the alphabet A = {aq,...,a:}, two transitions d1(g,a) and da2(q,a) are
defined. Each transition function uniquely determines a successor configuration C’
for each configuration C. This relation is denoted by C't; C” for the j-th transition
function 9.

Without loss of generality, we assume that the initial state is not accepting and
that, for each input w = wy ...wy, the machine uses only n + 2 cells of its tape.
Furthermore, the first and the last cell (with positions 0 and n + 1) contain marker
symbols a; = > and a; = <, which are never changed by the transition functions.
Also, the transition functions do not move left or right, respectively, when reading
these symbols. A configuration C' of M is represented as a triple (g, i, u), consisting
of a state ¢ € @, a position i € {0,...,n+ 1} and a word u € A™ that represents the
tape content >u<.

We want to refer to n + 2 positions of the tape and its contents over alphabet A. To
this end, a binary relation Succ establishes an order among n + 2 variables via the
set

Asuce = {Succ(mo, m1), ..., Succ(m,, Tnt1)}

of atoms and unary relations Alph,,...,Alph, and Alph are used either to distinguish
different symbols or select an arbitrary one via the set

5The reductions are inspired by a reduction for weakly guarded tgds by Cali et al. [CGK13].
Technically, however, they differ significantly from the original reduction because in distribution
tgds, each atom can refer to at most one node variable.
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Aaiph = {Alph, (a1),...,Alph,(oy)} U {Alph(a1),...,Alph(ay)}

of atoms. Furthermore, to represent configurations, a nullary relation State, for each
state g € @), a single unary relation Head for the position on the tape and a binary
relation Sym for the cell contents of the tape are used. More concretely, with each
state g, each position i € {0,...,n + 1} and each variable sequence u = (uq, ..., uy,)
of length n, we associate the set

Cqiu o {statey, Head(m;), }
U {Sym(mo, a1), Sym(m1,u1), ..., Sym(mp, up), Sym(mni1, o) }

of atoms, intended to represent a configuration (g, i, u) for some word u encoded
by u. Sometimes, a variable sequence wu is intended to represent an arbitrary word,
sometimes, a specific word v = vy ...v, € A" is intended instead. For the latter case,
let o be defined by a(vi...v,) = (¢, ..., ), where j; € {1,...,t} is the unique
index such that v; = a;, for each i € {1,...,n}, mapping words from A" to variable
sequences of length n.

Additional nullary relations Acc and Accy, Acco document acceptance. If Acc is
present on a node k, it marks the configuration C(k) itself accepting. Slightly
different, the presence of Acc; marks the j-th successor configuration as accepting
on node k.

The simulation of the Turing machine by the chase procedure follows different patterns,
dependent on the types of dependencies allowed in each case. The behaviour of this
procedure is described by the following algorithm for the proof of Statement a).

The other proofs follow similar approaches. Common to them are two phases: one
for the generation of nodes representing configurations (Lines 2 — 5) and another
for the propagation of acceptance flags (Lines 6 — 15). Accordingly, the set ¥ of
dependencies is always defined as the union X = 31 U X5 of two sets that reflect
these phases.

In all four reductions, the body of 7 provides a node representing the initial
configuration as well as, globally, the base information on the order of positions and
the alphabet (Line 1).

As a side note, some of the dependencies defined below are only needed for certain
choices of parameters. To keep the description simple, we use the symbol T to denote
a tautological (purely global) dtgd of the form Acc — Acc for the cases where the
dependency is not needed—instead of conditioning the addition of dependencies.
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Algorithm AATM

sim,a

Input: word w

1: add node kg representing (qo, 0, w)
2: for each possible configuration (g, ,v) where |v| = |w| do
3:  add a node k representing (g, i, v)

4. if g is accepting then

5: add Acc to k

6: repeat

7. for each pair (k,m) of nodes and j € {1,2} do

8: if C(k) F; C(m) and Accam then

9: add Acc; to k

10: for each node k with state ¢ do

11 if ¢ is existential and (Acci@k or Accpak) then
12: add Acc to k

13: if ¢ is universal and (Accj@k and Acceak) then
14: add Acc to k

15: until no more changes
16: if Accaky then

17:  accept

18: else

19:  reject

» Proof of a). ImMP(DTGD[flUDEGD) is already EXPTIME-hard if restricted to only
node-generating dtgds of Type (G2) and data-collecting dtgds of Type (C3) as input.
We start with the basic idea of the reduction from the acceptance problem for M
and provide the details afterwards.

» ldea. Subset ¥ is responsible for the generation of one node for each possible
configuration of the Turing machine (whether reachable or not). Configurations
with accepting states are directly marked as accepting. Subset s collects
acceptance markers for successor configurations. Based on these markers, it also
collects markers for the configuration itself.

Dependency 7 requires that fact Acc is present on node kg for the initial
configuration.

» Details. Dependency 7 relates to the input word w and is defined as follows.
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bOdy T ( suce U Aalph U qu,O,a(w))@K'O
head() & Accarg

To represent all possible configurations, ¥; contains a node-generating dtgd a”“t
of Type (G2) for every state ¢ € ) and every position i € {0,...,n + 1}.

body(o™t) £ Agyce U {Alph, (o), Alph, ()} U {Alph(u1), .. ., Alph(u,)}
head(o ‘mt) = (Cgim U{Acc | g € F})ak

Note that the acceptance marker Acc only occurs in those dependencies that
refer to an accepting state.

Finally, X9 contains data-collecting dtgds of Type (C3). First, to propagate
acceptance markers for successor configurations, it contains a dtgd Uérznzs] for
every state ¢ € @), every symbol ay, € A, every position i € {0,...,n+ 1} and
both j € {1,2}. In particular, these dependencies reflect the transition functions.
We exemplify the construction of this dependency under the assumption that
the transition 0;(q, ap) leads to state ¢, overwrites the cell content by a symbol

ag € A and moves one step to the right.

If the head is already on the last position, ¢ = n + 1, then agff{ffj E
Otherwise, this dtgd is defined by
def A~
body (o Zr}irisg) = Asuce U {Alphy, (u;), A]-Phg(ui)}
U Coiu@r U (Citra U {Acc})au
head (o' 7°;) = {Acc;}ax,
where @ = (u1,...,u;—1, U, Ui+1, - - -, Uy ) represents the new tape content, pos-

sibly differing from w in the ¢-th position.

Second, to derive acceptance markers based on the information about the
successors’ acceptance behaviour, g also contains a dtgd o7 for each universal
state ¢ and, analogously, two dtgds of§ and of% for each existential state.
Formally, they are defined as follows.

body(05°) < {State,, Accy, Acca}ak

body(c05%) < {State,, Acc Jak

body(c05%) < s tateq,ACCQ}@/{

head (o) & head(o gfc)  head (o °%) & (Acclak

Obviously, the mapping described above is total and the output (X, 7) can be
derived in polynomial time from M and w. The mapping also satisfies the
reduction property: Turing machine M accepts input w if and only if ¥ = 7.
This can be proven by a straightforward induction showing that each node k
contains fact Acc if and only if configuration C'(k) is accepting.
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5. Distribution dependencies and their implication problem

» Proof of b). IMmp(DTGD[¢fjUDEGD) is already EXPTIME-hard if restricted to only
node-generating dtgds of Type (G2) and of Type (G4) as input. We start with the
basic idea of the reduction and provide the details afterwards.
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» Idea. The following construction deviates from the previous because acceptance
markers cannot be ‘collected’ anymore on the node representing a configuration
(only node-generating dtgds are allowed). To circumvent this restriction, each
configuration is now represented by up to four nodes, k, k1, ko, k*. Intentionally,
the nodes only differ in the presence of fact Acc, Accy or Acco, respectively, as
derived in the second phase.

Subset X5 is responsible for the generation of (only) one node per configuration—
either with or without Acc. Subset Y9 generates further nodes ki and ko for
configurations with markers Acc; and Acco, if appropriate. Based on these mark-
ers, it generates another node k*, depending on whether the state is universal
or existential.

» Details. Dependency 7 demands that there is a node k* representing the initial
configuration with an acceptance flag, if there is some node k representing the
initial configuration. It is defined as follows.

body(7) E (Asuce U Aatph U Cgo 0.a(w)) @K

head(7) = (Cyo.0,a(w) U {Acc})ar*
Subset 31 is the same set of dependencies as used in the proof of a), containing
only node-generating dtgds of Type (G2). Subset X9 however is defined differ-
ently, using node-generating dtgds of Type (G4) instead of data-collecting dtgds.
Again, this subset contains two forms of dependencies. First, to propagate
acceptance markers for sucessor configurations, it contains a dtgd a;f,alffj for
every state ¢ € @, every symbol a, € A, every position i € {0,...,n + 1}
and both j € {1,2}. As before, we exemplify the construction for a transition
0;(q, ap) that leads to state ¢, overwrites the cell content by a symbol a, € A
and moves one step to the right.

If the head is already on the last position, i = n + 1, then o%#1s. -

q,h,1,]
Otherwise, this dtgd is defined by

def A
body (o' i%;) = Asuce U {Alphy, (u;), Alph, (@;)}
U Coiu@h U Cgit1,a@H
head(afﬁ%ﬁfj) = (Cqiu U{Acc;})ar;
where @ = (uy,...,uj—1,Uj, Uit1,...,Uy) represents the new tape content, as
above. Furthermore, subset Xy contains dtgd o3 for each universal state g.
def

body(a5) = (Cqi U {Acci})ars U (Cgin U {Acca})ars
head () E (Cqiu U {Acc})ar®,
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Analogously, ¥ contains two dtgds of§ and o7 for each existential state g.

Again, the correctness of this construction can be proven with a straightforward
induction.

» Proof of c). IMmp(DTGDflUDEGD) is already EXPTIME-hard if restricted to only
node-generating dtgds of Type (G2) and degds of Type (E4) as input. We start with
the basic idea of the reduction and provide the details afterwards.

» Idea. The following construction resembles that in the proof of b). Whereas
there are up to four nodes generated conditionally in the previous construc-
tion, now exactly four nodes k, k1, ko, k* are generated unconditionally in the
beginning. Fach of these nodes has a specific fact: Eval, Acc, Accy or Acco.
Later, some of these nodes are merged conditionally: a configuration is viewed
as accepting if there is a node that represents it and where both Eval and Acc
are present.

» Details. Dependency 7 requires that, if there is a node representing the initial
configuration, there is also a node that represents the initial configuration and
contains Eval and Acc.

body(7) j:“ Asuce U Aaiph U Cgo 0.a(w)@F

head(r) & (Cgo.0,0(w) U {Eval, Acc})ar’

Subset X1 contains four dependencies o} 1, o0, o'y, o' of Type (G2) for

each state ¢ € @ and each position ¢ € {0,...,n + 1}. Dependency o
defined as follows.

bOdY(Uinit ) = Asucc U Aalph

q,eval

head(oi™ ) = (Cpin U {Eval})ak

q,eval

init

q,eval 18

The other dependencies are defined analogously (with Accy, Acco or Acc in the
head).

Subset Y9 contains degds of Type (E4). First, for each accepting state g,
there is a degd ¢2<¢, for each position i € {0,...,n + 1}.

q’zﬁ*

body(02%,) = (Cqin U {Eval})ar U (Cqiw U {Acc))ar®

gézé* def *
head(05%,) = (k= k")
These dependencies require the Eval- and Acc-representations of the same
configuration to be merged. Second, for each state ¢, each symbol ap € A, each
position i € {0,...,n + 1} and both j € {1,2}, a degd o{"}"}*; of Type (E4).

body(agff{ffj) L Asuce U (C4i+1,a U {Eval, Acc})ap
U (Cqiu U {Eval})ar U (Cyiwu U {Acc,})ak;

head(ofmams ) = (k = r;)
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Third, there is a degd o35 of Type (E4) for each universal state g and each

position i € {0,...,n + 1}.

body (a5  (Cqiu U {Eval, Accy, Acca})ar U (Cqiw U {Acc})ar*

head(02%) & (k = K*)

q?l

Analogously, there are two degds 075 and 0%, for each existential state. As

before, the correctness of this construction can be proven with a straightforward
induction.

» Proof of d). IMmp(DTGD[¢fJUDEGD) is already EXPTIME-hard if restricted to only
node-generating dtgds of Type (G2) and (G3) and degds of Type (E3) as input. We
start with the basic idea of the reduction and provide the details afterwards.

136

» Idea. Different from the previous approaches, this time nodes are generated
more hesitantly. In the beginning, only nodes for configurations with accepting
states are generated. Then, nodes for predecessor configurations are generated
with acceptance markers Acci or Accs, respectively. Each configuration is
effectively represented by at most one node, due to degds of Type (E3). In
particular, both acceptance markers are guaranteed to be on the same node—if
present—and thus can be referenced by a node-generating dtgd of Type (G3)
for the conditional marking with Acc.

» Details. Dependency 7 requires that there is a node representing the initial
configuration and that it is marked as accepting.

bOdY(T) d:Cf Asucc U Aalph
head(T) E (Cgo.0w U {Acc})ar

Subset X7 contains the same dependencies as in the proof of a), albeit not for
all but only for accepting states, that is, for every ¢ € F and every position
ie€{0,...,n+1}.

Subset Yo contains three types of dependencies. First, for each state ¢, each
symbol ap € A, each position i € {0,...,n+ 1} and both j € {1,2}, there is a
dependency a;f,alffj as defined next.

body(o71%)) = (Cai1.0 U {Acc})ap
head(o{"3%) = (Cgiu U {Acc;})ak

Second, there are dependencies to mark universal and existential states accepting.
For every universal state ¢ and every position i € {0,...,n + 1}, there is

dependency o3 as follows.

body (o35 o (Cqiu U {Accy, Acco})ap
head(02%) = (Cqiu U {Acc})ar
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Dependencies 0,5 and o
s

are defined analogously.
Third, for every state ¢ and every position i € {0,...,n + 1}, there is a
degd 07" of Type (E3) that requires representations of the same configuration

q7Z
to be located on the same node.

acc

qi2 for every existential state ¢ and every position ¢

body(075"5%) = Cq i w@k U Cqiu@p

head(ag?frge) oot (k= p)

The correctness of this construction can be proven, again, by induction.

In each case, the set X of dependencies obeys the stated syntactical restrictions and
implies dependency 7 if and only if Turing machine M accepts input w. O

This concludes our complexity-theoretical investigation of the implication problem
for distribution dependencies.

5.3. Related work and bibliographical remarks

In this chapter, we have introduced and studied distribution dependencies as a means
to specify placement strategies—or properties thereof—for distributed relational data
declaratively.

Naturally, distribution dependencies are not the only approach to combine typical
questions in distributed data management with the extensive literature on constraints.
Two approaches known to the author, data exchange and Webdamlog, share particular
similarities, which we briefly discuss next.

The data exchange setting [ABLM14], for instance, can be viewed as the use of
distribution dependencies on (a global instance and) exactly one local instance. Here,
the focus lies on the computation of solutions, which are usually determined via the
chase. On the one hand the ‘distribution’ in this setting is hence rather restricted,
while on the other hand the allowed use of dependencies is sometimes more generous.

On the contrary, the Datalog-dialect Webdamlog—from which we borrow the
concept of annotated atoms—, has been designed explicitly to capture the distribu-
tion of relational facts over multiple nodes. While our investigation addresses the
implication problem, the research on Webdamlog centred around a study on the
expressivity of some fragments, yielding a hierarchy [ABGA11], and the implementa-
tion of systems that support the dialect [AAM ™13, AAS13, MSAM15]. Furthermore,
not only the problems studied are different but there are also significant differences
in the interpretation (or evaluation) of Webdamlog rules compared to distribution
dependencies. In particular, Webdamlog rules are evaluated under a fixpoint operator,
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which even allows facts to vanish over time, whereas, for distribution dependencies,
the chase behaves monotonically—modulo the unification of terms via degds.

Ignoring any particular focus on distributed relational data, there is a long tradition in
studying the implication problem, using the chase in particular, for various classes of
constraints. The results in Section 5.2 contribute to this tradition and it is therefore
natural to ask how they relate to previous results. Below, we try to shed light on
these relationships.

Motivated by their practical importance, constraints for relational databases
have been studied early on. Starting with functional dependencies, introduced by
Codd [CodT71], several other types of constraints emerged. Many of them have later
been subsumed by tuple- and equality-generating dependencies [BV84] (and embedded
dependencies [Fag®82]). Similarly, the chase procedure has been used for simpler
types of constraints first, then named by Maier, Mendelzon and Sagiv [MMS79] and
eventually extended to tgds and egds [BV84].7

Distribution dependencies as ‘classical’ dependencies. The use of node variables
in annotated atoms, like k in R(z,y)ak, fits seamlessly into the (standard) model
of relational databases. The purpose of the notational deviation is solely meant to
emphasise the different roles of attributes—and to clarify the respective syntactical
restrictions studied.

In general, a distribution dependency over schema S is straightforwardly translated
into a classical dependency over schema S U S’, where S is used for ‘global’ facts
while &’ is used for ‘local’ facts. For each relation symbol R in S with arity k, there is
a fresh relation symbol R’ in 8’ with arity k+1. A classical atom R(x1,...,xy) is then,
using a node variable k, translated into the ‘localised’ atom R/(k,z1,...,x). For
instance, the classical dtgd R(z,y), S(z)ex — R(z,y)ak yields R(z,y), S (k,z) —
R'(k,z,y). This corresponds to the application of ext,, with an additional renaming
of the relation.

Due to this translation, our study in Section 5.2 implicitly provides complexity-
theoretical results on certain fragments of classical dependencies. Notable properties
of these fragments are:

the bipartition of the variable sets and their positions (attributes),
the restricted use of existential quantification,
the bounded arity of atoms (mostly) and

Ll O

the bounded context of certain node variables.

All these aspects with exception of the last one, to the best of the author’s knowledge,

"More details on the historical background of constraints and the chase can be found in overview
articles and standard works [FV84, LO18, AHV95], for instance.
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have been addressed already in earlier research, even though in different combinations
and with varying degree.

First, with its distinction of node and data variables, distributed dependencies can be
regarded as a weak form of ‘typed’ dependencies, where each variable may occur at
most once in each atom and only in the same position for each relation. While node
variables may only occur—once—in the first position of §’-atoms, data variables
may appear in all other positions, even repeatedly. Although the distinction between
typed and untyped dependencies does not always help to lower complexity (see
Theorem* 5.2.1, for instance), it is helpful in the fragments studied above.

Second, existential quantification is allowed only in a very limited form in data-full
distribution dependencies: existential variables may only occur in the first position
in atoms over &’. In the literature, restrictions to the use of existential variables
are a common approach to yield decidable fragments of tgds (and egds). Often,
however, the criteria there are more involved and may even depend on the interaction
with other dependencies in a given set of dependencies. For data-full distribution
dependencies with (weakly) bounded context, on the contrary, we have established a
simple syntactic restriction per dependency.

Next, we show that the restrictions underlying other prominent fragments are
orthogonal to those studied in Section 5.2.

Example 5.3.1 (Orthogonal restrictions). The set ¥ = {o1,02} of distribution
dependencies, consisting of

o1 ¥ R(z)ex — T(x)op and,
o2 = T(z)ar, T(y)ak, T'(z)ap, T(w)ep — U(z,y, z,w)ak

has bounded context. According to the translation above, this set induces a set ¥/ =
{0}, 04} of classical tgds, where
o} < R(k,x) = T(u,z) and,

; def

09 = T(Hv 1’), T("£7 y)? T(M? Z)? T(M? ’LU) - U(K/v T, Yz, w),
which is neither sticky nor weakly guarded nor warded. Set ¥ is not sticky [CGP10)]
because the ‘marked’ variable p occurs more than once in of. It is not weakly
guarded [CGK13] because a single atom cannot contain both variables x and p,
which occur in ‘affected’ positions of o}. It is not warded [GP15, BGPS19] because
the ‘dangerous’ variable x appears in more than one atom in the body of 5.

Furthermore, orthogonality to the restriction of weak acyclicity is witnessed by
another set of distribution dependencies. For instance, by the set that contains

n < R(z,y)ar — S(z,y)au and
™ = S(z,x)ak — R(z,z)ay,
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two data-full distribution dependencies with bounded context. This set is not weakly
acyclic because its ‘dependency graph’ contains a cycle through special edges between
the node attributes of both relations [FKMPO05, Definition 3.7]. |

Lastly, to achieve the lower complexity bounds of NP and PSPACE, we bound the
amount of data that can be associated with each node and, in particular, the amount
of data that can be referenced from different nodes. The arity bound is a first—
and usual—way for such a restriction whose influence becomes visible also in other
problems (containment, parallel correctness and more). Yet, alone it is insufficient
when existential variables are allowed and, hence, complemented by the context
bounds in this thesis.

Bibliographical remarks. The complexity results in Section 5.2 are joint work of
the author with Frank Neven and Thomas Schwentick and accepted for public-
ation [GNS20].® Moreover, in their work, the authors have studied distribution
dependencies with constants and comparison atoms (like #, <, < and so on) too.
This may be deemed practically interesting as it allows, for instance, a more direct
modelling of range-based partitionings.

For these extended distribution dependencies, the fragments considered in Sec-
tion 5.2 have a similar worst-case complexity. For dependencies with bounded
context, complexity rises from NP to IT5, while the PSPACE- and EXPTIME-bounds
carry over, as do the proof ideas. Basically, there are only two differences. First, chase
sequences may fail because of violated comparison atoms. Second, multiple chase
sequences have to be considered. This accounts for constants and the ‘relative’ order
of terms (constants and variables). The latter results in an additional—universally
quantified—extra input for our NP-fragment while it does not affect the higher
bounds.

8Bas Ketsman also contributed to an early precursor of this work, which considered conjunctive
queries over distributed databases with (classical) functional and/or inclusion dependencies for
the local and global databases. The expressivity of this formalisation is rather restricted. For
instance, parallel-completeness can only be formulated for conjunctive queries that are ‘guarded’,
that is, have an atom that comprises all variables. This excludes even simple ‘cross products’ like
the full query H(z,y) < R(z), S(y).
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6. Conclusion

This thesis provides a detailed analysis of three problems on automatic reasoning
about relational data that is distributed in a network of servers and the evaluation
of queries in this network, with a strong emphasis on complexity theoretical aspects:
parallel correctness, parallel-correctness transfer and the implication problem.

Since overviews of the results can be found in the corresponding chapters, we
summarise the author’s contributions presented in this thesis only coarsely. Then,
we point out open problems and further directions.

6.1. Overview of results

Our study of parallel correctness in Chapter 3 starts with the II5-completeness result
for the equivalent parallel completeness problem on unions of conjunctive queries.
Then, for queries that additionally allow negation, we show that the complexity
remains unchanged only if the arity of relations is bounded in advance. In the
general case, it becomes coNEXPTIME-complete—a result that also influenced the
knowledge about the containment problem for the classes CQ™ and UCQ™. After
that, we consider fragments like full queries and polarised queries. For full queries, we
obtain a lower bound of coNP and argue that the given reduction connects complexity
results between containment and parallel correctness in a more general way, for many
query classes with suitable closure properties. For polarised queries, we provide
characterisations of parallel soundness and parallel completeness and show that these
problems are ITh-complete again, independent of a priori bounds on the arity of
relations.

Then, in Chapter 4, our study continues with parallel-correctness transfer, which
abstracts from specific policies to families of policies induced by another query.
We show that, for unions of conjunctive queries, this problem is IT5-complete in
general. For the ‘semantic’ fragment of strongly minimal queries, we prove it to be
II5-complete if at least one of the input queries may contain disequalities. Lastly,
for polarised queries with negation we provide a characterisation and a matching
I15-completeness result for parallel-soundness transfer.

Finally, we study the implication problem for distribution dependencies in Chapter 5.
There, we consider several fragments of data-full dependencies, based on compar-
atively simple syntactic restrictions, which rely on the notion of a variable contet.
For dependencies with bounded context, we prove the implication problem to be
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6. Conclusion

NP-complete, while it is PSPACE-complete for the slightly more generous class of
dependencies with weakly bounded context. Eventually, we show for most of the
remaining possible extensions that they lead to an EXPTIME-complete implication
problem.

6.2. Open problems and further directions

Even in combination with other existing work known to the author, this thesis is far
from giving a complete picture of the complexity landscape of the problems under
consideration; several questions remain open. Some reside on a more technical level,
others on more abstract levels.

Technically, several questions result from the ‘gaps’ in the previous overview,
even for the one specific setting considered in this thesis: relational databases in
the MPC model, evaluated in a naive fashion in just one round. For instance,
while we do provide a characterisation of parallel-soundness transfer for polarised
queries, we do not provide a characterisation of parallel-completeness transfer between
them. Specifically, we do not know how the policy-dependent notion of P-minimal
valuations may translate into a notion that depends on two queries only. More
generally, we do not know any (non-trivial) characterisations or complexity bounds
for parallel-correctness transfer and its variants for the class UCQ™ in general. Also,
for distribution dependencies, there are certain combinations of fragments (say, data-
full dependencies of Types (G2) and (E3)) whose exact complexity is not determined.

On a higher level, there are also many possibilities for variations of the setting. We
have mentioned some already in Sections 3.4 and 4.4 on related work: different query
semantics (bag instead of set semantics), different evaluation mechanisms (in ordered
networks), different query languages (spanners). Furthermore, these works also
pointed to other, related problems: the question of parallelisability (for conjunctive
queries under bag semantics) or a more general variant of parallel correctness (like
splittability for spanners), where a different query may be evaluated locally, for
instance.

Other aspects—not or only barely considered so far—are presumably of theoretical
and practical interest. In this thesis, we have considered the distributed evaluation
in one round. In practice, computations usually span multiple rounds. While it is
possible to generalise some of the problems studied here by simply ‘chaining’ them if
the number of rounds is known in advance, more elaborate approaches and different
questions are likely to arise—especially if there is no bound on the number of rounds.
Also, a closer look on distribution policies might be worthwhile. In particular, it
seems interesting to compare policies with respect to the load they produce or the
amount of communication that is necessary to satisfy them, coming from some
distribution. Such quantitative aspects are probably of high practical relevance.
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Appendix

A. Missing proofs

Proofs or arguments that are missing in the main text can be found here.

A.1. Parallel correctness

Lemma A.1. For query @' and policy P’ derived from query ) and policy IP as in the
proof of the constant elimination lemma (Lemma 3.2.12), the following properties
hold.

(P1) If V' is a minimal valuation for Q" and V'(y1,...,ys) = (c1,...,¢s),
then V"’ is also a minimal valuation for Q.

(P2) If V is a minimal valuation for @, then V(y; — ¢1,...,ys — ¢s| is minimal
for Q'.

Proof. We prove both implications by contradiction.

» Property (P1). Let V/ be an arbitrary minimal valuation for query @' that maps
variables (y1,...,ys) to the constants (cy, ..., cs) of the original query Q. Since every
variable in @ also occurs in @', the mapping V' is a valuation for query Q. It is also
minimal as the following argument shows.

Assume, towards a contradiction, that V'’ is not minimal for ). Then, there
exists a valuation U for ) such that U <%OS V' holds. This particularly implies
U(head(Q)) = V'(head(Q)) and U(pos(Q)) € V'(pos(Q)). From valuation U, we
can derive another valuation U’ for Q' in turn, U’ & Uly; — ¢1,. .., ys — ¢s]. This
valuation, however, contradicts the minimality of V' for @', as argued next.

First, all valuations agree on the head variables and on the required Const;-facts by
definition of U’ and U <¢)® V. More precisely, we have U’(head(Q)) = U(head(Q)) =
V' (head(Q)) and

U'({Constq(y1),...,Consts(ys)}) = V'(Consty(y1),. . .,Consts(ys)}).

Then, for the remaining atoms, we can infer

U'(o(pos(Q))) = U'(a(pos(Q))) = U(pos(Q)) & V'(pos(Q)) = V' (pos(Q))
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because U'(y;) = U'(0(c;)) = ¢; = U(c;) for every i € {1,...,s}. Hence, U’ <" V',
contradicting the choice of V', as claimed.
Therefore, valuation U cannot exist and valuation V"’ is indeed minimal for query Q).

» Property (P2). Let V be an arbitary minimal valuation for query @. Clearly,
the mapping V' = V]y1 — c1,...,ys — ¢ is a valuation for query Q' because, by
definition, var(Q') = var(Q) W {y1, ..., ys}. Furthermore, valuation V’ is minimal, as
shown next.

For a contradiction, assume that a valuation U’ for Q' exists such that U’ <>° V’
holds. Since every Const;-fact occurs only once in @', this implies U'(y1,...,ys) =
(c1y...,¢5) =V'(y1,...,ys) and thus both valuations require the same sets of Const;-
facts, U'({Const1(y1),...,Consts(ys)} = V'({Consti(y1),...,Consts(ys)})

With U'(pos(Q')) & V'(pos(Q")), this implies U'(c(pos(Q))) & V'(a(pos(Q))),
which is equivalent to U’(pos(Q)) € V(pos(Q)) because U'(c(¢;)) = V'(0(¢)) = ¢
for every i € {1,...,s}. Since valuation U’ agrees with V' and V on the head
variables of query @, this results in U’ <g°s V', contradicting the choice of V.

Therefore, valuation U’ cannot exist and valuation V' is minimal for query @'.

Hence, both properties hold as claimed. ]

Lemma A.2 (Relation gﬂé’? is a preorder). Relation S% is a preorder for every

polarised query Q) € UCQ;(’)TH and every policy P.

Proof. Fix a query @ and a policy P. By Definition 3.3.17 (Properties (1), (2)
and (3a)), relation S% subsumes preorder <¢g and is therefore reflexive.

It remains to show that relation <% is transitive. To this end, let Vi, V5 and V3
be arbitrary valuations for () such that V; Sg V5 and V5 gg V3 hold. We claim

that then V; §H22 V3 holds too. For Properties (1) and (2) in Definition 3.3.17 this is
immediate because

Vi(head(Q)) = Vs(head(Q)) = V3(head(Q))

and
Vi(pos(Q)) € Va(pos(Q)) € Vs(pos(Q)),

where the left-hand equality /inclusion follows from V §% V5 and the right-hand
equality /inclusion from V5 §% V3. In the remainder of this proof, we show that V;
and V3 also satisfy Property (3) in Definition 3.3.17 by the following case distinction
on the relationship between Vi and Va.

» 1. Case (Vi(neg(Q)) C Va(neg(Q))). If, additionally, Va(neg(Q)) S Vz(neg(Q))
holds, then transitivity of inclusion implies Vi (neg(@)) C Vz(neg(Q)) and Prop-
erty (3a) is satisfied straightaway.
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Otherwise, valuation Vo and V3 satisfy Property (3b). Thus, there exists a node
ko € P~1(V5(pos(Q))) such that

Va(neg(Q)) NP(k2) € Vs(neg(Q)) (1)
Va(neg(Q)) NP(k2) € Vs(neg(Q)) NP(k3) (2)

for every k3 € P~1(V3(pos(Q))). Since Vi (pos(Q)) C Va(pos(Q)), node ko is also
in the set P~1(V;(body(Q))). Therefore, this node witnesses the satisfaction of
Property (3b) by V1 and V3, as the next two inclusions demonstrate. First,

Vi(neg(Q)) NP(ka) C Va(neg(Q)) NP(k2) C Vi(neg(Q))

follows by the case assumption, Vi (neg(Q)) C Va(neg(Q)), and Inclusion (1). Second,
for every node k3 € P~1(V3(pos(Q))), inclusion

Vi(neg(Q)) NP(k2) € Va(neg(Q)) NP(k2) C V(neg(Q)) NP(k3)

follows by the case assumption and Inclusion (2).

Therefore, valuation V; and V3 satisfy Property (3).

» 2. Case (otherwise). By assumption, valuations V; and V5 satisfy Property (3)
but not Property (3a). Hence, they satisfy Property (3b): there is a node k; €
P~1(V1(pos(Q))) such that

Vi(neg(Q)) NP(k1) € Va(neg(Q)) and (3)
Vi(neg(Q)) NP(k1) C Va(neg(Q)) N P(k2) (4)
for every node ko € P~1(Va(pos(Q))).
If V5(neg(Q)) C Va(neg(Q)) holds, then Inclusions (3) and (4) directly imply

Vi(neg(Q)) NP(k1) € V3(neg(Q)) and
Vi(neg(Q)) NP(k1) € Va(neg(Q)) NP(k3)

for every node k3 € P! (V3(pos(Q))) because P~ (V3(pos(Q))) S P~ (Va(pos(Q))),
since valuation V3 requires at least all facts required by valuation V5. Hence, valu-
ations V; and V3 satisfy Property (3b).

Otherwise, there is a node kg € P~1(V2(pos(Q))) such that

Va(neg(Q)) NP(k2) € Va(neg(Q)) and
Va(neg(Q)) NP(k2) € Va(neg(Q)) NP(k3)
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for every node k3 € P~1(V3(pos(Q))). The choice of nodes k1 and ks implies then

Vi(neg(Q)) NP(k1) € V3(neg(Q)) and
Vi(neg(Q)) NP(k1) € Vs(neg(Q)) NP(k3)

in particular because the node on the right-hand side of Inclusion (4) is quantified
universally. Hence, valuations V; and V3 satisfy Property (3b).

This completes the case distinction and proves that valuations V7, and V3 satisfy also
Property (3). O

Proposition A.3. PSoUND(CQy,,.,Pust), restricted to polarised queries, is II5-hard,
even over a single-node network.

Proof. The following hardness proof describes a reduction from II,-QBF. This
reduction is similar to the reduction for the IT5-hardness of parallel completeness
for CQgom (Proposition 3.2.10). The correctness argument however is based on
Condition (PSound-pol) now, provided by the characterisation in Proposition 3.3.15.

Every input formula ¢ = Va3yy for Il,-QBF with a propositional (quantifier-free)
subformula % in 3-CNF can be mapped to a query @ € CQg,,, and a policy P € Py
in the following way. Let @ = (x1,...,2,) and y = (y1,...,ys) and let ¢ consist
of clauses C1,...,Cy, where C; = ({;1 V £j2V {;3) for every j € {1,...,p}. The
database schema underlying query and policy contains a binary relation Neg for and
a ternary relation C for the literals and the clauses of v, respectively. Data values
0,1 € dom are used as truth values.

Set Fsat S Freg U Felau comprises two sets of facts,

def

Freg = {Neg(0,1),Neg(1,0)} and
Folon = {c(w)|je{l,....p} and w € B}

which encode complementary truth values and satisfied clauses, respectively,—where
the set BT < {0,1}3 — {(0,0,0)} contains all triples of truth values with at least one
true component.

Query Q refers to variables x1, ..., %y, y1,-.-,y, and T1, ..., Tr, Y1, - ., Ys that repres-
ent the positive and negative literals, respectively, that may occur in . The query’s
head head(Q) = H(z1,...,z,) comprises all positive literals over the universally
quantified variables while its body comprises positive atoms pos(Q) o Freg U Alig
and negated atoms neg(Q) & Fotan U Actay for

At j:ei {Neg(z;,z;) | i € {1,...,r}} U{Neg(yi,y;) | i € {1,...,s}} and
Actan = {C(451,452,453) | 7€ {1,...,p}},
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where—with slight abuse of notation—each literal ¢;;, = x; is interpreted as vari-
able x; and each literal ¢} = —z; as variable Z; (and analogously for literals over
propositions yi, ..., Ys).

Single-node policy P & {ksat } X Fsat marks node kg, responsible for all facts in Fyyy.

Query Q is obviously polarised (with schema ST = {Neg} and S~ = {C}) and can be
computed from ¢ in polynomial time, just like the representation of P as a list of pairs.
Furthermore, the mapping is total. Hence, it remains to prove that it satisfies the
reduction property: ¢ € II,-QBF holds if and only if (Q,P) € PSounDp(CQy,,,,Piist)-

» Only if. Assume that ¢ € TI5-QBF. We show that query @ is parallel-sound under
policy P. To this end, let G be an arbitrary instance over P. Since policy IP is defined
over a single node, it suffices to show that Q((P>G)(ksat)) € Q(G). To this end,
let V' be an arbitrary valuation that satisfies () on node kgat.

Obviously, valuation V' requires exactly facts Fneg, that is, V(pos(Q)) = Fueg,
because Freg C pos(Q) and node kg is only responsible for these two facts over ST.
In particular, Freg € G and V(Ajy) € {Neg(0,1),Neg(1,0)} holds. Furthermore,
FeaauNG = 0 because query @ prohibits facts Fepay C neg(Q), valuation V is satisfying
and node kg, is fully responsible for these facts.

Then, valuation V induces a truth assignment in a natural fashion: let 3, be defined
by Be(xi) = V(x;) for every i € {1,...,r}. Since ¢ € II,-QBF by assumption, there is
a truth assignment 3, on y such that 5 U By = 1. From this combined truth assign-
ment, a valuation V’ can be derived where V'(z;) = Bz(x;), for every i € {1,...,7},
and V'(y;) = By(yi), for every i € {1,..., s}, and variables Z1,...,Z,,¥1,..., s are
mapped to the respective complementary values. In particular, valuations V and V'
agree on the head variables x1,...,z,. Valuation V' satisfies Q on G because, as
previously argued, Fneg € G and Felay NG = 0 and furthermore, V'(pos(Q)) € Fneg
by definition of V’ and V’(neg(Q)) C Felau as argued next. The values of £;1,£;2,¢;3
under V' faithfully represent the truth values of the literals in the j-th clause of
formula 9 under assignment (3, U 8y. This assignment is satisfying by assumption
and therefore does not map all three literals of any clause to 0. Hence, every atom
in Agau is mapped to some fact in Fejay.

Therefore, valuation V' witnesses that the fact locally derived by V is also derived
globally. This implies that query @ is parallel-sound under policy P.

» If. Towards a proof by contraposition, assume that ¢ ¢ II,-QBF. The following
argument shows that query @ is then not parallel-sound under P, which is witnessed
by instance G = {Neg(0, 1), Neg(1,0), (0, 0,0)}.

By assumption, there exists a truth assignment (3, on x such that there is no
truth assignment 3, on y such that 8, U 3, satisfies ). Let V' be the valuation for @)
induced by [, on the universally quantified variables together with V' (y;) = 0 and
V(y;) = 1 for every i € {1,...,s}. Obviously, valuation V satisfies () on the local
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instance (P> G)(ksat) of node kgy because the required facts V(pos(Q)) = Freg are
contained in both G and P(kg,t) while none of the prohibited facts occurs in the local
instance—mode kgt is not responsible for C(0,0,0), the only C-fact in instance G.

However, fact V(head(Q)) is not derived globally. For the sake of contradiction,
assume that a globally satisfying valuation V' exists that agrees with V on the
head variables. Because V'(Aj;) C Fheg, valuation V'’ unambiguously induces truth
assignments -y, on  and 7, on y. From V’(head(Q)) = V(head(Q)) we can infer that
assignment -y, is identical to ;. Moreover, valuation V' maps every atom in Ay
to a fact in Fepay because V' (neg(Q)) NG = () implies V'(neg(Q)) N {C(0,0,0)} = 0.
But then the existence of truth assignment -y, contradicts the choice of ;. Hence,
there is no such valuation V.

Therefore, valuation V' witnesses the local derivation of a fact that is not derived
globally. Thus, query @ is not parallel-sound under policy P.

This proves the mapping to be a polynomial reduction from II,-QBF. ]

Lemma A.4 (Constant elimination and parallel soundness). The canonical exten-

sion of the reduction in the proof of Lemma 3.2.12 to queries from UCQ;(’;EH

preserves parallel soundness.

also

Proof. Let @ be a query from UCQ;&?&H with constants cy, ..., cs and let P be a policy.
The canonical extension of the reduction yields a constant-free query @', where the
substitution o = [¢1/y1, ..., ¢s/ys| is applied to the head, the positive atoms and the
disequality atoms as in the original proof and, additionally, to the negated atoms,
neg(Q') = o(neg(Q)). Policy P’ is the same as before.

We claim that query @ is parallel-sound under policy P if and only if query Q' is
parallel-sound under policy I’ and prove both implications separately.

» Only if. Assume that @ is parallel-sound under P. We show that then @’ is
parallel-sound under P’ too. To this end, let G’ be an arbitrary global instance over P’
and let V' be valuation that satisfies @ on the local instance (P’ >G’)(k) of some
node k € net(P’). Node k is either a node from the original policy, k € net(PP), or
node newly introduced by P’ that is, k € {¢1,...,0s}.

In the latter case, the construction of P’ guarantees that node & is responsible for all
facts prohibited by V. Thus, V'(neg(Q"))N(P' > G")(k) = 0 implies V'(neg(Q’))NG’ =
(). Clearly, the facts required by V'’ are part of the local instance only when they
also occur in the global instance. Hence, valuation V' satisfies query @’ also on G’.

In the former case, valuation V' requires facts Consti(cy),. .., Consts(cs), that is, it
maps variables y1, ..., ys to data values ¢1,. .., cs. In particular, mapping V' is then a
valuation for the original query @, which requires (here and in the following: modulo
Const;-facts) and prohibits the same facts as V' for ', respectively. Since query @ is
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parallel-sound under policy P, there is a valuation W for @) that derives the same fact
as V' for Q and is satisfying on the global instance G that results from G’ by removal
of all Const;-facts. The induced valuation W' & Wy, — c1,...,ys — ¢s] for @, in
turn, requires, prohibits and derives the same facts for Q' as W for ). In summary,
valuation W' satisfies query @’ globally (because G’ contains the Const;-facts, also
required by V') and derives the same fact as the locally satisfying valuation V.

In both cases, the locally satisfying valuation V' for Q" has a globally satisfying
counterpart. Therefore, query @’ is parallel-sound under policy P'.

» If. Now, assume that query @’ is parallel-sound under policy . We show that
this implies parallel soundness of query @) under policy P. Let G be an arbitrary
global instance over P. Furthermore, let V' be a valuation that satisfies ) on the
local instance (P> G)(k) of some node k € net(P).

Then, the mapping V' & V{y1 — c1,...,ys — ¢s] is a valuation for query Q'. We
consider a slightly extended global instance, ¢’ = G U {Const(c1), ..., Const(cs)}.
Clearly, valuation V' satisfies query @’ on the corresponding local instance (P’ > G') (k)
of the same node k. Furthermore, since @’ is parallel-sound under P’, there is a
valuation W’ for )" that derives the same fact on G’. Moreover, valuation W' maps
variables y1,...,ys, just like valuation V', to data values cy,...,cs. Therefore, it is
also a valuation for the original query @), deriving, requiring and prohibiting the
same facts. In particular, it satisfies query @) on the global instance G and derives
the same fact as valuation V for Q. Hence, query @ is parallel-sound under policy P.

As claimed, query @ is parallel-sound under policy P if and only if query Q' is
parallel-sound under policy P’. O

A.2. Parallel-correctness transfer

The following is restatement of Proposition 4.2.14. The proof below is very simple
and straightforward adaptation of the proof for (standard) transfer [AGK*15].

Proposition A.5 (Characterisation of mild transfer). For queries Q1,Q2 € ucQ7,
parallel completeness transfers mildly from ()1 to Q9 if and only if they satisfy
Condition (mPComp-T).

Proof. We prove both implications separately.

» If. Assume that Condition (mPComp-T) is satisfied by queries 1 and Q2. We
show that parallel completeness transfers mildly from Q1 to Q2. To this end, let P
be a policy such that, first, query @1 is parallel complete under P and, second, the
policy’s universe contains at least as many data values as any disjunct of ()1 contains
variables.
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Let V5 be a minimal valuation for (2 over P. By assumption, there exists a minimal
valuation V; for ()1 that is a fact-cover of V3, that is, with V2(pos(Q2)) C Vi (pos(@1)).
Since query @i is generic, we can assume that Vj refers to values from univ(P)
only. In other words, V; is a valuation over P (this argument is different in the
standard version). Then, there exists a node k € net(PP) that is responsible for all
facts V1 (pos(Q1)) because query @ is parallel-complete under P. The containment
relationship above than implies that node k is also responsible for all facts required
by V. Hence, query Q3 is parallel-complete under policy P by Condition (PComp).

» Only if. For a proof by contraposition, assume now that Condition (mPComp-T) is
violated by queries ()1 and Q2. We show that parallel completeness does not transfer
mildly from Q1 to Q.

Since 1 and Q3 violate Condition (mPComp-T), there is a minimal valuation V5
for Qs such that there exists no minimal valuation V; for )1 that is a fact-cover
of V5. Let U be a set of at least s data values, where s is the maximum number of
variables in any disjunct from @1, that comprises dom(V2(pos(Q2))). Furthermore,
let S denote the schema underlying query Q2. We define policy P based on the facts

V2(pOS(Q2)) = {f17 ) fn}
P = Uiy {ki} x (facts(S,U) — {f;})

Clearly, query Q9 is not parallel-complete under policy P by Condition (PComp)
because no node k; is responsible for all facts required by the minimal valuation V5.
Query @1, however, is parallel-complete under P by Condition (PComp), as the
following argument shows. Let V; be an arbitrary minimal valuation for ()1 over P.
Then, by assumption, it does not require all facts f1,..., f,. Say it does not require f;,
then node k; is responsible for all facts Vi (pos(Q1)).

Therefore, policy P witnesses that parallel completeness does not transfer mildly

from Q1 to Q2.

Hence, parallel completeness transfers mildly from @ to Q2 if and only if Condi-
tion (mPComp-T) is satisfied. O

Proposition A.6. Decision problem PSOUND-T(cQ[pol]) is II5-hard.

The following proof is an adaptation of the proof of the IT4-hardness of PComp-T(cQ)
stated in Proposition 4.2.7.

Proof. We define a mapping from inputs for II3-QBF to inputs of PSOUND-T(CQ™[pol])
and show that it is a polynomial reduction.

Every input formula ¢ = Vx3yVz i (x,y, z) for lI3-QBF with a quantifier-free
subformula v in 3-DNF is mapped to a pair (Q1,Q2) of queries in the following
way. Let € = (z1,...,2.), y = (y1,...,ys) and z = (z1,..., 2;) be the propositions
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of ¢ and let v consist of clauses C1,...,C), where C; = ({;1 A ¥{j2 A {;3) for every
j €{1,...,p}. Without loss of generality, we assume that each proposition occurs at
least in one clause.

The schema for the queries contains unary relations Res, False, True for ‘result’
and truth values and also unary relations XValpy, for every h € {1,...,r}, for
mappings of the propositions. Additionally, there is a binary relation Neg, a ternary
relation Or and a quaternary relation And to guide the ‘evaluation’ of the represented
subformula 1.

Query Qo refers to ‘truth variables’ wg, w1, intended to represent truth values false
and true, and it refers to variables x1,...,x, for the respective propositions. The
query is defined by

head(Qg) d:ef H(wo,wl, Tlye-- ,:ET),
pos(Q2) = Agy and
neg(Q2) = At UAY' U {Res(wp),Res(w;)},

where the set of atoms
Agy < {False(wp), True(w)} U {XValy(zy) | h € {1,...,7}}
is intended to fix the values of the query’s variables. Furthermore, set

-Asat d:ef {Neg(w07 wl)a Neg(w17 U)[))}
U {And(w, wp) | w € W~} U {And (w1, w1, wy,w1)}
U {0r(wo, wo, wo), 0r(wo, wi, wy), 0r(wr, wo, w1 ), 0r(wy, w1, wr) }

represents the logical functions negation, conjunction and disjunction if the last
position is considered as the output for the previous positions. To this end, the set
W < {wg, w1} — {(w1, w1, w;)} contains all triples of truth variables with at least

one false component. Set
Ayt & {yval; (wo), Yaly(wi),. . ., YVals(wp), YVals(w:)}

is intended to demand—from guarding valuations for (J;—each pair of literal variables
(yi,y;) for a proposition y; to be mapped to (complementary) truth values. Note also
that query @2 is strongly minimal because it is full.

Query @, refers to the same variables as ()2 and some additional variables. First,
it refers to ‘literal variables’ 7,7 for every m € {@1,..., &y, Y1y -y Ysy Z15- -+, 2t}
Second, it refers to variables aq,...,q, and wi,...,wp, with the intention that
variable o represents the truth value of clause C; and variable w; represents the
truth value of the partial disjunction Cy V...V Cj for every j € {1,...,p}. The
query is defined by
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head(Ql) j:ei H(w07w1,flf1, ey Ty YLy ooy Ysy gl? DRI gs)a
pos(Q1) dzef Agy and
neg(Q1) = Agsat U Ay U Ay, U{Res(wp),Res(wp)}-

Note the difference between variables wq and w,, in the second Res-fact of the queries.
Set

Ay = {Neg(m,7) | for each proposition 7 in 1}
U {And(£j1, b2, 43, 05) | § € {1,...,p}}
U {0r(a1, ar,wr),0r(w, o, w2), . . ., 0r(wp—1, op, wp) }

is intended to represent the literals of subformula 1) as well as its (conjunctive) clauses
and the results of their partial disjunctions. Finally, set

Ay = {¥Valy(y1), YVali(51),. - ., YVals(ys), YValy(gs)}

is intended to force guarding valuations to be (unambiguously) interpretable as truth
assignments over propositions yi, ..., Ys.

The pair (Q1, Q2) of queries can obviously be computed from formula ¢ in polynomial
time and the mapping defined in this way is total. It remains to prove that the
mapping satisfies the reduction property.

As in the original proof (for parallel-completeness transfer), we are interested in
valuations with range {0,1} and particularly in such that map (wo,w1) to (0,1)
and (m, ) to either (0,1) or (1,0) for each proposition 7. We call these valuations
boolean. To facilitate the following arguments, we call a boolean valuation Vi for
query @1 compatible if it respects the intended meaning of the query’s further
variables: variables a1, ...,q;, and wi,...,w, are mapped to the truth values of the
represented clauses and partial disjunctions, which is unambiguously possible for
boolean valuations. Thus, a boolean valuation V; for @1 is compatible if and only if
Vi(Ay) € Vi(Asat) holds.

We will repeatedly define a boolean valuation V' from a truth assignment § and
vice versa. It is in this sense that we say that the mappings are induced. This means
that V(wgp,w1) = (0,1) holds and also V(7) = () for every proposition 7 in the
context—implicitly defined by the mapping or stated explicitly. If valuation V is
for query @1, it furthermore maps 7 to the complement of V(7) for every 7w under
consideration.

We show now that ¢ € I3-QBF holds if and only if (Q1,Q2) € PSOUND-T(CQ [pol]).
As usual, we prove both implications separately.

» If. For a proof by contraposition, we assume that ¢ ¢ II3-QBF and show that
Condition (PSound-T-pol) is violated for the pair (Q1,Q2) of queries for .

By our assumption ¢ ¢ II3-QBF, there exists a truth assignment [, for x such
that, for every truth assignment 3, for y, there is a truth assignment 3, for z such

160



A. Missing proofs

that the combined assignment 3, U 8y U 3, does not satisfy subformula 1 of ¢. Using
this assignment 3, we define valuation V5 for Q2 by

Vo & {wo = 0,w1 — 1,21 — Bz(z1),..., 2, — Ba(zy)},

which is minimal since Q3 is strongly minimal.

There is, however, no valuation V; for (01 that is both minimal and guarding for V5.
Note also that a single guard would be sufficient because each valuation for @1 that
satisfies the requirement condition maps variables wg,w; and x1, ..., x, just like V5.
But then, V7 prohibits every fact prohibited by Vs, with the possible exception of the
single fact Va(Res(wy)), as a result of the following Properties (P1) and (P3) below.

Towards a proof by contradiction, assume that a valuation V; exists that is minimal
and a guard for V5. Guarding then particularly implies Vi (pos(Q1)) C Va(pos(Q2))
and Va(neg(Q2)) C Vi(neg(Q1)), and hence the following three properties.

(P1) Valuation V; agrees with V5 on variables wg, w1 and z1,...,z,.
(P2) Valuation Vi maps w, to 1.
(P3) Valuation Vi maps (y;,y;) either to (0,1) or to (1,0) for every i € {1,...,s}.

Property (P1) is implied because of the atoms in Agy, which are the only atoms
that refer to relations True, False and XValy, for h € {1,...,r}. Property (P2) is
implied because the prohibited fact V2(Res(w;)) = Res(1) can only be prohibited
via Vi(Res(wp)), not via the only other Res-fact Vi(Res(wp)) = Res(0). Finally,
Property (P3) is implied because, for each ¢ € {1, ..., s}, facts YVal;(0),YVal,;(1) are
prohibited by V5 due to .Ag’l. They can only be prohibited by V; if variables y;, y;
are mapped to complementary values from {0, 1}.

Since Property (P3) holds, valuation V; unambiguously induces a truth assign-
ment (3, on y, where By(y1,...,ys) = Vi(y1,...,ys). From our starting assumption,
it follows that there is an assignment 3, such that 8, U 3y U B, does not satisfy 1.
Let Uy be the valuation induced by 8, U 8y U B.. We claim that Uy <g, V1, which
contradicts the assumed minimality of Vj. First, both valuations obviously agree
on the head variables. Second, they require the same facts for Ag,. Since both
valuations are compatible, they prohibit the same facts on Ag,¢. For the same reason,
valuation V; prohibits no additional facts for Ay,. However, U;(w,) = 0 by the choice
of B, while Vi (wp) = 1, and thus U; prohibits one Res-fact less than V;. Valuation V;
is hence not minimal, the desired contradiction. Therefore, valuation V5 has no
minimal guard for Q.

» Only if. Assume that ¢ € II3-QBF. We show that every (minimal) valu-
ation V5 for Q2 has a guarding minimal valuation V; for Q1. Then, by Condi-
tion (PSound-T-pol), parallel soundness transfers from @ to Q2.

Let V5 be an arbitrary valuation for ()2, which maps the truth variables to some
data values Va(wp) = ¢p and Va(wq) = ¢;. Without loss of generality, we may assume
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that co = 0 and ¢; € {0,1} because the guarding conditions are not affected by the
application of a bijection over dom on both valuations. We distinguish three cases,
depending on how V5 maps the head variables wg, w1, x1, ..., Z,.
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» 1. Case (V4 is boolean). Valuation V5 induces a truth assignment /35 on @. Since
¢ € II3-QBF, there is an assignment 3, on y such that, for every assignment 3,
on z, it holds 8z U By U . = 9. In particular, this holds for the assignment 3,
that maps every proposition z1,...,2; to 0. Let V; be the valuation induced by
these assignments, 3., 3y and 3,. We claim that this valuation guards V5 and
that it is minimal.

First, we argue that Vi guards V5. Clearly, both valuations agree on the
head variables wg, w1, x1,...,x, of Q2 by definition and thus require the same
facts, namely Vi(pos(Q1)) = Vi(Asx) = Va(Asx) = Va(pos(Q2)). Further-
more, Va(Ay') = Vi(A,) because Vi is boolean. Compatibility of Vi and the
choice of 8, further ensure that Vi(wp,) = 1. Therefore, the only additional
fact Vo(Res(wy)) = Res(1) prohibited by V3 is also prohibited by Vj. Hence,
Va(neg(Q2)) € Vi (neg(Q1)).

Now, we argue that valuation V] is minimal. Towards a contradiction, assume
that there exists a valuation U; such that Uy <@, Vi. Then, U; requires the same
facts, Uy (pos(Q1)) = Vi(pos(Q1)), because both valuations agree on the head
variables and thus U; requires strictly fewer facts, U;(neg(Q1)) € Vi(neg(Q1)).
In particular, this implies U;(neg(Q1)) € Ui(Asat) = Vi(Asat U Ay). Hence,
valuation U; encodes a valid truth assignment on all propositions. This truth
assignment agrees particularly with 8, U 8y on z1,..., 2, and y1,...,ys because
valuations U; and Vi map the head variables of (1 identically. However, strict
containment implies U({Res(wp),Res(wp)}) = {Res(0)} C {Res(0),Res(1)} =
Vi({Res(wo),Res(wp)}) and thus Uy (w,) = 0. Therefore, valuation U; represents
a different truth assignment (3, for propositions z1, ..., z;. In particular one such
that 8z U By U B, does not satisfy . This contradicts the choice of 8, and thus
proves V7 minimal.

» 2. Case (Va(wy) =0 and Va({z1,...,2.}) € {0,1}). Let Wi be the valuation
for ()1 that agrees with V5 on variables wg,w; and x1,...,z, such that it maps
all other variables to 0. Let V7 be a minimal valuation with Vi <g, Wj. Then,
V1 also agrees with V5 on the head variables of @2, implying that they require the
same facts, V1 (Agx) = Va(Agfx). By the case assumption, valuation V5, prohibits
only facts {YVal,(0),...,YVal,(0)} for Ajy', which are also prohibited by Vi
for A, because Wy prohibits exactly these YVal;-facts and valuation Vi prohibits
no additional facts. Finally, fact Vo(Res(w;)) = Res(0) is also prohibited by V;
since Res(wp) € neg(Q1).
Therefore, valuation V; is minimal and guarding for V5.

» 3. Case (Va({z1,...,2,}) € {0,1}). To show that there is a guarding valuation
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for V5, we have to deal carefully with the data values from V5 that are not
interpreted as false or true. The following argument works independently of the
mapping Vao(w;) € {co,c1} € {0,1}.

By the case assumption, there is at least one variable x; that is mapped
by V4 to a data value different from 0 and 1. We call each variable x; with this
property foul. Similarly, we call a clause foul if it contains xj or —xj, for a foul
variable xj,. Furthermore, we fix one of the data values that a foul variable is
mapped to, say d = Va(xp) for the minimal index h of a foul variable.

As an intermediate step, we define a valuation W;p for @1, which is not
necessarily minimal, in two steps. First, valuation W satisfies the following
equations on the truth and literal variables

Wi (wo, wi, z1, ..., 2,) = Va(wo, wi, x1,...,T) (5)
Wi(yr, .-y Ysy 21, -+ 2t) = (Coy .-, C0) (6)
Wi(Uts- -y Ysy 2155 2t) = (C1,...,¢1) (7)

Wi (z;) = Va(x;) for every non-foul variable z; (8)
Wi(z;) = d for every foul variable z;, (9)

where ¢y = ¢ and €1 = ¢y. Second, valuation Wy is successively defined on the
remaining variables. For each j from 1 to p,

e variable «; is mapped to
— 1if clause Cj is foul or all its literals are mapped to 1, and to
— 0 otherwise;
e variable w; is mapped to
— 1if Wi(a;) =1 for some i € {1,...,5}, and to
— 0 otherwise.

Although valuation W7 guards valuation Vb, it is not necessarily minimal. In the
remainder of this proof, we show that each minimal valuation ‘below’ W7 is also
a guard of V5. To this end, let V7 be a minimal valuation such that Vi <g, W1
holds. We claim that V; guards V5.

First, we consider the requirement restriction. Because valuations V; and Wj
agree on the head variables of ()1 and W; maps variables wg, w; and x1,...,x,
like valuation Va, valuations V7 and Vs require the same facts for the only positive
atoms in Agy.

Next, we consider the prohibition restriction. Clearly, valuation V; prohibits
the facts Va(Agat) prohibited by Vo because of the previously mentioned agree-
ment on variables wg, wy. Similarly, because valuations Vi and W7 also agree on
Yis- -5 Yss Y1, - - - » s, Which are head variables of ()1, valuation V; also prohibits
the facts: Va(Ay') € {YVali(co), YVali(c1),. .., YVals(co), YValy(cr)} = Vi(Ay).
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It remains to show that V; also prohibits fact Va(Res(w;)) = Res(c1).

By the case assumption, there is an index jo € {1,...,p} such that the jo-th
clause is foul because of the foul variable x; with minimal index h. Without
restriction, we assume that xj, is referred to in position 1. Then, valuation V
prohibits a fact of the form And(d, -, -, ). More concretely, this fact is of the form
And(d, -, -, c1) because Vi <g, Wi and valuation W; by definition only prohibits
And-facts with value d that have value ¢; in the last position. Thus, Vi(«;j,) = c1.
Finally, valuation W only prohibits Or-facts from Wi (Asat), where value ¢; in
one of the first two positions enforces value ¢; in the last position. Thus, we
can even conclude Vi(wj,) = c¢1. By the same argument, this holds for every
j > jo and thus for j = p in particular. Therefore, valuation V; prohibits fact
Vi(Res(wp)) = Res(cyp), as claimed.

This concludes the case distinction and proves that every valuation V5 for ()2 has a
minimal guarding valuation for Q);.

The mapping provided is thus indeed a polynomial reduction. O

A.3. Distribution dependencies

The following might be folklore knowledge but the author could not find a suitable
reference. In particular, the argument differs technically from the characterisation of
Beeri and Vardi [BV84, Theorems 7 and 8] in the following way. The latter authors
replace equality-generating dependencies by tuple-generating dependencies. The new
tgds result in the addition of all combinations of facts for data values that can be
‘unified’ by the original egd—without actually unifying them. Instead, we perform the
unification and, additionally, protocol all relevant unifications in a chase sequence a
by a homomorphism £(a). We feel that our approach gets along better with the
syntactical definition of the considered fragments of distribution dependencies.

Proposition A.7 (Characterisation of implication). For every set XU{7} of data-full
distribution dependencies, implication ¥ = 7 holds if and only if there is a certifying
application sequence for 7 under X.

Proof. We consider a slightly different implication problem, 3 = 7 where 7 results
from 7 by addition of some atoms that allow to protocol the influence of the
application of equality-generating dependencies—uwithout affecting the applicability
of dependencies.

To this end, let &, ...,&, be the node and data variables in body(7). Without
restriction, assume that neither 7 nor any dependency in X refers to relations
Vary,...,Var,. Then, the modified dependency 7 is defined by
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def

body(7)

= body(7) U {Vari(&),...,Var,(&,)} and
head(?) = h

ead(7).

We claim that ¥ = 7 if and only if ¥ = 7 and that, for every application sequence
a = (ai,...,a,), the chase result I, contains atom Var;(&;) for all ¢,j € {1,...,p}
if and only if (&) = &; for the homomorphism ¢ = £(a). Note that D,, contains
exactly one Var;-atom for every ¢ € {1,...,p} and that body(7) allows exactly the
same application sequences as body(7) under ¥ since no dependency in ¥ refers to
the additional atoms (and thus neither adds such an atom nor requires its presence).
In the following, we show, first, that ¥ = 7 if and only if ¥ = 7, and, second, that
Y |= 7 if and only if there is an application sequence that certifies 7. By the previous
argument, the latter holds if and only if the same application sequence certifies 7.

» First step. To show that both statements ¥ = 7 and ¥ |= 7 are equivalent, we
prove that they mutually imply each other.

»If ¥ =7, then ¥ = 7. Assume that ¥ = 7 holds. Towards a contradiction,
assume that 3 [~ 7. Then, there is a database D that satisfies ¥ and violates 7.
Let V be a valuation that witnesses the violation of 7. In particular, this valuation
satisfies V(body(7)) € D and, moreover, V(body(7)) C D since body(r) C
body(7). Depending on the type of 7, we can draw the following conclusions.

o If 7 is a degd with head(7) = (£ = n), then V(§) # V(n). But then,
valuation V' witnesses also that D violates the original dependency 7.

e If 7 is a dtgd, then there is no extension V' of V to the variables in head(7)
such that V’'(head(7)) C D. But then, there is also no extension W’ of V
to the variables in head(7) such that W’ (head(7)) C D because head(7) =
head(7) and thus V witnesses also that D violates the original dependency 7.

In both cases, dependency 7 is violated, a contradiction. Therefore, ¥ |= 7 is
true.

»If ¥ = 7, then ¥ = 7. For a proof by contraposition, assume that ¥ p= 7.
Then, there exists a database D that satisfies 3 but not 7. Without restric-
tion, we assume that D contains no Var;-atoms for any i € {1,...,p}. More
precisely, there is a valuation V' that witnesses violation of 7 in ID. In particular,
V(body(7)) C D holds. Furthermore, this valuation witnesses the violation of 7
in the extended database

D= DU {Var1(V(&)), ..., Var,(V(£))},
as the following case distinction shows.

o If 7 is a degd with head(7) = (£ = n) = head(7), then V(§) # V(n) by

assumption.
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e If7 is a dtgd, then there is no extension V' of V to the variables in head(7)
with V’/(head(7)) C D because otherwise this would be an extension for 7
too.

Nevertheless, D satisfies & because D does and the additional facts are irrelevant
for the dependencies in Y. Hence, D witnesses % ¥~ 7, which was to be shown.

» Second step. We show that X = 7 if and only if there exists a certifying application
sequence for 7 under X.

»If. Let @ = (aq,...,a,) be a certifying application sequence for 7 and let D be
an arbitrary database that satisfies 3. Towards a contradiction, assume that D
does not satisfy 7. Then, there exists a valuation V' such that V(body(7)) C D
such that
o if 7 is a degd with head(7) = (£ = n), then V(§) # V(n); and
e if 7 is a dtgd, then there exists no extension V' of V such that V’/(head(7)) C
D.
Without loss of generality, we assume that D contains only those Var;-facts
required by V. By Proposition* 5.2.11, the existence of homomorphism V
from body(7) to D guarantees the existence of a homomorphism V,, from D,
the chase result for a, to database D—at least for restricted chase sequences.
Indeed, Cali et al. have shown that this is also the case for oblivous chase
sequences [CGK13, Theorem 2.13].
Clearly, V(&;) = V,,(&;) for every ¢ € {1,...,p} since there are no other Var;-
facts in D by assumption. Furthermore, since a certifies 7, we have
o if 7 is a degd with head(7) = (£ = n), then ¢(§) = ¢(n) and thus V,,(§) =
Vi (n), which contradicts the choice of V'; and
e if 7 is a dtgd, then there exists an extension V' of V;, such that V’'(head(7)) C
D which contradicts again the choice of V.
Therefore, database D satisfies also 7 and, generally, ¥ = 7.

» Only if. For a proof by contraposition, assume that there is no chase sequence
that certifies 7. We show that ¥ [~ 7. Assume that a = (ai,...,a,) is a
saturated restricted chase sequence starting from body(7) under ¥. Then,
the corresponding chase result I, satisfies & as does the database D & V(Dy,)
induced by some injective valuation V' (otherwise, a violation witnessing valuation
could be transformed into a violation witnessing homomorphism for D, by
composition with V1), Furthermore, D violates # (otherwise, it would prove a

to certify 7, again by composition with V' ~!, a contradiction).

This concludes the proof. ]
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