296 research outputs found

    Divided we stand: Parallel distributed stack memory management

    Get PDF
    We present an overview of the stack-based memory management techniques that we used in our non-deterministic and-parallel Prolog systems: &-Prolog and DASWAM. We believe that the problems associated with non-deterministic and-parallel systems are more general than those encountered in or-parallel and deterministic and-parallel systems, which can be seen as subsets of this more general case. We develop on the previously proposed "marker scheme", lifting some of the restrictions associated with the selection of goals while keeping (virtual) memory consumption down. We also review some of the other problems associated with the stack-based management scheme, such as handling of forward and backward execution, cut, and roll-backs

    Characterization of Speech Recognition Systems on GPU Architectures

    Get PDF
    This master thesis characterizes the performance and energy bottlenecks of speech recognition systems when running on modern GPU, with the aim of providing useful information for designing future GPU architectures, as well as proposing a GPU configuration more well-suited for speech recognition

    Modulo scheduling with integrated register spilling for clustered VLIW architectures

    Get PDF
    Clustering is a technique to decentralize the design of future wide issue VLIW cores and enable them to meet the technology constraints in terms of cycle time, area and power dissipation. In a clustered design, registers and functional units are grouped in clusters so that new instructions are needed to move data between them. New aggressive instruction scheduling techniques are required to minimize the negative effect of resource clustering and delays in moving data around. In this paper we present a novel software pipelining technique that performs instruction scheduling with reduced register requirements, register allocation, register spilling and inter-cluster communication in a single step. The algorithm uses limited backtracking to reconsider previously taken decisions. This backtracking provides the algorithm with additional possibilities for obtaining high throughput schedules with low spill code requirements for clustered architectures. We show that the proposed approach outperforms previously proposed techniques and that it is very scalable independently of the number of clusters, the number of communication buses and communication latency. The paper also includes an exploration of some parameters in the design of future clustered VLIW cores.Peer ReviewedPostprint (published version

    Hierarchical clustered register file organization for VLIW processors

    Get PDF
    Technology projections indicate that wire delays will become one of the biggest constraints in future microprocessor designs. To avoid long wire delays and therefore long cycle times, processor cores must be partitioned into components so that most of the communication is done locally. In this paper, we propose a novel register file organization for VLIW cores that combines clustering with a hierarchical register file organization. Functional units are organized in clusters, each one with a local first level register file. The local register files are connected to a global second level register file, which provides access to memory. All intercluster communications are done through the second level register file. This paper also proposes MIRS-HC, a novel modulo scheduling technique that simultaneously performs instruction scheduling, cluster selection, inserts communication operations, performs register allocation and spill insertion for the proposed organization. The results show that although more cycles are required to execute applications, the execution time is reduced due to a shorter cycle time. In addition, the combination of clustering and hierarchy provides a larger design exploration space that trades-off performance and technology requirements.Peer ReviewedPostprint (published version

    Combined instruction scheduling and register allocation

    Get PDF
    Master'sMASTER OF SCIENC

    Processor Models For Instruction Scheduling using Constraint Programming

    Get PDF
    Instruction scheduling is one of the most important optimisations performed when producing code in a compiler. The problem consists of finding a minimum length schedule subject to latency and different resource constraints. This is a hard problem, classically approached by heuristic algorithms. In the last decade, research interest has shifted from heuristic to potentially optimal methods. When using optimal methods, a lot of compilation time is spent searching for an optimal solution. This makes it important that the problem definition reflects the reality of the processor. In this work, a constraint programming approach was used to study the impact that the model detail has on performance. Several models of a superscalar processor were embedded in LLVM and evaluated using SPEC CPU2000. The result shows that there is substantial performance to be gained, over 5% for some programs. The stability of the improvement is heavily dependent on the accuracy of the model

    High-level characteristics of or-and independent and-parallelism in prolog

    Get PDF
    Although studies of a number of parallel implementations of logic programming languages are now available, their results are difficult to interpret due to the multiplicity of factors involved, the effect of each of which is difficult to sepárate. In this paper we present the results of a high-level simulation study of or- and independent and-parallelism with a wide selection of Prolog programs that aims to determine the intrinsic amount of parallelism, independently of implementation factors, thus facilitating this separation. We expect this study will be instrumental in better understanding and comparing results from actual implementations, as shown by some examples provided in the paper. In addition, the paper examines some of the issues and tradeoffs associated with the combination of and- and or-parallelism and proposes reasonable solutions based on the simulation data obtained
    corecore