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Summary 

Ongoing technological developments result in the design and fabrication of 
increasingly larger and more complex electronic systems compared with the 
systems that are currently in use. For a short design cycle and time to market, 
good design methodologies for the computer-aided design (CAD) of these 
systems are very important. The need for productivity has initiated the 
development of architectural (or high-level) synthesis methods. This thesis 
deals with such methods, which have been developed at the Design 
Automation Section of the Eindhoven University of Technology. 

Architectural synthesis tools take an algorithmic description with goals and 
constraints as their input, and produce a register transfer level description 
of an IC architecture as their output. A major part of such a description is the 
datapath, which consists of interconnected basic building blocks like adders, 
multipliers, memories etc. Three main tasks can be distinguished when 
synthesizing a datapath: resource selection, scheduling and binding. The 
organization of these interdependent subtasks can influence the quality of 
the result substantially, and might depend on the application domain as well. 
The three individual tasks are in general not solvable in polynomial time, 
thus leading to numerous heuristical solution methods. 

Most architectural synthesis methods can only take a limit number of 
different kinds of constraints into account. Such constraints can either be 
part of the initial problem description, or can be formulated during the design 
flow. Furthermore, they can be related to timing, resources, specific bus 
architectures, etc. So, most methods concentrate on minimizing one or a few 
objective functions, e.g., the chip area requirements. The synthesis result is 
then checked against other constraints that were not yet taken into account. 
However, this often leads to unsatisfactory results, because the synthesis 
result often does not comply with the other constraints, especially when they 
are tight. 

For that reason, constraint satisfaction techniques are emphasized in this 
thesis. In our approach, a designer can modify the initial problem description 
interactively by adding new constraints or by enforcing certain design 
decisions. In this way, a trade-off can be made between the quality of a 
solution and the run time efficiency. 
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The central theme in this thesis is a new algorithm based on a graph 
formulation, namely the so called 'bipartite schedule graphs' (BSGs). The 
algorithm advances the ability of synthesis systems to deal with combina­
tions of timing and resource constraints, rather than being hampered by 
them. The BSGs are applied in two different ways. 

First, the BSGs prune the search space of schedulers, which is tjalled domain 
reduction. Classical operation execution intervals are usually bbtained by a 
critical path analysis under the assumption of unlimited r¢sources. The 
BSGs, however, take the timing, precedence and resource constraints into 
account, which leads to a reduction of the execution intervals. This results in 
a reduction of the search area as well, but does not affect the solution space 
at all. 

Secondly, the BSGs are used to identify the 'bottlenecks' for a scheduler. 
Those bottlenecks typically fool heuristic methods (because they are not 
recognized by such methods), and they are a source of wasted search effort for 
exact schedulers. The BSGs identify the bottlenecks and consequently make 
an efficient traversal of the search space possible, because the bottlenecks are 
solved first. 

The domain reduction and scheduling methods not only prove their value in 
the field of architectural synthesis, but also in other situations in which the 
constraints are very tight, such as (retargetable) code generation. A solution 
strategy is proposed in which code generation is the last step in the architec­
tural synthesis flow. The complete datapath with timing constraints is fixed 
in the case of code generation, so the remaining task is to find a correct 
schedule and binding scheme. Industrial examples show that the methods 
described in this thesis lead to an efficient code generation approach, thus 
validating the proposed methodology. 

Last but not least, the methods can be applied for lower bound analyses. 
These analyses can help CAD tools, they can help to make interactive design 
decisions, and they can help to impose extra constraints during the synthesis 
flow. Furthermore, such analyses give a good insight in the design space, so 
they can help to measure the quality of a design as well. In this thesis, lower 
bound analyses related to functional area and cycle budget are presented. It 
is shown that the analyses are more accurate than other lower bound 
analyses that run in polynomial time. Furthermore, the only existing method 
capable of performing an efficient lower bound estimation for non-trivial 
module libraries is presented as well. 
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Samenvatting 

Door de voortschrijdende technologische ontwikkelingen kunnen steeds 
ingewikkeldere elektronische systemen ontworpen en gebouwd warden. 
Goede, computerondersteunde ontwerpmethoden zijn daarbij onontbeerlijk. 
Zij moeten ervoor zorgen dat de ontwerptijd kort is, zodat ook de tijd tussen 
de specificatie en de marktintroductie van een systeem kort is. Deze hoge 
productiviteitseis heeft geleid tot de ontwikkeling van architectuur- (of hoog­
niveau) synthese-methoden. Dit proefschrift beschrijft nieuwe architectuur­
synthese-methoden, die ontwikkeld zijn in de vakgroep Ontwerpkunde voor 
Elektronische Systemen van de Technische Universiteit Eindhoven. 

Het belangrijkste onderdeel van de architectuur-synthese is de vorming van 
het datapad. Het datapad is de basis van de IC architectuur op register­
niveau, het eindresultaat van de synthese. Het bestaat uit bouwblokken, 
zoals optellers, vermenigvuldigers en geheugenelementen, die onderling 
verbonden zijn. Invoer voor de syn these van het data pad is een algoritmische 
beschrijving waarvoor beperkingen en doelstellingen zijn geformuleerd. Bij 
de synthese van het datapad onderscheidt men drie taken: de selectie van de 
bouwblokken, de tijdstoewijzing van operaties en de afbeelding van de 
operaties op de bouwblokken. De volgorde en invulling van deze taken 
kunnen een grote invloed hebben op het uiteindelijke resultaat, en kunnen 
tevens afhangen van het toepassingsgebied. Deze drie taken zijn in het 
algemeen niet in polynomiale tijd oplosbaar. Daarom is er voor het oplossen 
van deze taken veel aandacht voor benaderingsmethoden. 

De gangbare architectuur-synthese-methoden kunnen slechts in beperkte 
mate rekening houden met beperkingen die deel uitmaken van de invoer of 
die tijdens het ontwerptraject geformuleerd warden. Deze beperkingen 
kunnen te maken hebben met tijdsaspecten, bouwblokken, specifieke bus 
architecturen of andere aspecten van het ontwerp. De gangbare methoden 
gaan uit van de algoritmische beschrijving en concentreren zich op het 
minimaliseren van bepaalde kostenfuncties, bijvoorbeeld het benodigde 
chip-oppervlak. Het zoekresultaat wordt vervolgens getoetst aan de hand 
van de overige beperkingen. Dit levert vaak een onbevredigend resultaat op, 
omdat vaak niet aan de overige beperkingen wordt voldaan, zekerin situaties 
waarin de beperkingen zeer streng zijn. 
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De methoden die in dit proefschrift worden beschreven nemen juist de 
beperkingen als uitgangspunt voor het syntheseproces. Naast de 
beperkingen uit de initiele specificatie kan de gebruiker in interactie met het 
systeem beperkingen toevoegen of ontwerpbeslissingen afdwingen. Hierdoor 
kan een afweging gemaakt worden tussen de kwaliteit van de oplossing en de 
snelheid waarmee de oplossing wordt bereikt. 

Kernpunt van de in dit proefschrift beschreven methodiek is een nieuw 
algoritme dat gebaseerd is op een graaf-formulering, de bipartiete 
tijdstoewijzings graaf BSG ('bipartite schedule graph'). De BSG brengt de 
synthese-opgave in kaart en heeft de volgende twee functies. 

In de eerste plaats reduceert de BSG de zoekruimte van de tijdstoewijzing, 
hetgeen domein reductie genoemd wordt. Klassieke executie intervallen van 
operaties worden verkregen door een kritieke pad analyse, waarbij dan 
aangenomen wordt dater een onbeperkt aantal bouwblokken beschikbaar is. 
De BSG neemt echter de beperkingen ten aanzien van de tijd, precedenties 
en het aantal en soort bouwblokken in de beschouwing mee, en hierdoor kan 
een deel van de opties buiten beschouwing gelaten worden. De zoekruimte 
wordt hierdoor verkleind, de oplosruimte echter niet. 

De tweede functie van de BSG is de identificatie van knelpunten in de 
tijdstoewijzing. Gangbare methoden hebben hier moeite mee: heuristische 
methoden herkennen de knelpunten niet, terwijl exacte methoden er teveel 
tijd voor nodig hebben. De BSG identificeert de knelpunten en maakt het 
vervolgens mogelijk de zoekruimte efficient te door lo pen, doordat allereerst de 
knelpunten worden opgelost. 

Behalve in de architectuur-synthese bewijzen de beschreven methoden ook 
hun waarde in andere situaties waarin de beperkingen zeer streng zijn, zoals 
bij code-generatie. In dit proefschrift wordt een ontwerpstrategie 
voorgesteld, waarbij de code-generatie een losse synthese-stap aan het eind 
van het architectuur-synthese-traject is. Het complete datapad met 
tijdsbeperkingen ligt in het geval van code-generatie vast, en de enige 
overgebleven taak is een correcte tijdstoewijzing van de operaties te vinden 
en een correcte afbeelding van de operaties op de bouwblokken. Industriele 
voorbeelden tonen aan dat de methoden gepresenteerd in dit proefschrift tot 
een efficiente en doelmatige code-generatie leiden. 

Ten slotte zijn de beschreven methoden toepasbaar voor ondergrens­
analyses t.b.v. CAD-gereedschappen of interactieve ontwerpbeslissingen. 
Deze analyses kunnen gebruikt worden voor het bepalen van extra 
beperkingen die tijdens het ontwerptraject opgelegd kunnen worden. 
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Bovendien leveren ze een goed inzicht in de ontwerpruimte op, waardoor ze 
behulpzaam zijn bij het vaststellen van de kwaliteit van een ontwerp. In dit 
proef schrift worden ondergrens-analyses gepresenteerd voor de functionele 
oppervlakte en voor het tijdsbudget van een ontwerp. Er wordt aangetoond 
dat de beschreven methoden nauwkeuriger zijn dan andere polynomiale 
analyses. Verder wordt ook een methode gepresenteerd die als enige 
bestaande methode in staat is om een efficiente ondergrens-analyse te doen 
voor niet-triviale module-bibliotheken. 
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Preface 

Organization of this thesis 

We start this thesis with a short overview of architectural synthesis and 
related topics in Chapter 1. The design methodology and strategy, on which 
the algorithms in this thesis are based, are explained in that chapter as well. 
In Chapter 2, the central theme of the thesis is presented: execution interval 
analysis based on bipartite schedule graphs. That chapter can be read in 
isolation. The rest of the thesis is (partly) based on that chapter and can 
therefore not be read in isolation. 

In Chapter 3, lower bound analyses for the functional area and the cycle 
budget of a design are given. In Chapter 4, exact scheduling approaches are 
discussed. That chapter can be read without reading Chapter 3. In Chapter 5, 
the methods of Chapter 2 and 4 are applied on the code generation problem. 
That chapter can therefore also be read without reading Chapter 3. Note that 
the most important notations can be found at the end of this book. 
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Chapter 

1 Architectural Synthesis 

1.1 Introduction 

Ongoing technological developments result in the design and fabrication of 
increasingly larger and more complex electronic systems than the systems 
that are currently in use. For a short design cycle and a short time to market, 
good design methodologies and tools for the computer-aided design (CAD) of 
these systems are very important. Tools for the logic and layout synthesis of 
integrated circuits (!Cs) are therefore widely used nowadays. However, the 
ever increasing complexity and versatility of ICs pushes CAD methods to 
even higher abstraction levels. This has initiated the development of methods 
at the architectural level of an IC, and nowadays system-level synthesis and 
hardware-software codesign are already very popular research areas. 

The overall system that helps in designing very large scale integrated (VLSI) 
circuits is called a silicon compiler. In Figure 1.1, a rough sketch of the design 
flow of such a compiler is depicted. This thesis is concerned with the architec­
tural synthesis part of a silicon compiler for synchronous (clocked) VLSI 
circuits. 

The organization of the remainder of this chapter is as follows. Section 1.2 
starts with a short overview of the design flow of silicon compilers. The archi­
tectural synthesis methods presented in this thesis are based on the design 
methodology explained in Section 1.3. The design methodology results in the 
solution strategy for the synthesis of VLSI circuits described in Section 1.4. 
The design methodology, its synthesis strategy and other considerations lead 
to general requirements for an architectural synthesis system. Section 1.5 
gives a short overview of the kernel of such a system developed at the Design 
Automation Section of the Eindhoven University of Technology. 

1.2 The design flow of silicon compilers 

The design flow of a silicon compiler starts either with a behavioral specifi­
cation of the IC, or with an algorithmic description in a hardware description 
language like VHDL, Silage or HardwareC. A behavioral specification is an 
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abstract description of a circuit under construction. An example of such a 
specification is the transfer function of a digital filter. An algorithmic 
description is a slightly more detailed description when compared to a 
behavioral specification. An example is the description of a digital filter as an 
FIR (finite input response) or as an IIR (infinite input response) filter. 

Most compilers require an algorithmic description to start with, although 
some research by [Raba93] and [Potk94] has been done to automate the 
translation of behavioral specifications into algorithmic descriptions. Such a 
description can, in general, also be the result of (automated) design steps 
preceding the design of an IC. Examples of such design steps are system-level 
synthesis and hardware-software codesign. 

Behavioral 
Specification 

Register 
Transfer 
Description 

Layout 
Description 

Network 

Algorithmic 
Description 

Controller 

-----
- - - - -

IC 

FIGURE lil. Computer-aided VLSI design flow, taken from [Stok91]. 
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The architectural synthesis, also called high-level synthesis, tools take an 
algorithmic description together with goals and constraints as their input, 
and produce a so called register transfer level (RTL) description of a chip 
architecture. Such an architecture consists of a datapath, in the form of a 
network description, and a controller, in the form of a symbolic finite state 
machine. A datapath is a collection of basic building blocks like adders, 
multipliers, ALUs, shifters, memory elements etc., which are interconnected 
by buses and other interconnection units like (de-)multiplexers. The 
corresponding controller governs the data flow in the architecture. A 
comprehensive introduction on architectural synthesis and related research 
can be found in [McFa90]. 

Both the controller description and parts of the data path are then fed to logic 
synthesis tools. These tools transform the RTL description into an imple­
mentation at thegate level. Logic synthesis includes the state encoding for the 
finite state machine, the optimization of logic blocks and the mapping onto 
a given technology. At this stage of the design process, modules in the data­
path, like multipliers and ALUs, may be generated by module generators. 

The final synthesis steps performed by the layout synthesis tools consist of 
layout design tasks such as floor planning, placement and routing. At this 
stage also the layout of basic building blocks like ROMs, RAMs, registers, 
basic logic cells, and regularly structured datapath components can be 
generated. The result is a set of geometrical descriptions of layout masks, 
which are a complete physical description of the IC under construction. 

While layout and logic synthesis tools are widely used nowadays, true 
architectural synthesis is still working its way up from infancy. However, it 
can offer a lot of advantages due to its higher level of abstraction. The 
algorithmic description of an IC is a formal specification at a high level of the 
design process. The simulation of such a description allows a designer to eval­
uate the intended behavior of the design. The use of architectural synthesis 
methods can result in a shorter design cycle, it can enable a (system) designer 
to explore the design space more rapidly, and it can result in designs that 
contain fewer errors. The formal algorithmic description forces a designer to 
specify the design very precisely. Together with records kept by an automated 
design management, the result of the design process can be well documented. 

Thus the objective of architectural synthesis is to support a designer at a 
higher level of abstraction than logic and layout synthesis do. Due to this level 
of abstraction and the possibility of better design space explorations, a 
designer should be capable of making better VLSI designs within a shorter 
amount of time. 
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1.3 A design methodology 

1.3.1 The classical problem decomposition 

In the previous section, the task of designing an electronic system or IC was 
decomposed into several subtasks. These subtasks are of course heavily 
interrelated but are hard to solve in their entirety. For the same reason, the 
architectural synthesis task is also decomposed into several subtasks. The 
first decomposition that is normally made is the decomposition into datapath 
synthesis and controller synthesis. It is very difficult to automate the trade­
offs between datapath and controller costs, so most architectural synthesis 
systems do not design the datapath and controller of a VLSI circuit 
simultaneously. The following three main subtasks are generally 
distinguished when synthesizing a datapath from a behavioral description. 

• Selection determines the type and number of resources needed for a 
data path. 

• Scheduling determines an assignment of the operations to be executed 
in the datapath to specific moments in time. 

• Binding determines an assignment of the operations to specific 
resources. 

Note that allocation is also a term that is heavily used in the literature. 
Unfortunately, the term is often used to identify different subtasks, e.g., 
selection only, selection and binding together, and so on. To avoid confusion, 
the term allocation is therefore not used in this thesis. 

Many synthesis problems, like the subtasks mentioned above, are known to 
be NP-hard [Garey79] in general cases, see for instance [Verh95]. The 
organization of these interdependent subtasks influence the quality of the 
resulting data path substantially. The way and order in which these subtasks 
are solved can depend on different application domains, e.g., micro processors 
versus digital signal processors or control-dominated designs versus 
datapath-dominated designs. These different application domains can 
require different optimization strategies to end up with good RTL designs. 

Depending on the application, different goals and constraints, in terms of 
area, timing, power consumption, etc., are imposed by a designer, possibly 
leading to different synthesis strategies. So, one might raise the question 
whether an overall design methodology for all application domains can be 
constructed and whether it would be favorable. The answer to this question 
is contained in the following three elements of discussion. I 
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1.3.2 VLSI design considerations 

When choosing a VLSI design methodology, the following aspects must be 
considered. 

1. In many cases the goal of the optimization for a design cannot be captured 
efficiently by means of a well defined objective function. For instance, many 
designs have only timing constraints at the beginning of the design process, 
and the optimization goal is to end up with a design with as little area as 
possible. However, it is almost impossible to model the interconnect costs and 
delays at high level. The cost of a bus or the signal delay can be very high if 
the modules connected by the bus are placed far away from each other by the 
layout synthesis tools. But they are (nearly) zero, if the modules are abutted. 
Counting the number of buses is therefore not a valid way to obtain a good 
measure for the interconnect costs and delays. On the other hand, evaluating 
all possible data paths and bus configurations down to layout level to pick the 
best one is much too (CPU-) time consuming. 

2. Many optimization goals are hard to combine or even contradicting. For 
instance, the optimization goal for many designs is to end up with as small 
as possible power consumption and area. However, minimal area can imply 
a lot of multiplexing in the datapath, which in turn leads to a high power 
consumption. At many stages of the design process a choice has to be made 
as to the optimization goals to be pursued at that particular stage. 

3. The constraints and goals imposed on an IC design are in most cases much 
stricter than for instance in the case of software compilation. Hard timing 
constraints imposed by the environment of an IC design have to be met by all 
means, while every square millimeter saved in terms of chip area can lead to 
important economical advantages. In the field of software compilation, the 
completion time of an algorithm is not that important in comparison with the 
hard constraints imposed on the throughput of, for instance, digital signal 
processing (DSP) applications. There are exceptions like [Chou94], but in 
that approach the resulting schedule is fully serial, so no parallelism in the 
data path is possible. Such parallelism is usually needed in most architectural 
synthesis applications in order to obtain sufficient throughput. So, because 
the constraints and goals are quite strict in architectural synthesis, a 
designer wants to have thorough control over the design process and wants 
to be able to enforce synthesis decisions and strategies at his will. 

The ultimate architectural synthesis system is one in which no user inter­
action is needed. However, this is still far away. There are many cases where 
a designer wants to outperform computer programs and seems to have the 
ability to do so. This means that user interaction remains important, also in 
the next generation(s) of architectural synthesis systems. 
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1.3.3 The proposed methodology 

The discussion above shows that an architectural synthesis system cannot be 
steered by means of an objective function only. An efficient architectural 
synthesis objective function does not discriminate sufficiently between good 
and bad architectural solutions. Another solution methodology which is not 
solemnly based on optimizing objective functions has therefore to be found. 
Consider the case in which a solution is said to be good ifand only if it satisfies 
the constraints imposed on a design problem, without considering some 
objective function. In such a case a synthesis system can easily discriminate 
between good and bad solutions. 

algorithmic description plus 
initial constraints and goals 

satisfy constraints 
(while minimizing some 

objective function) 

add, change or loosen constraints 
based on (lower bound) analyses and the 

outcome of the previous objective function 

no 

yes,.. generate symbolic finite 
state machine or microcode 

RTL design 
finished 

FIGURE 1.2. Design methodology for architectural synthesis. 

This leads to the design methodology pictured in Figure 1.2. Starting with the 
initial goals and constraints imposed on a design, the design process is 
steered by adding more and more constraints until a design is fully 
constrained, i.e., specified. For instance, a design with only timing con­
straints at the beginning of the design process, will become more and more 
time and resource constrained along the synthesis flow by adding resource 
constraints. So, the initial problem description is modified during the 
synthesis flow. The synthesis result now relies on the constraints additionally 
imposed on a design and the ability of the synthesis system to satisfy all the 
constraints. For that reason, the ability of a synthesis system to satisfy 
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different combinations of constraints becomes essential in such a design 
methodology. The role of minimizing objective functions is merely reduced to 
steering the process of adding constraints; the outcome of an objective 
function can give an insight in the design space. 

The additional constraints can be generated by CAD tools or by user inter­
action and can be based on (lower bound) design space analyses. It will be 
shown that lower bound analyses give good insight in the design space, so 
they can also help to measure the quality of design decisions. To enable a 
designer to enforce certain synthesis decisions, a synthesis system must be 
able to deal with different combinations of constraints. The approach of 
Figure 1.2 has, therefore, the additional advantage that user interaction is 
smoothly incorporated in the design flow. 

1.3.4 Methodology considerations 

Instead of concentrating on minimizing certain objective functions, the 
methods and algorithms in this thesis emphasize lower bound design space 
analyses and constraint satisfaction techniques. To obtain a conceptually 
sound synthesis flow supporting such a methodology, the following consider­
ations must be kept in mind. 

• For the constraint generation, a designer or a synthesis tool must be able 
to evaluate the quality and status of a design at any time, to support 
(interactive) changes of the added constraints. A designer should receive as 
much helpful information as possible, which can be used to steer certain 
synthesis tasks, e.g., information that can help to select resources manually. 
Chapter 3 deals with lower bound analyses, which help a designer or CAD 
tool to evaluate the quality of a design. 

• After observing the current status and the quality of a design, a designer 
or a tool must be able to enforce certain features of a synthesis solution. Hence 
an architectural synthesis system should be capable of handling designs on 
which many constraints of different nature are imposed, i.e., such a system 
must have powerful constraint satisfaction techniques. 

Many existing synthesis systems are hampered in dealing with large sets of 
constraints. Yet a synthesis system should exploit all the constraints that are 
imposed, as the number of solutions decreases with an increasing number of 
constraints of different nature. Chapter 2 introduces a low-order polynomial 
run time algorithm which shows the possibility of taking advantage of differ­
ent kinds of constraints instead of being hampered by them. The algorithm 
prunes the search space of schedulers without limiting the solution space 
when both time and resource constraints are imposed on a design. It is 
therefore a complementary technique to heuristics. 
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• The run time efficiency of the different tasks performed by a synthesis 
system must be as high as possible. However, in order to give a designer maxi­
mum flexibility, a designer must also be able to control the trade-off between 
the solution quality and the run time efficiency of a synthesis task. The 
tedious task of scheduling is preferably left to a synthesis system and is not 
performed manually. Architectural synthesis scheduling problems are in 
general NP-hard, so an optimal solution cannot be guaranteed within 
acceptable CPU times. However, it can be profitable to spend more CPU time 
to obtain a (near) optimal solution for critical parts of a design. In Chapter 4, 
a scheduling algorithm will therefore be presented which offers the possi­
bility of trading off the solution quality against the run time efficiency. 

• Eventually, at the end of the synthesis flow, it may occur that a complete 
datapath consisting of interconnected resources plus timing constraints is 
enforced by a designer or a synthesis tool, i.e., the design is completely 
constrained. The remaining task for the synthesis system is then to find a 
correct schedule and binding scheme. This is actually the starting point of 
retargetable code generation, see [Paul94] or Chapter 5. So retargetable code 
generation is a natural part of the design methodology depicted above and 
even a touchstone ofit. If it is not possible to develop a good retargetable code 
generator, then a design methodology built upon constraint satisfaction is not 
favorable. 

1.4 Towards a solution strategy 

The discussion in the previous section leads to the hypothes~s that a good 
design methodology is focused on adding constraints to a design by means of 
analyses and design space explorations until the design space is narrowed 
down sufficiently to contain only (a few) satisfactory solutions. A design will 
be more or less completely constrained at the end of such a process. Therefore, 
the application domain and the initial goals and constraints will become less 
and less 'visible' and are deemphasized along the synthesis flow, because the 
initial problem description is modified. 

This leads to a concept where the classical subtasks of architectural synthesis 
(selection, scheduling and binding) are not the main steps in the synthesis 
flow, but reflect merely tentative decisions that can be revoked in a next 
synthesis step. In this concept, the steps in the synthesis flow are aimed at 
different aspects of datapath optimizations and trade-offs. So, it must be 
possible to execute the different synthesis tasks and optimization strategies 
in an arbitrary way, in an arbitrary order and an arbitrary number of times 
until a satisfactory solution has been found. Two questions remain: is there 
a preferable order of synthesis tasks and is the run time efficiem:y and quality 
of all the synthesis tools sufficiently large to be invoked repeatedly. 
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Best understood subtasks 

Literature on architectural synthesis shows that scheduling is one of the best 
understood subtasks in the field [McFa90]. As to optimality, the classical 
scheduling problems come in the following two clean forms. 

• In time constrained scheduling one is asked to arrange the schedule within 
a given (maximum) number of clock cycles (the so called cycle budget) while 
minimizing the cost (mostly given in terms of area) of resource usage. 

• In resource constrained scheduling one is asked to arrange the schedule 
within maximum bounds on the resource usage while minimizing the 
number of clock cycles. 

In real life, a scheduling problem may come as a mixture of those clean forms, 
and many systems are known to become both time and resource constrained 
along the way. This is done to achieve a tight performance control, in 
compliance with the design methodology explained in Section 1.3. Examples 
are the systems HYPER [Raba90], MSSR [lshi91], TBS [Rama91], CADDY 
[Gutb92], Phideo [Verh95] and NEAT [Timm93a], which are time constrained 
at the beginning of the design flow. The resource constraints are mostly given 
in terms of the number ofinstantiations offunctional units, because there are 
many efficient approaches giving a lower bound estimate on the functional 
area, see [Jain92], [Shar93], [Timm93c] or Chapter 3. The scheduling and 
functional area estimation tasks can be modelled easily with a so called data 
flow graph model, see Section 1.5.2, and can be solved efficiently. 

Flow of subtasks 

Because the subtasks mentioned above are so well understood, a logical first 
step in a solution strategy is to determine the minimal functional area, or the 
minimal cycle budget in case the resources are given, without considering 
interconnect and memory costs. Chapter 3 and 4 show that, starting from an 
initial lower bound estimate of the module set with minimal functional area 
for a given time constraint, a module selection review can take place until a 
feasible module set is found. A trade-off can be made between the optimality 
of the solution and the run time efficiency of such an approach. A good 
evaluation of such a synthesis task can be obtained: both a lower bound 
estimate and the area of the resulting set of functional units are available. 
With these numbers a designer can estimate the quality of the resulting set 
of functional units. 

The number and place of the register files or other memory elements in a 
datapath partly depend on the bus configuration. A logical next step in the 
synthesis flow is therefore to trade off functional area against interconnect 
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area and delay to decrease the total area, while tentatively not considering 
the memory area. Many synthesis systems try to optimize the interconnect 
after a schedule is fixed [Pang88] or during scheduling [Bala89], [Berry90]. 
Some systems cluster operations before a schedule is fixed based on the regu­
larity in a DFG [Note89], [Rao93]. These clusters then reappear in the data­
path as clusters of modules which are interconnected through local buses. 
Clustering can lead to fewer global buses at the expense of more module area. 

Such a trade-off should be guided by the regularity in the DFG [Rao92] and 
estimates of the total functional and interconnect area I delay. These 
estimates must have a realistic accuracy: because of the run time efficiency 
it is not desirable to perform a fine-grain placement and routing at the 
architectural synthesis phase of a silicon compiler, if this task has to be 
performed many times. Estimations like the one in [Kurd91] try to be run 
time efficient and yet accurate enough for this purpose, but not much 
research has yet been done in this field. The insight in the design space can 
be good, if the trade-off starts with a data path with minimal functional area 
and mainly global buses and evolves towards a data path which consists 
completely of groups ('clusters') of modules with only a few global buses. An 
additional advantage of such a step in the design flow is that the interconnect 
delay can be taken into account during later synthesis steps. 

A next step in the solution strategy can possibly be memory minimization. A 
trade-off between memory area and functional I interconnect area can be 
found in a subsequent step, e.g., by enforcing an ordering between different 
data transfers and/or by binding some data transfers in advance. By 
performing the other synthesis tasks iteratively, less memory area can be 
allocated at the expense of functional and I or interconnect area. As has been 
said, in a solution strategy like the one described in this section, it should be 
possible to revoke the different synthesis steps an arbitrary number of times 
until a satisfactory solution has been reached. 

1.5 Description of the NEAT design environment 

1.5.1 Overview of requirements 

Despite the diversity in design styles many tasks in the synthesis flow are 
similar. The previous sections discussed the hypothesis that a good overall 
design methodology will lead to a more or less uniform solution approach 
making it unnecessary to write a new synthesis system for each design style. 
A synthesis system should, nevertheless, allow as much freedom as possible 
with respect to the way and order in which the subtasks of the synthesis 
problem are solved. 
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To solve the architectural synthesis problem as a whole, a collection of inter­
acting tools is needed. This leads to the insight that software engineering and 
data management are important aspects of the design environment require­
ments. Each tool has to retrieve, manipulate and store intermediate 
synthesis results by using a synthesis data interface. Because synthesis data 
is shared among different synthesis tools, the data interface should be 
common to all tools, which makes the maintainability of separate tools, 
programming efficiency and the preservation of the consistency of synthesis 
data much easier. On the other hand, each synthesis tool has its own 
requirements for the synthesis interface. It must be possible to add tool 
specific data to the interface which is hidden from the data interface of other 
tools. The interaction between different tools can be achieved by the exchange 
of intermediate synthesis data accompanied by specific keywords indicating 
the status of the data. An example is a keyword that states whether it is 
allowed to change the schedule of operations if the set ofresources is altered. 

1.5.2 NEAT and its data domains 

An object oriented synthesis interface, the New Eindhoven Architectural 
synthesis ToolBox (NEAT) written in C++ has been developed in compliance 
with the requirements of Section 1.5.1; see [Heij94] and Figure 1.3. At the left 

Algorithm + Constraints + Goals 
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I Transformations r----

Selection 
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Binding 
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Partial 
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Data 

Writer 

FIGURE 1.3. The architectural synthesis interface and tools. 
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hand side of the figure, a number of possible synthesis tools, e.g., import, 
selection, scheduling, export, etc., are given. A parser reads synthesis data 
from a file and stores it into memory in the synthesis data interface. The 
interface abstracts the different synthesis tools from the synthesis data by 
providing access routines to the data. 

NEAT offers unlimited extendibility and no restrictions with respect to a 
synthesis flow or methodology. Three domains of data can be distinguished: 
a behavioral, a timing and a structural domain. From a theoretical point of 
view, these domains can be represented by a single domain by labeling timing 
and structure information to the behavioral data [Jong93]. A separation of 
the three domains has been decided for the ease of implementing the various 
synthesis tools and for the ease of representing the synthesis results. NEAT 
provides, but is not limited to, three design views corresponding to these 
domains. Other domains of data can be added by adding new views to the 
interface. 

Behavioral domain 

The first domain in NEAT is the behavioral domain, and in this domain 
ASCIS data flow graphs (DFGs) are used to describe the behavior of a design 
[Eijnd92]. Data flow graphs are the internal representation of the algorithmic 
description and can be obtained from hardware description languages by 
means of data flow analysis. With DFGs it is tried to give a representation of 
the behavior of a design which contains as much parallelism as possible. 
Applying synthesis directly to a DFG frees synthesis from the varying nature 
ofinput languages and facilitates possible algorithmic transformations. Data 
flow graphs impose no limitations with respect to architectural solutions. 
They are, therefore, suitable as a starting point for architectural synthesis. 

Although there are a number of DFG models around, the common feature of 
· all those models is that they map certain elementary actions on the vertices 
of such a graph. Those actions are arithmetic operations like additions, 
subtractions or multiplications, but also the generation of constants, bit 
operations like masking and shifting, conditionals, loop controls and memory 
read I write actions. In the sequel, these actions are called operations. The 
interface of a data flow graph to the outside world is defined by means of input 
and output vertices. 

In addition to the decomposition of algorithms into elementai1y operations, 
the DFG model captures the dependencies between those opedtions. Mostly 
those dependencies are established by the fact that operations consume 
values, or 'tokens', produced by other operations. An operation has to be 



Architectural Synthesis 13 

scheduled in time after the completion of the operations producing the 
required input values. In this thesis, those precedence relations are called 
data dependencies, although this obscures the fact that the inputs could also 
be control signals as well and data independent sequencing relations can also 
exist. 

To support the special language constructs like loops and conditionals, 
vertices with a special execution mechanism have been defined. An example 
of a data flow graph with such a special construct has been given in 
Figure 1.4. At the left hand side of that figure, a textual process declaration 
has been given. The process consists of a loop, which results in entry (EN) and 
exit (EX) vertices in the DFG. An entry vertex takes the input of one of its 
input arcs and sends it over its output arc; an exit vertex takes an input token 
and copies it to one of its output arcs. The choice which arcs are selected 
depends on a control signal provided to these vertices, see the dashed arcs in 
Figure 1.4. The left entry and exit vertices pass the values of the variable 'd', 
while the right entry and exit vertices pass the values of the variable 'a'. For 
a more elaborate discussion on the ASCIS data flow graph, see [Eijnd92]. 

process example (b, c) 
in boolean b[8]; 
out boolean c[8]; 
{ 

} 

boolean d[8]; 
a= 1; 
d = b; 
while (a < 3) 
do { 

} 
C=d; 

d = d +a; 
a++; 

FIGURE 1.4. Example of a data flow graph. 
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Timing and structural domains 

The second and third domain in NEAT are the timing and structural domains 
respectively. In the timing domain, the time behavior of a design is described 
by a control graph (CTG) which models a finite state machine, see Figure 1.5. 
In that figure, a DFG has been given at the left hand side, while the 
corresponding CTG has been given in the middle. Vertices in a control graph 
represent states, except for the input and output vertices, and edges 
represent state transitions. the dashed edges between the DFG and CTG in 
Figure 1.5. denote in which state a certain operation is scheduled. Further­
more, control graphs can be extended with special constructs to explicitly 
represent conditionals, loops, multiple active states and hierarchy to hint at 
the controller design. 

In the structural domain, the datapath of a design is described by a network 
graph (NWG), see also Figure 1.5. There, the NWG is given at the right hand 
side, describing the datapath by register transfer level components and their 
interconnections. The dashed edges to the NWG denote in which states the 
modules are active and what operations are mapped to them. 

DFG CTG __ .. ______ ...... 

---:::~~~ .. 
.. ------ .. .. .. ;;: .. --- .. 

input 

FIGURE 1.5. Simplified example of inter-domain relations. 

NWG 

' 
' 
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1.5.3 Design relations 

Between the three domains relationships are established to point out how the 
different synthesis objects are related. Two important types of relations can 
be distinguished: intra-domain and inter-domain relations. 

The intra-domain relations are used to preserve consistency of data within 
a domain, by means of describing the behavior and interface of vertices by 
graphs within the same domain. An operation, state vertex or network 
module can be generated by referring to a graph, inheriting the interface and 
behavior of that graph. The interface of a graph is described by input and 
output vertices, the behavior by its contents (vertices and edges), 
documentation (for standard operations like additions and multiplications), 
or computer programs (for standard modules like adders, multipliers, RAMs, 
and so on). Hence intra-domain relations provide support for hierarchical 
bottom-up and top-down design methods. 

The inter-domain relations describe the relationships among objects of 
different design views by means of so called graph links and vertex links. 
Links can be specified only partially to represent intermediate synthesis 
results. A graph link relates a data flow, control and network graph with each 
other. Such a link represents a relation like 'this network graph represents 
the datapath belonging to this data flow graph'. A vertex link relates a data 
flow vertex, control vertices and a network vertex with each other. Such a link 
denote the fine-grain relations among graphs, like 'this data flow vertex is 
bound to this network vertex', and I or 'this data flow vertex is scheduled onto 
these control vertices'. A graphical and simplified example of inter-domain 
relations has been given in Figure 1.5. 

Inside links the kind and status of the relationship they represent can be 
defined in more detail, which makes it easier for tools to decide how particular 
links should be used. The links describe the complex and detailed fine-grain 
relationships separately from the graph descriptions in the different 
domains. Nevertheless, synthesis information is gently incorporated into the 
synthesis data. Design analysis tools like formal verifiers, simulators or 
graphical interactive tools can easily use the links to determine the relation­
ships between behavior, time and structure. In [Hild94], an example of the 
use of graphical interface tools which are part of the ESCAPE system 
[Fleu96] has been given. ESCAPE reads the links from the NEAT interface 
and shows the information contained in the links graphically. 
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Chapter 

2 Execution Interval Analysis 

2.1 Introduction 

In almost any of their formal appearances, architectural synthesis 
scheduling problems are not solvable in polynomial time, see [Heem90], 
[Verh91], [Verh95]. For that reason, many heuristical approaches have been 
investigated; see for typical examples [Girc85], [Park86], [Peng86], [Pang87], 
[Paul87], [Thom88], and [Camp90]. Under the regime of tight performance 
control, more and more instances of the problem appear where heuristic 
approaches render unsatisfactory results, see Chapter 5. A search for exact 
methods like integer programming (IP) techniques [Hwang91], [Gebo92] and 
branch-and-bound methods has therefore been initiated. 

Exact methods depend on powerful branching and pruning techniques, which 
are called variable & value selection and domain reduction (or consistency 
checking) respectively in the field of constraint satisfaction, see for instance 
[Nuijt95]. One of the important ways to support pruning is the analysis of the 
operation execution intervals (OEis), for which the following informal 
definition can be given. 

Given some operation v in a DFG, the associated OEI restricts the interval 
of consecutive clock cycles to which v can be assigned. A classical and 
conservative, but pessimistic, estimate for the bounds of some OEI, which is 
applied in most architectural synthesis systems, is given by the 'as soon as 
possible' (ASAP) and 'as late as possible' (ALAP) values of an operation. These 
values are obtained by a critical path analysis of the DFG under the 
assumption of unlimited resources. Such an analysis accounts only for the 
data dependencies and the delays of the operations in the DFG. In the 
presence of constrained resources though, i.e., if there are not only timing 
constraints imposed on a design but also resource constraints, the pruning is 
still far from satisfactory. 

In this chapter a new technique is proposed to enhance the pruning capability 
of scheduling approaches, by reducing the classical operation execution inter­
vals mentioned above. The reduction is obtained in low-order polynomial 
time with a bipartite graph matching formulation that exploits both time and 
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resource constraints. It prunes the search space of schedulers without 
limiting the solution space, thus enhancing the quality of schedulers. With 
this technique a synthesis system makes use of all the different kind of 
constraints that are imposed, instead ofbeing hampered by them. It is there­
fore a complementary technique to heuristics: if there is much scheduling 
freedom, then no or hardly any pruning will occur. 

This thesis deals with the execution interval analysis first, because it is used 
throughout the whole NEAT synthesis trajectory and throughout the rest of 
this thesis as well. For instance, Chapter 4 deals with the scheduling process 
itself and shows that the matching formulation introduced in this chapter is 
not only capable of pruning the search space. The bipartite matching formula­
tion is also very valuable for traversing the search space efficiently, i.e., for 
the variable & value selection part of a scheduler. 

The outline of this chapter is as follows. In Section 2.2, a number of definitions 
and the formal problem definition of execution interval analysis are given. 
Section 2.3 starts with considering trivial module libraries: the section 
considers the case in which there is a one-to-one mapping from operation 
types to module types. In Section 2.4 the approach is extended to unrestricted 
libraries allowing for many-to-many mappings. The chapter concludes with 
experimental results and a discussion in Section 2.5 and 2.6 respectively. 

2.2 Definitions 

In the sequel of this thesis, the following formal definitions are needed. 

DEFINITION 2.1. Data flow graph DFG. 
A data flow graph DFG is a 2-tuple (V, E), where Vis the set of vertices (opera­
tions) and E ~ V x V the set of arcs representing dependencies between 
operations. 

DEFINITION 2.2. Operation types. 
To is the set of operation types in a DFG. An example of an operation type is 
the addition. 

DEFINITION 2.3. Operation type function. 
't: V ~To gives for each operation its type. 

DEFINITION 2.4. Immediate predecessors. 
pred(v) = {~ E V I (w, v) E E) for each v E V. 

DEFINITION 2.5. Immediate successors. 
succ(v) = {w E V I (v, w) E E) for each v E V. 
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DEFINITION 2.6. Transitive closure. 
The transitive closure of DFG is the graph DFG* == (V, E*), where E* ;;;; 
{ (v, w) I v, w E Vand vis connected tow in DFGl. 

DEFINITION 2.7. Predecessors. 
pred*(v) = {w E V I (w, v) E E*) for each v EV. 

DEFINITION 2.8. Successors. 
* * f, succ (v) == {w EV I (v, w) E E ) or each v E V. 

DEFINITION 2.9. List of cycle steps. 

19 

C is an interval from 0 to IC I -1, representing the list of available cycle steps, 
i.e., the cycle budget. 

DEFINITION 2.10. Set of modules. 
Mis a set of modules. In this thesis, most of the time this set is restricted to 
functional units. An example of such a set is three adders and two multipliers. 

DEFINITION 2.11. Set of module types. 
TM is the set of module types, or library. An example of a module type is the 
carry-lookahead adder type. 

It is important to notice the difference between a set of modules and a set of 
module types, or module library. This difference will be crucial for the 
execution interval analysis in this chapter. 

DEFINITION 2.12. Module type function. 
~: M -7 TM gives for each module its type. 

DEFINITION 2.13. Mapping from operation types to module types. 
µ: P(To) -t P(TM), where P(X) denotes the power set of X, is a mapping from 
operation types to module types. µ(ts), ts ~ To, returns the union of module 
types that can implement some, but not necessarily all, operations from the 
set of operations whose types are in ts. 

Although the definition ofµ is somewhat peculiar, it is used in this chapter 
and the next chapter on module selection to facilitate the modelling related 
to many-to-many mappings of operation types to module types. 

DEFINITION 2.14. Trivial module library. 
A module library TM is trivial if there is a one-to-one mapping of operations 
to modules types, i.e., if I µ({'t(v)l) I ;;;; 1 and I µ-1({m)) I == 1 for all v E V and 
m E TM. In case of such a library, the delay of an operation is known before 
scheduling. 
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DEFINITION 2.15. Unrestricted module library. 
A module library TM is called unrestricted if it is not trivial. Such a library 
is especially interesting if I µ({'t(v)}) I > 1 for some v E V. 

DEFINITION 2.16. Delay of a module type. 
d: TM~ Q+, where Q+ is the set of positive rational numbers, gives the mini­
mal fractions of cycles, i.e., the delay, a module needs to execute an operation. 

DEFINITION 2.17. Minimal execution delay of an operation. 
In case of a trivial module library, see Definition 2.14, the minimal execution 
delay of an operation dmin(v) equals d(m), with {m} = µ(('t(v)}). In case of an 
unrestricted module library, see Definition 2.15, the minimal execution delay 
dmin(v) of an operation v equals min d(m). 

m E µ((i:(v))) 

DEFINITION 2.18. Data introduction interval of a module type. 
dii: TM~ N+, where N+ is the set of positive natural numbers, returns the 
data introduction interval (or restart time), which is the minimal number of 
cycles required between the data arrivals for two successive executions of 
different operations on a module. 

A pipelined module can have a larger delay than data introduction interval. 
For a module that can be chained, the delay is smaller than the data intro­
duction interval, which equals one clock cycle in this case. 

If nothing else is said, a next instantiation of the DFG takes place only after 
the DFG is finished completely, i.e., the delay and dii of a DFG are equal. 
Furthermore, if nothing else is said, the DFG is considered to be an acyclic 
graph without control constructs. In that case, an operation in a DFG can be 
executed if at least one token, i.e., value, is available on each of its input arcs, 
resulting in the production of a token on each of its output arcs. 

The assumptions above are made for reasons of simplicity. For instance, 
control constructs are handled by the implementations of the methods, but 
are not treated explicitly in this thesis. For most methods it is not difficult to 
take cyclic DFGs into account as well. In Chapter 5, for instance, a loop model 
is used in which the delay and dii of a DFG can differ. 

DEFINITION 2.19. Schedule interval of an operation. 
The schedule interval ¢(v) = [¢1 (v), ¢2(v)] of an operation v E Vis given by the 
start time <Pi (v) and the completion time ¢2( v ), such that the operation is being 
executed in that interval. Non preemptive scheduling is assumed, which 
implies that the delay, i.e., processing time, of a scheduled operfltion v equals 
¢2(v)-¢1(v). Depending on the binding of an operation to a module, the delay 
of an operation can have different values. 
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DEFINITION 2.20. Schedule. 
A schedule <I> assigns to each operation v E Va schedule interval <l>(v). A 
schedule is called feasible, if all precedence, resource and time constraints for 
the DFG are met. 

DEFINITION 2.21. Set of feasible schedules <I>. 
In the sequel only the set of feasible schedules <I> is considered, in which all 
precedence, resource and time constraints for a given DFG are met. Thus any 
<I> E <I> is by definition a feasible schedule. Note that this set may be empty for 
certain compositions of constraints. 

DEFINITION 2.22. Classical 'as soon as possible' start time of an operation. 
Let the set of constraints associated with <I> consist of precedence constraints 
only. The classical 'as soon as possible' start time CASAP(v) of an operation 
v E Vis defined by: CASAP(v) = min cp 1(v). 

cp E <I> 

COROLLARY 2.1. Polynomial calculation classical 'as soon as possible' time. 
Consider an acyclic data flow graph. Then the CASAP(v) for all v E V can be 
determined recursively in 0( IV I + I E I ): 

{ 

0 if pred(v) = 0 
CASAP(v) = max (CASAP(w) + dmin(w)) if pred(v) ~ 0 

w E pred(v)' · 

DEFINITION 2.23. Classical 'as late as possible' completion time. 
Let the set of constraints associated with <I> consist of precedence constraints 
and a timing constraint only. The classical 'as late as possible' completion 
time CALAP(v) of an operation v E Vis defined by: CALAP(v) = max cp 2(v). 

qi <I> 

COROLLARY 2.2. Polynomial calculation classical 'as late as possible' time. 
Consider an acyclic data flow graph. Let the time constraint be defined by the 
list of clock cycles C. Then the CALAP(v) for all v E V can be determined 
recursively in 0( IV I + I E I ): 

{ 

IC I if succ(v) 0 
CALAP(v) = min (CALAP(w) - dmin(w)) if succ(v) ~ 0 

w E succ(v) 

DEFINITION 2.24. Classical operation execution interval. 
The CASAP and CALAP values are rational numbers to allow the recursive 
calculation of these values in case the operations can be chained: in such a 
case not all of the CASAP and CALAP values are on clock cycle boundaries. 
Figure 2.1 points out the difference between clock cycles and clock cycle 
boundaries. In contrast to those values the classical operation execution 
interval COEI( v) of an operation v E Vis defined by an interval of clock cycles: 
COEI(v) = [lCASAP(v)j, rcALAP(v)- llJ. 
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clock cycle boundaries (between 0 and I C I ) 

1 2 3 4 5 6 7 

i i i i i i 

0 1 2 3 4 5 6 
clock cycles (from 0 to IC I - 1) 

ICl-1 ICI 

i i 

ICl-1 

FIGURE 2.1. Difference between clock cycles and cycle boundaries. 

In the previous definitions, no resource constraints were part of the set of 
constraints for <I>. In the following three definitions, resource constraints are 
part of the set of constraints, which leads to subtle differences in the 
definitions. 

DEFINITION 2.25. 'As soon as possible' start time of an operation. 
Let the set of constraints for <I> consist of precedence constraints and resource 
constraints. Then the 'as soon as possible' start time ASAP(v) of an operation 
v E V is then defined by: 
ASAP(v) = min <f> 1(v). 

<I> E <I> 

DEFINITION 2.26. 'As late as possible' completion time of an operation. 
Let the set of constraints for <I> consist of precedence constraints, timing 
constraints and resource constraints. Then the 'as late as possible' 
completion time ALAP(v) of an operation v E Vis defined by: 
ALAP(v) = max $2(v). 

<l>E <I> 

DEFINITION 2.27. Operation execution interval. 
The operation execution interval OEl(v) of an operation v E Vis defined by 
the following interval of clock cycles: OEl(v) = [ lASAP(v)J, rALAP(v)- 1 l ]. 

An important difference between a COE! and OEI is the fact that the CASAP 
and CALAP values can be calculated in polynomial time, while the ASAP and 
ALAP values can not be calculated in polynomial time in the general case. We 
will return to this issue later on. 

Because the ASAP, ALAP and OE! can, in general, not be calculated in poly· 
nomial time, the determination of conservative estimates will be discussed in 
this chapter. For that reason we introduce the following definitions for the 
conservative estimates of these values. 
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DEFINITION 2.28. Conservative estimate of the 'as soon as possible' time. 
The conservative estimate ASAP(v) of an operation v E Vis an estimate of 
ASAP(v), satisfying CASAP(v) s: ASAP(v) s: ASAP(v). 

DEFINITION 2.29. Conservative estimate of the 'as late as possible' time. 
The conservative estimate ALAP(v) of an operation v E Vis an estimate of 
ALAP(v), satisfying ALAP(v) s: ALAP(v) s: CALAP(v). 

DEFINITION 2.30. Conservative estimate of operation execution interval. 
The conservative estimate OEI(v) of an operation v E Vis an estimate of 
OEI(v), defined by the following interval of clock cycles: 
OEI(v) = [ lASAP(v)J, f ALAP(v) 1 lJ. 

DEFINITION 2.31. Execution interval analysis problem. 
Consider an acyclic DFG, a set of modules Mon which the operations in the 
DFG must be mapped, and a list of cycles C, forming the time constraint of 
the DFG. Find the OEI(v) for each operation v E V. 

In g<?neral, the problem of Definition 2.31 is not solvable in polynomial time, 
otherwise the accompanying scheduling problem would be solvable in 
polynomial time as well. Informally, the accompanying scheduling problem 
is to find a feasible schedule from the set <l>. The formal definition is given in 
Definition 4.1 in Chapter 4. 

The proof for the fact that the problem of Definition 2.31 is not solvable in 
polynomial time is as follows. After solving the execution interval analysis 
problem of Definition 2.31 for the first time, one operation can be selected and 
scheduled within its OEI. According to the execution interval analysis, some 
schedule must exist with that schedule interval for the selected operation. 
The execution interval analysis can be run a second time, and a second 
operation can be selected and scheduled within its renewed OEI. This 
iteration can be continued until all operations are scheduled. Thus, if the 
analysis problem of Definition 2.31 could be solved in polynomial time, the 
scheduling problem of Definition 4.1 could be solved in polynomial time as 
well. 

Because the OEis cannot be calculated in polynomial time, the estimates 
OEI(v) are calculated for all operations v E V, such that the properties in 
Definition2.28and 2.29 are fulfilled and I OEI(v) I is as small as possible. The 
size of the OE Is in comparison to the COEis determines the obtained pruning 
of the search space, i.e., the obtained domain reduction. 
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2.3 Trivial module sets 

2.3.1 Overview 

The basic execution interval analysis algorithm explained in the following 
subsections is meant for trivial module sets, see Definition 2.14. In Figure 2.2, 
the flow of the execution interval analysis is depicted. In this section, the 
important steps in the analysis will be mentioned, without the exact details. 
The purpose of this overview is to show where the different algorithms 
explained in the remainder of this chapter fit in the analysis flow. The purpose 
is not to explain what kind of actions the different algorithms perform in 
detail. 

In case of a trivial module set, resource conflicts can occur for each separate 
module type m E TM, for a given DFG with time and resource constraints. To 
take these resource conflicts into account, two (related) sets of intervals for 
each module type are calculated. 

DFG + time I resource constraints 
( + scheduling decisions) 

t 
I estimate OEis, Corollary 2.1,2.2 I 

t 
estimate MEis (Section 2.3.2) 

t 
estimate BSGs (Section 2.3.3) 
i.e. determine the BSG arcs 

(Section 2.3.4) 

t 
determine irreducible 
components in BSGs 

(Section 2.3.3 and 2.3.5) 

t 
perform additional analyses 

(Section 2.3.6) 

yes 

t no 

scheduling search space pruned by 
means of reduced OE Is 

FIGURE 2.2. Flow of the execution interval analysis of Section 2.3. 
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First of all, for each module type m E TM, the operations Wm t;;;;; V are 
identified that can be executed on type m. So, the set Wm consists of 
operations that may have resource conflicts with each other. For any such 
operation an OEI is determined. In the first iteration of the algorithm of 
Figure 2.2, the OEis are all equal to the corresponding COEls. 

If a next iteration takes place, not all are equal to the corresponding 
CO Els anymore, i.e., one or more OEis will be reduced. So, in the second and 
subsequent runs of the algorithm of Figure 2.2, the critical path analysis uses 
the latest determined ASAP and ALAP values and not the values determined 
by the Corollaries 2.1 and 2.2. 

Secondly, in order to account for the resource constraints, a set with 
cardinality I Wm I of so called module execution intervals (MEls) is calculated. 
To be more precise, a set of conservative estimates MEis of those MEis is 
determined. Within each MEI, some module of type m has to execute some 
operation v E Wm· The exact definition of an MEI will be presented in the next 
section in Definition 2.33. 

A necessary condition for an operation v E Wm to be executed on a module of 
type mis that its OEI must have sufficient overlap with some i.e., there 
must be an overlap which is at least as long as the execution delay d(m). 
Consequently, if the number of cycles of a MEI is equal to d(m), then some 
module must start the execution of some operation v E Wm in the first cycle 
of that MEI. In computing the ME Is, not only the OE Is are used, but also the 
bound on the number of modules of type m and the data introduction interval 
dii(m). It will be shown how additional pruning of the OEis can be derived 
from information contained in the MEis. 

The OEis and MEis are used to construct a bipartite schedule graph (BSG ), 
which is a bipartite graph with the sets of OEis and MEis establishing the 
required pair of vertex sets. The relation associated with the arcs of a BSG 
is defined by sufficient overlap of OEis and MEis. A necessary condition for 
the existence of a schedule is the existence of a complete matching in the BSG. 

Bipartite graphs posses a unique canonical decomposition of their arc set in 
terms of so called irreducible components [Dulm63]. It is shown that arcs 
outside these components can be removed from the BSG without removing 
any feasible schedule from the solution space. As a consequence OEis can be 
narrowed, thus reducing the search space without loss of completeness. 



26 From Design Space Exploration to Code Generation 

2.3.2 Module execution intervals 

Because resource conflicts occur for each module type separately in case of 
trivial module sets, recall Definition 2.14, we consider an arbitrary module 
type me TM. Assume that Km ~ Mis the set of modules of type m which can 
execute simultaneously, i.e., Km= {k e M I ~(k) = m}. The set of operations 
Wm= {v e V I {1(v)} = µ-1({m})} identifies those operations executable by mod­
ules of type m. In the sequel the index 'm' is dropped wherever possible. Thus, 
if nothing else is said, Wis the set of operations to be executed by the set K. 

Formal definition 

For the definition of module execution intervals, assume a schedule <I> e <I> is 
given. The schedule <I> induces a notion of a partial order on the set W by order­
ing the set according to the value <1>1 ( v) for any v e W. An ordering based on 
the values <J>1(v) for any v e Wis not linear, because some operations might 
have equal start times. 

However, as will be seen shortly, we need a linear ordering based on the start 
times of operations, to be able to define the MEis. A linear ordering can be 
achieved by breaking ties on the start times arbitrarily, which is expressed 
by Definition 2.32. In that definition, an arbitrary linear ordering denoted by 
~ is introduced, which can be interpreted as an assignment of a unique 
number to every operation v e W. 

DEFINITION 2.32. Linear ordering of operations induced by a schedule. 
Let ~ represent an arbitrary linear ordering on W. Given a schedule <I> e <I>, 
< <i> is a linear ordering relation defined by: 

V V : v <<I> w ¢:;> (<P1(v) < cp1(w)) v (<P1(v) = cp1(w) Av~ w). 
<j>E<l> v,wEW 

If cp1(v) = cp1(w) then cp2(v) = cp2(w) as well, because we are considering 
trivial module sets for which the delay of all operations v e W are the same. 
As <qi is a linear ordering it can be used to assign an integer value 
i e [1, I WI], to any operation v e W. This is captured by defining a bijective 
function n:ti>: [l, I WI] --7 W. Thus n:qi(i) is the ith operation in the linear order 
induced by the schedule <J>, and i can be interpreted as the 'operation number' 
denoting the 'position' of operation n:ti>(i) in the schedule <J>. It is now possible 
to formally introduce the notion of a module execution interval. 

DEFINITION 2.33. Module execution interval MEI. 
Consider the set of operations from W assigned to the value i e [1, I WI] over 
the set of all schedules <I>. Furthermore, let <!>1(i) and <1>2(i) be the short hand 
notation for <1>1Cnqi(i)) and <1>2Cnti>(i)) respectively, i.e., <!>1(i) and <1>2Ci) are the start 
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and completion times of the ith operation v E Win the schedule qi E cl>. Then 
MEI(i) is defined by the following interval of clock cycles: 

MEI(i) = [M 1(i), M2(i)] [ l min cp (i)J r max cp (i) 11 ] $E$ 1 ' $E$ 2 • 

Note that Definition 2.33 is equivalent to Definition 2.27. For any schedule 
qi E cl>, the schedule interval of the ith operation must be within the interval 
of clock cycles of MEI(i). Note that for different schedules, different opera­
tions can be the ith operation. So, an MEI does not have to be equal to some 
OEI. Note also that the arbitrary ordering in Definition 2.32 does not have an 
impact on the definition of any MEI. 

Furthermore, the number of ME Is is equal to the number of operations. The 
length of a MEI indicates a kind of'freedom' for the set of modules K: within 
the interval, some module k E K must execute some operation v E W which 
can be the ith operation in a schedule. If the number of cycles in some MEI(i), 
i e [1, I WI], equals the execution delay, i.e. I MEI(i) I r d(m)l, then some 
module from K must start an execution in the first cycle ofMEI(i). This notion 
of freedom is similar to the freedom expressed by the length of an OEI: if 
I OEI(v) I = r d(m)l for any v E W, then operation v lies on a 'critical path', i.e., 
operation v cannot be scheduled in more than one way. 

Note also that a MEI is not related to a specific module if I Kl > 1. Nor is it 
related to some specific operation v e W like the OEis are. Furthermore, the 
MEis are strictly ordered: the first time some module must execute an opera­
tion lies in MEI(l), the second time this must happen lies in MEI(2), etc. 
Consequently we can identify the MEis and their ordering by their indexes. 

Conservative estimates 

Unfortunately, it is not possible to calculate the exact bounds of the MEis in 
polynomial time, otherwise the existence of a feasible schedule under given 
time and resource constraints could be decided in polynomial time and the 
scheduling problem would be solvable in polynomial time. The reason is 
simple: if the set cl> is empty, then the MEis are undefined and cannot be 
determined. If one can determine the MEis, then the set cl> is not empty. So, 
one has to resort to estimates of the MEis which do not limit the solution 
space. For this reason the estimates have to satisfy the following definition. 

DEFINITION 2.34. Conservative estimate of a module execution interval. 
The conservative estimate MEI(i) = [M 1(i), M2(i)], i e [1, I WI], is an 
estimate of MEI(i), satisfying M1(i) :::; Mi(i) /\ M2(i) 2:: M2(i). 

NotethatDefinition2.34is equivalent to Definition 2.30. It will be shown that 
the more accurate MEis are, the more accurate the OEis will be, i.e., the 
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better the pruning of the search space will be. For MEI(i), we have to 
determine, as accurately as possible, the earliest possible start and the latest 
possible completion time of the ith operation of any schedule. 

Let for a moment the set of operations W be transformed into a list of opera­
tions ordered by increasing ASAP. If two operations have the same ASAP, the 
tie is broken in an arbitrary way. In the first iteration of the algorithm, recall 
Figure 2.2, these ASAP values are equal to the CASAP values. Let W(i), 
i E [1, I WI], be the ith operation in the ordering. 

We can now derive the following two properties. Property 2.1 is a consequence 
of the fact that operations cannot start before their ASAP value. Property 2.2 
states, that the maximum number of MEis starting within dii(m) cycles is 
equal to the number of available modules of type m E TM. Recall that the 
number of modules is I KI , as K is the set of modules of type m. 

PROPERTY 2.1. Start ofMEI(i) cannot be smaller than the ith ASAP. 
'V : M1(i)) ~ lASAP(W(i)) J. 

i E [1, IWIJ 

PROPERTY 2.2. In any interval of dii(m) cycles, maximal I KI MEis can start. 
'V : M1(i)) ~ M1(i - I Kl)+ dii(m). 

[1, IWIJ I i > IKI 

LEMMA2.1. 
Algorithm 2.1 determines M1(i), i E [1, I WI], while satisfying the properties 
in Definition 2.34. The proof follows directly from Property 2.1 and 2.2. 

The last cycles of the MEis, i.e. M2(i), i E [l, I WI ], can be determined 
similarly and is given in Algorithm 2.2. For that algorithm, the list of 
operations W must be ordered by decreasing ALAP. 

ALGORITHM 2.1. Calculation of M1(i), i E [1, I WI]. 

for (i := 1 to min {IKI, IWI}) -
M1(i) := LASAP(W(i))J; 

for (i := IKI + 1 to IWI) -
M1(i) := max {LASAP(W(i))J, M1(i - I KI)+ dii(m)}; 

ALGORITHM 2.2. Calculation of M2(i), i E [1, I WI]. 

for (i := IWI to max {1 , IWI - IKI + 1)} -
M2(i) := r ALAP(W(i)) - 1 l; 

for (i := IWI IKI to 1) -
M2(i) := min ff ALAP(W(i)) - 1 l, M2(i + I KI) - dii(m)}; 
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Example 

An example of a DFG, some of its CO Els and the corresponding MEis are 
given in Figure 2.3 and 2.4. The number of cycles available for the DFG is ten, 
i.e., I C I = 10. Due to the precedence relations, and because the additions have 
a delay of one clock cycle, the multiplications cannot be executed in cycle zero 
or cycle nine. Figure 2.4 shows, therefore, that the COEis of the 
multiplications are in the cycles one to eight. Recall that these COEis are 
based on a critical path analysis under the assumption of unlimited resources 
(Corollary 2.1 and 2.2). 

Figure 2.4 shows the MEis for the multipliers as well, which have been 
calculated by the Algorithms 2.1and2.2. So, the COE Is of the multiplications 
in Figure 2.3, the number of modules (I KI == 5), and the data introduction 
interval of the multipliers, dii(multiplier) = 2, have been taken into account 
when determining the MEis. 

FIGURE 2.3. Acyclic data flow graph of the fast discrete cosine 
transform (FDCT) from [Mall90]. 
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Because only two multiplications have cycle one in their COEI, only two ME Is 
start in cycle 1. In cycle two, three other MEls can start, because the number 
of modules equals five. Because the dii equals two, cycle three is the first cycle 
in which the multipliers can start an operation for the sixth and seventh time, 
so the sixth and seventh MEis start in cycle three. 

Only the eighth MEI, and not the ninth and tenth MEI, starts in cycle four. 
The reason is that there are only eight operations that can start between cycle 
one and four, see the COEis in Figure 2.4. In this way, all the first cycles of 
the MEis can be derived. 

The last five MEis end in cycle eight, because there are enough multi­
plications with a CALAP equal to nine. No more MEis can end in cycle eight, 
because there are only five multipliers available. For similar reasons, the 
seventh to eleventh MEis end two cycles earlier, i.e., in cycle six, etc. 

From Figure 2.4, some conclusions can already be made. For instance, the fig­
ure shows that at least three multipliers must start an execution in cycle five 
(in the ninth, tenth and eleventh MEI), while a fourth multiplier must at least 
be busy executing some operation in that cycle (in the eighth MEI). 

0 ------------
1 .. 
2 .N- .. N-,_ --------------------------
3 ' 18 .. 19 - - - - . . - - - - - -
4 __ . _. . . N-. _ N- _ N- _ N- N- _ N- _. __ _ 

~ ;f = 24 : 25 : 26 = 27 : : 28 : 29 - . . - - -
N- .. N-._ N- _ N-_ N-

7 COEis - ,· 43 . - 44 . - 45 - 46 47 
8 ----··-
9 ------------------------------

0 

1 ' 1 at .. 2Rd . - - - - - - - - • - - - - - - • - - • - - - - - - Time· 10 cycles. 
~ ~ __ : : · · 3rd · - 4th - 5th : 6iii- :-

7
fh- : - - - - • - - · · - - - Reso~rces: 5 multipliers (d=dii=2); 

4 ----· ---------------------
5 ~----- --------· ·12'11·--------------
6 /. - ----------- -13th------

~ MEis - - · - · - : : : : : : : : : : - - - - : __ : : : : : : : : : : : ___________ : 14th -15th - 16th 

9 ----------------------- ---------- -------------------

FIGURE 2.4. COEis & MEis for the sixteen multiplications ofFDCT 
given in Figure 2.3. 
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Improved accuracy of the MEls 

We conclude this section with a few remarks on the accuracy of the MEis. 
Additional analyses may improve the determination of the from 
Algorithm 2.1and2.2. In Figure 2.5a, the acyclic DFG representation of the 
fifth order wave digital filter (WDELF) from [DeWi85] is presented. If the 
fifth addition (operation 14) is executed, no other operation can be executed 
at the same time. 

Such operations can be identified as follows. Consider the smallest number 
of cycles possible for a DFG. If under that condition the COEI of an operation 
v e V does not overlap with the COEI of any other operation, then operation 
v can never be executed simultaneously with any other operation. 

In Section 2.3.4 it will be shown that the mentioned fifth addition must 
always be matched with MEI(5) of the additions. Assume that it takes one 
cycle to execute an addition and two cycles to execute a multiplication. 
Because a sixth addition can only start after multiplication 15 or 25, which 
succeed the fifth addition, has been executed, the difference between Mi(5) 
and Mi(6) of the additions, as well as the difference between M2(5) and M2(6), 
must at least be 3 cycles. Such analyses can improve the accuracy of the ME Is 
and consequently the overall execution interval analysis. 

2.3.3 Bipartite graph matching formulation 

The execution interval analysis explained in this chapter is based on a 
bipartite graph matching formulation that incorporates both the OEis and 
MEis. In Figure 2.5, the DFG of the fifth order wave digital filter from 
[DeWi85] is presented with a time constraint of 21 cycles and a set of 
resources consisting of one multiplier and two adders. First the COEis, i.e., 
the CASAP and CALAP values under the assumption of unlimited resources, 
are determined. For the multiplications these COEis are given in Figure 2.5c. 

Applying Algorithm 2.1 results in the following MEis. There are eight 
multiplications, so there are exactly eight MEis in which the applicable 
module must perform a multiplication. The multiplications have to be 
executed within sixteen cycles (between cycle four and cycle nineteen). As the 
multiplier has a dii and a delay of two cycles and the eight multiplications 
have to be scheduled within sixteen cycles, there are eight (in this case non­
overlapping) M:Els of two cycles to perform the multiplications. Figure 2.5c 
shows these MEis, which start every two cycles from cycle step four onward. 
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Formal definition 

Based on the operation and module execution intervals it is possible to define 
the following bipartite graph, see also Figure 2.5c: 

DEFINITION 2.35. Bipartite schedule graph. 
Consider the module type m E TM, the DFG represented by (V, E), and time & 
resource constraints. IfW = {v E V I 'T(v) E µ-1({m})}, then the bipartite sched­
ule graph BSG(m) is a bipartite graph represented by a 2-tuple (N, A), where: 

• N=WURisthesetofverticeswithR={i I iE [1, IWl]J, 
W n R = 0, and I WI = IR I; an MEI(i) is defined for each i E [1, I WI]. 

• A~ W x Risa set of arcs; there is an arc (v, i) E A, 
if and only if there is a schedule cp E <I> for which v = 1tq/i). 

For convenience, operations in a BSG are sometimes said to be adjacent to 
MEis instead of being adjacent to the index numbers. 

~ 
(a) (b) Time constraint: 21 cycles. 

Resources: l multiplier (d=dii=2); 
2 adders (d=dii=l). 

(c) Initial BSG for the multiplications 
(direction of all arcs: left to right): 

opera 
-tion COEI MEI # 

15 [4,9] [4,5] 

25 [4,9] [6,7] 2 

18 [8,13] [8,9] 

28 [8,13] [10,llJ 4 

22 [12,18] [12,13] 5 

33 [13,18] [14,15] 6 

38 [13,18] [16,17] 7 

42 [12,19] [18,19] 8 

(d) ave~age fixed 
freeqom operations 

before analysis 4.~2 0 % 
after analysis 1. !3 55.9% 

FIGURE 2.5. Fifth order wave digital filter, WDELF, from [D~ Wi85]. 
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LEMMA2.2. 
For an arc (v, i) e A the 'overlap' between OEl(v) and MEI(i) is at least as large 
as the execution delay d(m). This means that ALAP(v) Mi(i) ;;::: d(m) /\ 
M2(i)-ASAP(v) + 1 ;;::: d(m). The proof follows directly from Definition 2.33. 

THEOREM 2.1. 
A correct determination of is the following. 

Ir/ : OEI(v) = [ min M1(i), max M2(i)]. v E W (v, i) A (v, i) A 

PROOF. 

The proof follows directly from Definitions 2.27 and 2.35. • 
DEFINITION 2.36. Complete matching. 
For a BSG represented by (N, A), with N =WU R, a matching is a subset 
of arcs in A that do not share any vertices, so every vertex in N is connected 
to at most one arc in a matching. A complete matching is a matching for which 
every vertex in N is connected to exactly one arc in the matching, i.e., a 
complete matching has cardinality I WI and results in a bijection between W 
andR. 

THEOREM 2.2. 
For each feasible schedule <I> e cl>, a corresponding complete matching exists 
in each BSG(m), m e TM. If no complete matching exists for some BSG(m), 
m e TM, then the combination of time and resource constraints is infeasible 
and the set of feasible schedules cl> is empty. 

PROOF. 

Assume some feasible schedule <I> e cl>. From Definition 2.35 follows directly 
that the arcs (n:~i(i), i) must be part of BSG(m). Furthermore, these arcs consti­
tute a complete matching. From that definition follows as well, that if there 
is no complete matching, then there is no feasible schedule. • 

Conservative estimates 

Unfortunately, it is in general not possible to construct a BSG in polynomial 
time, e.g., it is not possible in general to calculate the MEis in polynomial 
time. Because deriving the set of schedules is in general NP-hard, the set of 
arcs in a BSG cannot be determined in polynomial time as well. As in the case 
of the OEis and MEls, we can determine a conservative estimate of a BSG. 
Until now, the OEls were equal to the COEis. It will be shown that with the 
conservative estimates of BSGs, we can possibly reduce the without 
limiting the solution space, i.e., we can make the OEis more accurate, thus 
reducing the search space. 
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DEFINITION 2.37. Conservative estimate of a bipartite schedule graph. 
The conservative estimate BSG(m), m E TM, is represented by the 2-tuple 
(N, A) and is an estimate of BSG(m) = (N, A), where: 

• N =WU R is the set of vertices, see Definition 2.35; 

• A s W x R is a set of arcs satisfying A :2 A 

LEMMA2.3. 
Let for all v E W and i E R, an arc (v, i) be an element of A if and only if 
I COEI(v) n MEI(i) I ;:::: d(m). This determination of the set A satisfies the 
property A :2 A mentioned in Definition 2.37, which follows directly from 
Lemma 2.2 and Definition 2.34. 

Lemma 2.3 gives an initial and correct determination of the set of arcs in a 
BSG. Together with the MEis and OEis, a conservative estimate of a BSG is 
obtained. Note that the OE Is are equal to the corresponding COE Is in the 
first run of the execution interval analysis, recall the discussion in 
Section 2.3.1. This initial BSG is the starting point for the analysis explained 
in the remainder of this section. 

Not all complete matchings in a BSG have to represent feasible schedules, 
because the calculated BSGs are just conservative estimates of the BSGs. 
The exact difference lies in the fact that the dependency relations of the DFG 
are not fully incorporated in the arcs and the MEis of the BSGs. However, a 
possible OEI reduction can be achieved by identifying those arcs that do not 
belong to any complete matching. For this purpose, the so called irreducible 
components [Dulm63] are identified; see Theorem 2.3 and Definition 2.38. 

THEOREM 2.3. 
The arcs in a BSG that do not belong to any complete matching can be 
removed from A without violating the property A :2 A mentioned in 
Definition 2.37. The proof follows directly from Theorem 2.2: none of the 
feasible schedules contains any of these arcs in their corresponding complete 
matching. 

DEFINITION 2.38. Irreducible components in a BSG. 
Consider the set of complete matchings of a bipartite graph BSG, and let A' 
be the union of arcs from that set. The irreducible components of a BSG are 
the connected subgraphs induced by the set A'. 

The irreducible components, and therefore the arcs that can be removed from 
a BSG, can in the general case be derived in 0( IN 1112 · I A I) [Sang76]. Note 
that Section 2.3.5 will present a problem specific algorithm that determines 
the irreducible components in 0( IN I ·log I N I ). The removal bf an BSG arc 
can reduce the OEI of the operation connected to that arc, ~s is shown in 
Theorem 2.4. 



Execution Interval Analysis 35 

THEOREM 2.4. 
Let be the set of arcs of BSG(m), m E TM, after removing the arcs that do 
not belong to any irreducible component. Then the following determinations 
of and ALAP(v) for an operation v e Ware correct, do not limit 
the set of feasible schedules. The proof follows directly from Theorem 2.1 
and 2.3 and the properties in the Definitions 2.28 and 2.29: the schedule 
interval of an operation has to be within the interval of clock cycles of its 
adjacent MEis. 

ASAP(v) 

ALAP(v) 

max{CASAP(v), min_ M1(i)}. 
(v, i) EA 

min{CALAP(v), max_ M2(i) + 1}. 
(v, i) EA 

The calculations above show, that the number of clock cycles within an OEI( v) 
of any operation v depends on the clock cycle intervals covered by the adjacent 
MEis. Therefore, the more accurate the adjacent MEis in a BSG are 
determined, i.e., the smaller the adjacent MEis are, the more accurate the 
estimated OEis can be. 

If an OEI is reduced, a new run of the execution interval analysis can be 
started for a further reduction of the OEis, recall Figure 2.2. A second or 
subsequent run of the analysis starts with a critical path analysis, using the 
latest determined and values and not the values determined by 
the Corollaries 2.1 and 2.2. Because in a new run the dependency relations 
of the DFG are reconsidered, a reduction of an OEI in the BSG of one module 
type can also lead to the reduction of OE Is in the BS Gs of other module types. 

Example 

Figure 2.5c shows that only multiplication 42 can be scheduled in MEI(8), 
because it's the only operation adjacent to MEI(8). This is another way to see 
that the arcs from multiplication 42 incident with MEI(5), MEI(6) and 
MEI(7) do not belong to any complete matching and can be removed. 
Figure 2.5c also shows that only the operations 15 and 25 can be scheduled 
in the first two MEis, that consequently only the operations 18 and 28 can be 
scheduled in MEI(3) and MEI( 4), and that operations 33 and 38 must be 
scheduled in MEI(6) and MEI(7). So the arcs (15, 3), (25, 3), (18, 5), (28, 5), 
(22, 6) and (22, 7) do not belong to any irreducible component and can be 
removed as well. 
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Multiplication 22 remains connected to MEl(5) only, and consequently it 
must be scheduled in the first two cycles of its COEI, i.e., for multiplication 22 
the schedule must be <Pi= CASAP and <P2 = CASAP + 2. As the dependency 
relations of the DFG must be preserved, the operations 15andi18, which are 
predecessors in the critical path of multiplication 22, become 'fixed' to the first 
two cycles of their COEis as well in the next run of the algorithm. 

After three runs of the analysis only the bold arcs in Figure 2.5c remain in the 
resulting in maximally reduced OEis: all the multiplications can be 

scheduled in only one way. This example shows the capabilities of the 
approach to achieve a considerable domain reduction, i.e., to prune the 
scheduling search space effectively. 

2.3.4 BSG arcs 

The dependency relations in a DFG must be satisfied in any feasible schedule. 
Consider a BSG, an operation in that BSG, and its pre- and successors in the 
DFG which are also elements of the same BSG. Let a predecessor of a MEI 
be a MEI with a lower index number, and a successor of a MEI one with a 
higher index number. From Definition 2.33, it follows that in any schedule an 
operation can only be matched with a MEI if its predecessors in the BSG can 
be matched with preceding MEis and its successors with succeeding MEis. 
So, the following proposition must hold; see also Figure ~~6: 

-1 -1 
V V : :n: (v) < :n: (w). 

<jJ E .P lv,w E BSG(m) I (v,w) E E*l <l> <jJ 

OEI MEI 
A 1 

B 2 Only the bold 

c 3 
arcs can be part 

of the BSG! 

D 4 

E 5 

FIGURE 2.6. Example DFG and corresponding BSG. 
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This condition was neither considered in Lemma 2.3 nor in the execution 
interval analysis until now, i.e., the condition was not considered in the deter­
mination of the arcs of BSG(m). ii:~(v) also identifies the number of the MEI 
to which vis matched in a schedule <jl, i.e., (v, ii:~(v)) E A is an element of the 
complete matching representing <jl E <I>. Let preds*(v) be the list of predeces­
sors ofv in BSG(m), and let preds*(v) be ordered by increasing ASAP. If two 
operations have the same ASAP, the tie is broken in an arbitrary way. 

Let num(v) E [1, I WI] be a conservative estimate of the first MEI that can 
be adjacent to operation v in the BSG. Then Algorithm 2.3 can lead to a 
smaller set of arcs than the set constructed in Lemma 2.3, thereby still 
satisfying the requirements of Definition 2.37. The Algorithm 2.3 runs in 
linear time and can lead to a smaller set of arcs, because it takes the 
proposition above into account. 

Note that such kind of analysis can also be applied to determine the first cycle 
in which all the predecessors of an operation v can be completed, independent 
of the fact whether these predecessors are elements of the same BSG as 
operation v. 

Similar algorithms based on the successors of an operation can be applied, for 
instance to determine the last MEI to which an operation is adjacent, see 
Algorithm 2.4. In that algorithm, succs *(v) is the list of successors of v in 
BSG(m), and succs*(v) has to be ordered by decreasing The number 
of arcs in a BSG can decrease due to these calculations, which in turn can lead 
to more accurate, i.e., smaller, OEis. 

ALGORITHM 2.3. Calculation of the first MEI for operation v. 

num(v) := 1; 
for_all (predecessor E preds*(v)) -

num(v) := max {num(v), num(predecessor)} + 1; 
while (l ASAP(v) J > M2 (num(v)) - d(v) + 1) 

num(v) := num(v) + 1; 

ALGORITHM 2.4. Calculation of the last MEI for operation v. 

num(v) IWI; 
for_all (successor E succs*(v)) -

num(v) :=min {num(v), num(successor)} - 1; 
while ( r ALAP(v) 1 < M 1 (num(v)) + d(v)) 

num(v) := num(v) - 1; 
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An additional analysis for the determination of the BSG arcs can also help 
to improve the overall result of the execution interval analysis as follows. 
Consider an operation v E V that is fixed to a schedule interval, i.e., for which 
r dmin(v)l I OEI(v) I. In that case, if there is an arc (v, i) A for which 
MEI(i) then operation v can be matched to MEI(i) without limiting 
the solution space of any operation. All arcs connected to these two vertices 
in the except for the arc between them can be removed. This leads, in 
some cases, to new and smaller irreducible components, thus inducing a more 
accurate execution interval analysis. 

2.3.5 Run time complexity 

In the early approach of [Timm93b], the total complexity of determining the 
BSGs and their irreducible components is 0( IV 12 + IV 1112 • I A I), with 
IAI ~ IVl 2.Ittakes0(1Vl+IEl)with IEI ~ IVl 2 tocalculatetheOEis. 
The MEI calculation runs in 0( IV I ·log IV I) due to the sorting of the opera­
tions for Algorithm 2.1. The determination of the arcs of a BSG runs in 
0( IV 12): the number ofleft and right vertices is 0( IV I ), so in the worst case, 
0( IV 12) tests have to be performed to check whether an operation can be 
scheduled within a MEI. The additional analysis at the end of the previous 
subsection also has a worst case complexity of 0( IV 12). 

The term 0( IV 1112 • I I ) is due to the derivation of the irreducible 
components which consists of two steps [Sang76]. In the first step, an 
arbitrary complete matching is determined which takes 0( IV 1112 · I A I ) in 
the general case [Hopc73]. In Figure 2.7a, the bold arcs represent such a 
complete matching for the initial bipartite schedule graph of Figure 2.5c. 

(a) (b) 

FIGURE 2.7. Determination ofirreducible components. 
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In the second step the direction of the arcs in the BSG is changed as follows: 
the arcs in the matching are given a direction opposite to the direction of the 
arcs not in the matching. In Figure 2. 7 a, the arcs of the selected complete 
matching are directed from left to right, and the other arcs are directed from 
right to left. 

In the third step, we substitute each subgraph induced by an arc in the 
matching by a new vertex, see Figure 2. 7b. The arcs that were previously 
connected to such a subgraph remain connected to the new vertex and remain 
their direction as well. The arcs that are inside the strongly connected 
components of this new graph form the arcs of the corresponding irreducible 
components of the original BSG, together with the arcs of the previously 
determined complete matching [Sang76]. In Figure 2.7b, the strongly 
connected components are denoted by the gray ellipses. Strongly connected 
components can be determined in 0( I V I + I A I ) using depth first search. 

Run time complexity improvements 

Although 0( IV 1112 · I I )is, in general, the lowest run time complexity to find 
a maximal matching in a bipartite graph [Hopc73], the step of finding an 
initial complete matching in a BSG can be done in 0( IV I ·log IV I). There are 
two reasons why we can find a complete matching more efficiently than the 
algorithm of [Hopc73]. First of all, we are only interested in a complete 
matching, not in a maximal matching. Secondly, we use problem specific 
information to find the complete matching efficiently, as is shown below. 

Consider a bipartite graph BSG(m) = (N, A), m E TM. Let W be the list of 
operations in BSG(m), let W be ordered by increasing ASAP, and let W(i) be 
the ith operation in that order. If two operations have the same ASAP, the tie 
is broken in an arbitrary way. Let L be an initially empty list of operations 
which is kept ordered by increasing ALAP. Again, if two operations have the 
same ALAP, the tie is broken in an arbitrary way. Let BM be the (initially 
empty) bipartite matching. 

THEOREM 2.5. 
Algorithm 2.5 finds a complete matching if one exists. 

PROOF. 

The first operation v1 E L to be selected for MEI(l) is the operation with the 
smallest ALAP that can possibly be scheduled within MEI(l). Suppose a 
complete matching exists in which MEI(l) is not matched with v1 but with 
Vj e W, and in which v1 is matched with MEI(j),j e {2, 3, ... , I WI}. Then there 
also exists a complete matching in which v1 is matched with MEI(l) and Vj 

with MEI(j), as is shown below. 



40 From Design Space Exploration to Code Generation 

Because v1 can start in MEI(l) and MEI(j), and because ALAP(v1) :;;; 
ALAP(vj), i.e., Vj is not a predecessor ofv1 in the DFG, M1(j) ;::: M1(1), and Vj 
can start in MEI(l), there is also an arc between Vj and MEI(j) in the BSG. 
So if there exists a complete matching, then there also exists a complete 
matching which starts with a greedy choice. Once the greedy choice of the first 
matching has been made, the problem reduces to finding a complete matching 
for the remaining vertices. By induction the greedy choice at every step of the 
algorithm produces a complete matching if one exists. • 

ALGORITHM 2.5. Determining a complete matching. 

i := 1; L := 0; 
- note that W is ordered by increasing ASAP -
for (i := 1 to IWI) -

while O :;;; IWI /\ (W(j), i) E A) -
insert W(j) in L, while keeping L ordered by increasing ALAP; 
i := j + 1; 

if ((L(1 ), i) E A) -
add (L(1), i) to BM; 
delete L(1) from L; 

else 
no complete matching possible; 

The 0( IV I ·log IV I) run time complexity of the algorithm above is due to the 
ordering of the lists of operations. With this algorithm, the total run time 
complexity of determining the bipartite schedule graphs and their irreducible 
components becomes 0( IV 12) instead of 0( IV 12 + IV 1112 · I A I ). In practice, 
the average run time complexity is about linear in the size of the DFG, i.e., 
linear in the number of vertices and arcs in a DFG. 

A new run of the execution interval analysis is started only if a reduction of 
some OEI has taken place, recall Figure 2.2. In the worst case just one cycle 
is removed from the OEI of just one operation. The union of all OE Is contains 
0( I C I · IV I ) cycles, so the number of runs is 0( IC I · IV I ). However, in 
practice the algorithm already stops after a few runs. 

2.3.6 Additional analyses 

So far different steps involving the bipartite graph matching formulation 
have been discussed. There are some other types of analyses which can also 
improve the estimation of the OEis, and which are not based oh BSGs. 
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DFG: WDELF, see Figure 2.5. 
Time constraint: 18 cycles. 
Resource constraint: 2 multipliers (d=dii=2); 

2 adders 

Irreducible component 
without additional analysis: 

CQEI MEI 

22 [12, 15] [12, 13] 

33 [13, 15] [12, 14] 

38 [ 13, 15] [14, 15] 

42 [12, 16] [14, 16] 

FIGURE 2.8. Additional analysis. 

c 

12 

13 

14 

15 

16 

17 

41 

Additional analysis: 

COEI(33) 

COEI(22) COEl(38) 

COEI(42) 

An example of such an additional analysis is based on the examination of 
individual clock cycles, and is given in Figure 2.8. The multiplications 33 
and 38 from WDELF, see Figure 2.5, must occupy both multipliers in 
cycle fourteen. This is denoted by the black dots. The multiplications 22 
and 42 can therefore not be active in that cycle, which is denoted by the bold 
Xs in cycle fourteen. This analysis is somewhat comparable to other consis­
tency checks in the field of constraint satisfaction, see [Nuijt94]. 

Because multiplication 22 cannot be active in cycle fourteen, it can also not 
be active in cycle fifteen, as a multiplication takes two cycles and non pre­
emptive scheduling is assumed. Therefore, the OEI of multiplication 22 
equals [12, 13], i.e., multiplication 22 and all its predecessors in the critical 
path must start their execution in the first cycle of their CO Els. Figure 2.8 
shows that this is not detected by the BSG analysis described so far; only the 
bold arcs can be present in the BSG. 

In general, if an OEI is small enough, then independent of the chosen 
schedule, the corresponding operation will always occupy a module in one and 
the same specific set of cycles. If in some cycle the number of such operations 
is equal to the number of modules, then for any schedule <jJ E <I> the comple­
mentary set of operations is prevented from being scheduled in that cycle. 
Such a cycle can consequently be excluded from the OEis of the operations 
of this complementary set. 
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2.4 Unrestricted module sets 

2.4.1 Bipartite schedule graph definition 

In case of an unrestricted module set, many-to-many mappings between 
operation types and module types are allowed; see Definition 2.15. Such a 
module set can contain modules with a large variety in delay, area and so on 
for one operation type. If an unrestricted module set is used, several aspects 
of the bipartite graph matching formulation are affected. In this section, the 
main differences with trivial module sets are highlighted. 

First of all, BSGs can be constructed for each set of operations that can have 
resource conflicts. The previous section showed that, in case of a trivial 
module library, BSGs are therefore constructed for each module type 
separately. For an unrestricted module set, BSGs can be constructed for each 
set of operation types that can be mapped on the same module type. For 
instance, if a module set consists of an adder, a subtracter and an adder/ 
subtracter, then three BSGs can be constructed: one containing the additions, 
one containing the subtractions and one containing both types of operations. 

2.4.2 Module execution intervals 

The data introduction intervals and execution delays of the modules for a 
certain (set of) operation type(s) can differ. If so, some adaptations can be 
made in the calculation of the ME Is to determine them more a1:1curately than 
Algorithm 2.1 does. To take the different data introduction intervals (diis) 
into account when estimating the MEls, the specific modules are considered 
during the calculation, as is shown below. 

FIGURE 2.9. 1st example of MEis with an unrestricted module set. 
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Examples 

In Figure 2.9, a module set with two modules ki and k2, dii(~(k1)) = 2 and 
dii(~(k2)) = 3, and seven OEis of operations that can be executed by ki and k2 
are given. If these two modules can be active all the time, then k1 can start 
every two cycles and k2 can start every three cycles. So within six cycles five 
starts of MEis can take place. Applying Algorithm 2.1 with the smallest dii 
of two cycles would lead to six starts in six cycles, which is less accurate. 

In Figure 2.10, the same module set is used as in Figure 2.9, but now the 
modules cannot be active all the time. In case k1 would start in cycle zero, the 
M--;: s are equal to the cycles zero, one, two and four respectively. In case k2 
would start in cycle zero, the M1s are equal to the cycles zero, one, three and 
three respectively. The earliest possible Mi(3) occurs when ki starts in cycle 
zero, while the earliest possible M1(4) occurs when k2 starts in cycle zero. 
Because of the possible swaps between slower and faster modules, a greedy 
choice of a module for a certain MEI is not correct when deriving the earliest 
possible first cycle for each individual MEI. 

Determination of MEis revisited 

To ensure that the approach determines the MEis in case of different data 
introduction intervals as accurately as possible, but without limiting the 
solution space, Algorithm 2.1 is changed into Algorithm 2.6 as follows. 

Module set: 
ki, dii(~(k1)) = 2; 
k2, dii(~(k2)) = 3. 

FIGURE 2.10. 2nd example ofMEis with an unrestricted module set. 
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First, the elements of the module list Kare sorted by increasing dii, with K(i), 
1 :::;; i :::;; I KI , the ith module in that order. Let the list of operations that can 
be executed by modules from K be ordered by increasing ASAP. If two 
operations have the same ASAP, the tie is broken in an arbitrary way. Let 
W(i), i E [1, I WI ], be the ith operation in that order. Let newstart(k) of a 
module k E K denote the first cycle in which the module k can start to execute 
a new operation. Then the function 'select' returns the module with the 
smallest dii among the earliest available modules. 

Furthermore, newstart(k) is calculated incorporating possible swaps 
between modules with different diis, as is shown below. In the function 
'update' the modules are traversed with increasing dii to check whether a 
swap against the selected module k is possible and leads to earlier M1 s. If 
during the traversal the module k is encountered, then there is no swap 
possible with a module which has a smaller dii that leads to earlier M1s. 

Until that moment it is checked whether the modules could be swapped, 
which is true if module k is idle since the previous start of the other module 
1 E K, and whether this swap leads to earlier M1s. If this is true, the selected 
module k is said to be ready for a new execution after dii(l) instead of dii(k) 
cycles, with dii(l) < dii(k). In this way all possible swaps are incorporated, 
and the earliest possible Mis are calculated correctly, i.e., without limiting 
the solution space of a scheduler. So, applying Algorithm 2.6 to the examples 
of Figure 2.9 and 2.10 will lead to a correct determination of the Mis. 

The M2s of the MEis whose Mis are calculated by Algorithm 2.6 cannot be 
calculated similarly. This is due to the linear ordering of scheduled 
operations, recall Definition 2.32. In case of a trivial module set, the ordering 
is the same if it is based on the <1>2s instead of cp 1 s. In case of an unrestricted 
module set, the two orderings can be different, because of the possibly 
different execution delays of the operations within a BSG. 

Therefore, if the Mis of the MEis are calculated by Algorithm 2.6, then the 
M2s must be calculated as follows, in order to obtain correct MEis. Let 
Wi k W be the set of operations that can possibly be matched with MEI(i). 
Then the following estimate is correct, i.e., conservative: 

M2(i) = max r ALAP(v) 11. 
v W; 

In order to improve the accuracy of the overall execution interval analysis, it 
is of course possible to construct a second set of BSGs in which the M2s are 
calculated by an algorithm similar to Algorithm 2.6 and the Mis are 
determined by: 

Mi(i) min l ASAP(v) J . 
vEW; 
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ALGORITHM 2.6. calculating M1s in the case of differing diis. 

for (i := 1 to IKI) -
newstart(K(i)) := O; 

for (i := 1 to IWI) -
k :=select( lASAP(W[j])J ); 
M1 (i) :=max {lASAP(W(i))j, newstart(k)}; 
newstart(k) := update(k, M 1 (i) ); 

select (real asap) 
{ 

} 

choice := K(1 ); 
for (i := 1 to IKI) -

if (newstart(K(i)) :5 asap) -
return K(i); 

if (newstart(K(i)) < newstart(choice)) -
choice := K(i); 

return choice; 

update (module k, int first) 
{ 

for (i := 1 to IKI) -
if (k = K(i)) -

return first+ dii(l;(k)); 
prev := previous time module K(i) started; 
if (newstart(k) :5 prev < first /\ 

prev + dii(l;(k)) :5 first+ dii(l;(K(i)))) -
return first + dii(l;(K(i))); 

45 

Furthermore, in case of a trivial module set, the earliest possible <P2(v) of an 
operation vis the smallest M1 of the adjacent MEis plus the execution delay 
of the corresponding module type. [Timm94] shows that, in case of an 
unrestricted module set, the earliest possible <P2s can possibly be calculated 
more accurately than just using the smallest execution delay within the set 
of applicable modules. This may also have an impact on the accuracy of the 
OEis, because all successors of an operation v cannot start earlier than <P2(v). 
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2.5 Experiments and results 

For the example of Figure 2.5, the execution interval analysis deletes all arcs 
in the BSG except for the bold ones. All the multiplications can only be 
scheduled in one way, i.e., they are fixed, as are a number of additions: 55.9% 
of all the operations are already fixed before scheduling. A measure for the 
search space of a scheduler is expressed by the following definitions of 
freedom. 

DEFINITION 2.39. freedom, i.e., slack, of an operation. 
The freedom F(v) of an operation v E Vis defined as the number of cycles 
within its OEI minus the minimal delay of the operation within the set of 
modules, i.e. F(v) = ALAP(v) ASAP(v)- dmin(v). 

DEFINITION 2.40. average freedom AF(V) of the set of operations Vin a DFG. 

AF(V) = I F(v) = I ALAP(v) ASAP(v) - dmin(v) 
vEvlVI vEV IVI 

The average freedom decreases from 4.82 to 1.53 in the example of Figure 2.5, 
by using the algorithms depicted in Figure 2.2. 

Some results of the execution interval analysis implemented in the NEAT 
system are given in Table 2.1, in which the optimal functional area versus 
time (AT) points have been given for WDELF, see Figure 2.5a. The way these 
AT points are obtained is explained in the next chapter. These execution 
interval analyses before scheduling were run within a few tenths of seconds 
on an HP9000/755 workstation. 

TABLE 2.1. Execution interval analysis results for WDELF. 
ICI #multi- ' #fast #slow I average fixed 

pliers adders adders freedom* operations * 
(d=dii=2) (d=lJ (d=dii=2J I 

17 3 0.38 (0.82) 88.24%(70.59%) 

18 2 1.38 (1.82) 32.35% (0%) 

21 1 1 1 1.29 64.71% (0%) 

28 1 1 9.29 (11.82) 2.94% (0%) 

54 1 1 21.06 (37.82) 2.94% (0%) 

* The values in parentheses denote the results for the classical CASAP I qALAP analysis 
under the assumption of unlimited resources. 
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The table shows that, for all these optimal AT points, the execution interval 
analysis results in a reduction of the estimated OE Is. As the number of clock 
cycles gets larger, the reductions of the OEis become less significant in 
comparison with the COEis. Figure 2.5a shows that this is due to the fact that 
WDELF has a lot of freedom, in case there are only a few modules but many 
clock cycles. 

2.6 Discussion 

It is clear from the previous section that the execution interval analysis can 
decrease the freedom of operations, and it can therefore improve the results 
of schedulers considerably by pruning their search space. However, the run 
time efficiency of schedulers can be improved as well: IP schedulers for 
instance need fewer variables and constraints. The number of variables and 
constraints is directly related to the amount of freedom operations have, so 
if the average freedom decreases, the number of variables and constraints 
will also decrease. Any IP scheduling model, e.g., the node packing model of 
[Gebo92], is still valid after the execution interval analysis, so a decrease in 
the number of variables and constraints will lead to run time efficiency 
improvements. 

The importance of the execution interval analysis can also be pointed out by 
a greedy list scheduler that schedules a set of operations from the ready list 
in some cycle step if and only if: 

1. the predecessors of all the selected operations are scheduled; 

2. the current cycle is within the current OEI of all the selected operations; 

3. the execution interval analysis, after scheduling the selected operations, 
does not detect infeasibility. 

Such a greedy list scheduler can never fail on the examples of Table 2.1, while 
normal list schedulers without the analysis can fail, depending on their 
priority function. Any priority function will always lead to a feasible schedule 
within the cycle budget ifthe analysis is applied. So the quality of the results 
of heuristic schedulers can be improved considerably due to the presented 
analysis. 

The average values of freedom and the percentages of fixed operations in 
Table 2.1 are values before scheduling. If the execution interval analysis is 
iteratively continued during scheduling, these values can change consider­
ably from step to step. For instance, in the case of eighteen cycle steps, 
two multipliers and two fast adders, the additions 20, 21, 36 and 41 in 
Figure 2.5a are in the ready list in cycle step eleven. At this point, the average 
freedom is 0.65 and 56% of the operations are fixed. 
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The analysis at this point shows that addition 21 must be scheduled in cycle 
step eleven, while any of the three remaining additions can also be selected. 
After the selection of any of them, all but one operation, i.e., 97% of the 
operations, are fixed by the execution interval analysis, whil~ the average 
freedom decreases to 0.03. This example shows that the iteratite application 
of the execution interval analysis between the various steps of a scheduling 
procedure can have a large influence on the quality of the result as well. 



Chapter 

3 Lower Bound Analyses 

3.1 Introduction 

In this chapter we present a unified approach oflower bound functional area 
and cycle budget estimations to predict the area vs. timing characteristics of 
designs. The ability to predict these characteristics without actually 
implementing them is important in producing high quality designs in a 
reasonable time, and is therefore an important part of an (interactive) system 
design environment [Fleu93]. If a design is part of a larger system, then it is 
important to select one or more 'good' points from the design space without 
synthesizing all possibilities. So an accurate lower bound area vs. timing (AT) 
curve can speed up the design space exploration and can also be used to 
evaluate the quality of a design; see also Section 1.3. 

Most architectural synthesis schedulers are only capable of mapping an 
operation to one specific module type. However, to ensure a full design space 
exploration, a synthesis system should select freely from an unrestricted 
library containing module types with a large variety in delay, area and so on. 
The lower bound functional area estimation presented in this chapter is very 
useful as a starting point for time constrained scheduling approaches with 
such a capability, as will be shown in Chapter 4. 

Both the area and cycle budget estimations are mainly based on relaxing the 
precedence constraints in a DFG. Section 3.2 shows that this is also the case 
for related work on this subject. Section 3.3 deals with a lower bound cycle 
budget estimation approach based on the execution interval analysis of 
Chapter 2. Section 3.4 deals with the lower bound functional area estimation. 
In case of unrestricted module libraries, this lower bound area estimation is 
modelled as a mixed integer linear programming (MILP) problem. 

The lower bound area estimation selects a module set with minimal area. If 
a module set turns out to be infeasible, or a scheduler cannot find a correct 
schedule within short run times, then a new module set must be selected. 
Section 3.5 explains how the next module set with respect to functional area 
can be selected, i.e., how to select the smallest possible, but different, module 
set with an equal or larger functional area. In that section we also show that 
the cycle budget estimation of Section 3.3 can be used as a partial check for 
the feasibility of a module set. 
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Previous approaches, like [Chen91], [Jain92], [Shar93], [Timm93a], 
[Dalk94], [Chau94J, [Holm94], determine a lower bound estimate of the 
minimal functional area for each possible number of cycle steps separately. 
For a complete AT curve the number of these estimations and hence the CPU 
time can become rather large. Unrestricted module libraries with a large 
range of delays for each operation type can increase the design space and 
hence the total number of area estimations dramatically. To avoid a large 
number of estimations, Section 3.6 presents an improved approach to 
calculate a complete lower bound AT curve efficiently. 

3.2 Related work 

There are only a few other lower bound cycle budget, i.e., timing, estimation 
approaches; see [Rim92] or [Shar93]. These approaches are less accurate 
than the approach described in Section 3.3, as will be shown in that section. 

Most other lower bound functional area estimation approaches, like those of 
[Chen91], [Jain92], [Shar93] and [Dalk94], handle only trivial libraries and 
are based on relaxing the precedence constraints. Section 3.4.2 deals with 
trivial module libraries and shows that these four approaches are less 
accurate. This is due to the fact that the approach of Section 3.4.2 guarantees 
that, with the selected module set, all operations can be scheduled within 
their COEis, or within their OEis after the execution interval analysis is 
done. The four approaches above do not give such a guarantee. Furthermore, 
the (average) run time complexity of[Dalk94] is also larger than the (average) 
complexity of the approach in Section 3.4.2. 

Another approach covering trivial libraries can be found in [Chau94]. That 
approach guarantees that operations can be scheduled within their COEis, 
but only for operations with a delay of one clock cycle, i.e., not for operations 
with delays larger than one clock cycle. The approach of Section 3.4.2 gives 
this guarantee for both kinds of operations and has a better run time 
complexity and efficiency as well, because the solution method of [Chau94] 
is based on linear programming. 

Like the approach in this chapter, [Chau94] can detect that some combination 
of modules for different operation types constitute an infeasible module set. 
However, unlike the approach of Section 3.5.2, it does not try to determine a 
subsequent module set with the smallest area, but enumerates all possible 
subsequent module sets. This is due to the fact that the approach of[Chau94] 
cannot discriminate between the costs of different module sets: it only 
considers the number of modules of each type. 
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Another approach that produces AT curves, like the approach in Section 3.6, 
is [Holm94]. In that approach, memory access times are also taken into 
account. However, the approach of [Holm94] calculates each point of the AT 
curve separately and the resulting curve is not guaranteed to be a lower 
bound curve. Furthermore, a first approach that claims to determine an 
accurate lower bound on memory area can be found in [Shar94]. In this 
chapter, memory area as well as interconnect area are not considered. 

3.3 Lower bound cycle budget estimation 

In this section, it is shown how the approach of Chapter 2 can be used to 
determine a very accurate lower bound estimate on the number of clock cycles 
needed for a design with resource constraints. This estimate can be derived 
using a small adaptation of the execution interval analysis, and is merely the 
determination of the smallest possible cycle budget according to that 
analysis. 

DEFINITION 3.1. Cycle budget problem. 
Given an acyclic DFG and a set of modules M on which the operations in the 
DFG must be mapped. Find the minimum cycle budget I C I needed to execute 
the DFG for the given set of modules. 

In general, the problem of Definition 3.1 is NP-hard [Heem90]. Some lower 
bound C1ow is therefore calculated, satisfying C10 w ~ I C I . Of course, it is tried 
to determine an accurate, i.e., an as large as possible, value for C1ow· 

DEFINITION 3.2. Lower bound cycle budget problem based on COEis. 
Given are the prerequisites of Definition 3.1. Calculate the minimum number 
of cycles CcoEJ, CcoEI ~ I C I , such that all operations can be scheduled 
within their COEI for the given set of modules. 

An initial lower bound on the cycle budget can be derived by Algorithm 2.1 
or 2.6, which determine M 1 s. From these cycles, an initial lower bound on the 
earliest possible completion time of a DFG can be derived. For instance, if a 
DFG consists of ten multiplications only, and the multiplications have a delay 
of two, then an initial and correct Ciow equals M1(10) + 2. This bound on the 
cycle budget is in fact equivalent to the lower bound calculated in [Rim92]. 

The approach of [Rim92] stops with this initial bound, but the estimation 
process can be continued by determining the M2s and the COEis using the 
initial bound C1ow· After this process, it may occur that the number of cycles 
of some MEI turns out to be smaller than the smallest execution delay of the 
corresponding modules. In that case there is no feasible schedule within the 



52 From Design Space Exploration to Code Generation 

'current' bound on the number of cycles, C10 w, so this lower bound has to be 
increased. The lower bound C10 w, the M2s and the CALAPs of the operations 
have to be increased such that all MEis are at least as large as the smallest 
execution delay of the corresponding modules. 

After the MEis and OEis have been determined, it can be checked whether 
all the contain complete matchings. At this point it is still possible that 
the lower bound estimate on the number of cycles is detected as too small. 
This happens as soon as a complete matching within some initial BSG cannot 
be found. In that case the estimate of the number of cycles must be 
incremented and the check is performed a second time. The additional steps 
in this approach clearly make the lower bound estimate more accurate than 
the approach of [Rim92], which stops after the initial bound based on the M1s. 

In case of a trivial module set, recall Definition 2.14, if complete matchings 
are found within all the initial BSGs, all operations can be scheduled within 
their COEI, i.e., then C1ow has become equal to CcoEI· Note that in case of 
unrestricted module sets, recall Definition 2.15, it is not guaranteed that C1ow 
equals CcoE1; see the determination of the MEis in Section 2.4.2. 

Determining MEis, COEis and a complete matching in each BSG has a 
complexity of 0( IV I ·log IV I + IE I ), recall Section 2.3.5. Let I Cup I be an 
upper bound on the number of cycles, for instance determined by a heuristic 
scheduler, e.g., a list scheduler. A binary search on the number of cycles has 
a complexity of O(log I Cup I ), so determining the CcoEI of Definition 3.2 for 
a trivial module set takes 0( IV I ·log IV I ·log I Cup I + IE I ·log I Cup I ). 

However, the lower bound estimation does not have to stop as soon as 
complete matchings are found within all the initial BSGs. The rest of the 
execution interval analysis of Chapter 2 can still be performed, which can 
lead to the detection that the current lower bound estimate cannot be equal 
to IC I. This leads to the lower bound cycle budget problem of Definition 3.3. 

DEFINITION 3.3. lower bound cycle budget problem based on OEis. 
Considering the prerequisites of Definition 3.1, calculate the minimum 
number of cycles CoEI, CoEI ~ I C I , such that all operations can be scheduled 
within their OEI with the given set of modules. Of course, the mentioned 
values are the values after the interval analysis of Chapter 2 is done. 

A full execution interval analysis for one cycle budget takes 0( I Cup I · IV 13), 

recall Section 2.3.5, and a binary search on the number of cycles has a 
complexity of O(log I Cup I). Consequently, the total run time complexity of 
solving the problem of Definition 3.3 for a trivial module set has a run time 
complexity of 0( I Cup I ·log I Cup I · IV 13). Of course, in practice, the average 
run time complexity is much lower. 
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3.4 Lower bound functional area estimation 

3.4.1 Introduction 

The objective of the lower bound functional area estimation, or 'module 
selection', is to select a module set with minimal cost (area) for a given time 
constraint. If the precedence constraints of a DFG are taken into account, 
then the problem is NP-hard [Verh91]; see Definition 3.4. 

DEFINITION 3.4. Functional area problem. 
Consider an acyclic DFG, a set of module types TM, and a list of cycles C. Find 
a set of functional units with minimal area from TM, for which the DFG can 
be executed within the time budget IC I. 

After relaxing the precedence relations the module selection problem is 
'easier' to solve. It can then be stated as finding the minimal module set 
needed to schedule the operations within either their COEis, see Defini­
tion 3.5, or their OEis after the execution interval analysis is done, see 
Definition 3.6. The next sections will discuss in which cases the relaxed 
module selection problems of Definition 3.5 and 3.6 can be solved in 
polynomial time. 

DEFINITION 3.5. Lower bound functional area problem based on COEis. 
Given are the prerequisites of Definition 3.4. Find a set of functional units 
with minimal area from TM, such that all operations can be scheduled within 
their COEI with the selected set of modules. 

The difference between Definition 3.4 and 3.5 is that in Definition 3.5 the 
precedence relations are not taken into account, except for the COEis. 

DEFINITION 3.6. Lower bound functional area problem based on OEis. 
Given are the prerequisites of Definition 3.4. Find a set of functional units 
with minimal area from TM, such that all operations can be scheduled within 
their OEI, after the execution interval analysis of Chapter 2 is done, with the 
selected set of modules. 

3.4.2 Trivial module libraries 

For trivial module libraries, for which there is a one-to-one mapping from 
operation types to module types, the relaxed module selection problem of 
Definition 3.5 can be solved in 0( IV l ·(log l V l )2 + I E I ·log IV I ), using an 
adaptation of the analysis of Section 2.3. 

Starting with one module of each module type, the number of modules is 
increased until a complete matching is found for each initial BSG. Determin­
ing ME Is, CO Els and a complete matching in each BSG has a complexity of 
0( IV I ·log IV I + IE I); recall Section 2.3.5. Because at most O(log IV I) 
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module sets must be evaluated in a binary search, the total worst case com­
plexity of this lower bound estimation is 0( IV I ·(log IV I )2 + I E I ·log IV I ). 
Because in practice the run time complexity of determining the initial BSGs 
is about linear in the size of the DFG and the number of modules is limited, 
the average run time complexity of this lower bound estimation is also about 
linear in the size of the DFG, i.e., linear in the number of vertices and arcs in 
theDFG. 

The approach pictured above can be made even more accurate. For each 
module type, the minimum number of modules required can be determined 
separately, by performing the execution interval analysis iteratively until the 
corresponding operations can be scheduled within their OEis. To do this 
correctly, one must assume that the number of modules of all other module 
types is unlimited. Because Section 2.3.5 showed that a full execution 
interval analysis for one cycle budget takes 0( I C I · I V I 3) and a binary search 
on the number of modules has a complexity of O(log IV I ), the total run time 
complexity of solving this · problem is 0( I C I ·log IV I · IV 13). Again, in 
practice, the average run time complexity is much lower. 

Because the modules of each module type are determined independently of 
the modules of other types, the problem pictured above is not yet the lower 
bound estimation problem of Definition 3.6. It is possible that the execution 
interval analysis detects that the resulting combination of modules of differ­
ent types is still infeasible. If this is the case, the non-polynomial approach 
that will be explained in Section 3.5.2 must be followed to obtain a better, i.e., 
more accurate, lower bound. 

3.4.3 Unrestricted module libraries 

For unrestricted libraries, the relaxed module selection problem of 
Definition 3.5 is not solvable in polynomial time. The problem of finding the 
optimal module set for operations with fixed intervals on two types of modules 
can be identified as a special case of the relaxed module selection problem, 
and is proven NP-hard [Naka82]. 

However, for unrestricted libraries, a lower bound module selection problem 
can be formulated in the form of a run time efficient mixed integer linear 
programming (MILP) problem [Nemh88]. The MILP approach tries to find 
bottlenecks in a DFG with respect to the module area needed and formulates 
constraints based on these bottlenecks. The formal definition of the MILP 
problem is given in Definition 3.7. 

DEFINITION 3. 7. Lower bound functional area MILP problem. 
Given are the prerequisites of Definition 3.4. Find a set of functional units 
with minimal area from TM, such that the constraint sets lA, lB, 2 and 3, 
which will be presented in the following sections, are fulfilled. 
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It must be noted that the MILP problem of Definition 3. 7 is a relaxation of the 
problem of Definition 3.5. So, the resulting area of the MILP problem is equal 
or less than the resulting module area of the problem of Definition 3.5. 

The objective function of the MILP module selection problem is to minimize 
the function representing the total functional area. Let area(m) be the area 
of a module with type m E TM and let n(m) be the number of selected modules 
with type me TM. Then the objective is to minimize 

L (area(m) x n(m)). 
mETM 

Only the variables n(m), me TM, and no other variables in the constraint sets, 
have to be integral in the MILP problem formulation. The number of 
constraints is small as well, as will be shown in the next sections. So, the run 
time efficiency of solving such an MILP problem depends mainly upon the 
size of the module library and not on the size of the D FG, and is therefore high. 

Furthermore, an MILP solver can always come up with a feasible, but not 
necessarily lower bound, solution, just by ceiling the integer variables n(m), 
m e TM after solving the LP relaxation. So, a feasible solution can be found 
in polynomial time for the MILP problem of Definition 3. 7. This means that, 
in contrast to ILP scheduling, see Chapter 4, an MILP solver can always find 
a solution within acceptable run times. In the following sections the different 
constraint sets to determine a lower bound on the functional area are 
discussed. 

3.4.4 Distribution constraints 

Consider the example in Figure 3.1 with a cycle budget IC I of four cycles. 
[Jain92] and [Chen91] estimate the number of modules needed from a trivial 
library, while assuming that all cycles are available to perform any operation. 
There are four additions and an adder can perform four additions within the 
time constraint, so the result of their estimation is one adder. Those 
approaches guarantee that the operations can be scheduled within the cycle 
budget I C I , but not necessarily within their COEis. So, their relaxations of 
the problem of Definition 3.4 result in less accurate lower bound estimations 
than the relaxations described in this chapter. 

Distribution intervals 

The execution intervals of v1, v2 and v3 in Figure 3.1 show that three additions 
must be executed within two cycles, so at least two adders are needed. These 
three intervals form a so called 'distribution interval' of the operation type'+'. 
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T COEI(v2) 

0 
1 1 I COEI(v4) 

1 COEI(v1) 

COE!(v3) I I 2 

COEI(v5)1 3 

Library: adder ( + ), 
mult (*), 
deer (-

COEI(v6) 

d(adder) = 1; . 
d(mult) = 2; 
d(decr) = 1. 

FIGURE 3.1. Example DFG, module library and COEis. 

Distribution intervals can be derived from COEis as follows. If two COEis 
have an overlap in their clock cycles, they are joined into a new interval being 
the union of the former two. The example shows that the notion of distribution 
intervals leads to a more accurate estimation than the approaches of[Jain92] 
and [Chen91]. 

In Figure 3.2, an example of CO Els and distribution intervals is given; note 
that the example is not related to a DFG in the rest of this thesis. COEI(a), 
COEI(b) and COEI(c) are in the same distribution interval, because there is 
a 'path' from COEI(b) to COEI(c) through COEI(a); this is denoted by the 
dashes. Furthermore, COEI(e) is in the same distribution interval as 
COEI(d). The formal definition of distribution intervals is given below. 

DEFINITION 3.8. Distribution intervals. 
Let ts !:: To and W' !:: V with 't'(v) E ts for all v e W'. The distribution graph 
DG(ts) is an undirected graph represented by the 2-tuple (W', A'), where A' 
is the set of arcs. There is an arc (v, w) E A' between v E W' and w E W', 
if and only if there is an overlap between the COEis of v and w, i.e., if 
CASAP(v) < CALAP(w) A CALAP(v) > CASAP(w), or ifthere is a z E W' for 
which (v, z) E A' and (w, z) E A'. It is easy to see that DG(ts) consists of a set 
of complete subgraphs, DGS(ts), with no arcs between those subgraphs. So, 
the set DGS( ts) denotes a partition ofW'. Based on these complete subgraphs, 
the following function is defined.£: P(To) -7 P(C x C) is a function returning 
a set of disjoint distribution intervals: 

e(ts) ~ {[ l:n.P§ CASAP(v) J , r ~ CALAP(v)-1 l l I S e DGS(ts)} 
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COEl(d) 

< > 

-------.....,__,..._----,,.,(:. .. > 
e1 = COEI(a) u COEl(b) u COEI(~b ~c:.c~OEI(d) u COEl(e) 

FIGURE 3.2. Execution and distribution intervals. 

Had-intervals, preliminary mappings and module capacity 

The MILP constraints related to the distribution intervals try to enforce the 
selection of sufficient module 'capacity' to perform the operations in all the 
distribution intervals. For each (set oD operation type(s) only the interval 
with the highest average number of operations per cycle step is interesting. 
This interval is called the had-interval (highest average distribution 
interval). All other intervals normally need equal or less module capacity and 
are therefore not considered in the MILP formulation. 

To formulate the MILP constraints, we will now define the 'capacity' and the 
'number of preliminary mappings' of a module type. The capacity denotes the 
maximum number of operations a module can execute within some clock cycle 
interval; see Definition 3.10. Because several module types can be selected for 
operations in such an interval, the number of operations mapped on each type 
must be modelled; see Definition 3.9. These numbers are merely preliminary 
help variables. The exact mappings are determined later on in the synthesis 
flow by a scheduler or a binder: the MILP module selection problem 
formulation does not model the actual scheduling problem. 

DEFINITION 3.9. number of preliminary mappings. 
m: TM x P(To) x To~ Q is a function describing the number of preliminary 
mappings to a module type in a had-interval. Example: m(alu, { +, *, -} , +)is 
the number of additions mapped to the module type alu in the had-interval 
of the operation type set{+,*, 
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DEFINITION 3.10. capacity of a module type. 
LetmE TMandeE (C x C).cap:TM x (C x C)~Nisthefunctiondescribing 
the number of operations a module of type m can execute in a had-interval e: 

l I e I - d(m) + 1 J 
cap(m, e) = dii(m) . 

Sometimes the capacity of a module type can be determined more accurately. 
Figure 2.5a shows the fifth order wave digital filter from [DeWi85]. During 
the execution of the fifth addition, operation 14, no other operations can be 
executed as has already been pointed out at the end of Section 2.3.2. 

As soon as the fifth addition is in the same distribution interval as any of its 
succeeding additions, there will be a 'hole' in that distribution interval in 
which no addition can take place. This 'hole' is as least as large as the minimal 
delay of a multiplication, and occurs, in any feasible schedule, after the fifth 
addition is executed. Such 'holes' can be incorporated in the module selection 
by changing the capacity of a module type. The calculation of the capacity is 
thus changed by decreasing the available number of cycles I e I in an interval 
e E (C x C) with the minimal number of cycles of the 'hole'. 

Example, introducing the first MILP (distribution) constraint set 

Consider the example DFG with the library given in Figure 3.3. The optimal 
module set for time constraints of two or more cycle steps consists of one alu. 
For the constraint of one cycle step it consists of one add and one sub module. 
The constraints for the latter case can be formulated as shown in Figure 3.4. 

The values in italic in Figure 3.4 represent numbers of operations in a had­
intervaL The bold ls denote module capacities. If the time constraint would 
be 2 cycle steps, the bold ls have to be replaced by 2s. If several operation 
types can be mapped on the same module type, then extra constraints are 
required for selecting enough modules of that type. For that reason, the 
constraints on both operation types{+,-} together are very useful: without 
them 1 alu would be selected for the time constraint of one cycle step, instead 
of 1 add and 1 sub module. 

Library: 
add(+), d(add) = 1, area.(add) = 1; 
sub(-), d(sub) = 1, area(sub) = 1; 
alu ( +, -), d(alu) = 1, areaj(alu) = 1.5. 

I 
I 

FIGURE 3.3. Example DFG with library. I 
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Formal definition of distribution constraints 

The first set of constraints related to the distribution of operations can now 
be formalized as follows. 

CONSTRAINT SET lA. 

Let ts ~ To, t E ts and no( ts, t) be the number ofoperations v E V with 1:( v) = t 
within the had-interval e of the operation type set ts. Then the following 
constraints must hold: 

v v I m(m, ts, t) no( ts, t). 
ts TO t E ts m E µ({ti) 

v v I m(m, ts, t) ~ cap(m, e) x n(m). 
ts TO m E µ(ts) t E ts I t E µ-l((ml) 

REMARKS. 

The variables n(m) are the only integer variables in the above and following 
constraint sets. If for a set of operation types not all types are present in the 
had-interval, or if there is no module type which can perform all these 
operation types, then the corresponding constraints have no impact at all and 
can be omitted. 

The COEI of each operation is of course an upperbound for its execution time, 
a condition not yet taken care of in the constraint set lA. Consider for instance 
the had-interval of the {+}-operation type set of Figure 3.1 with 

addl (+), d(addl) = 1, area(addl) = 5; 
add2 ( + ), d(add2) = dii(add2) = 2, area(add2) = 2; 
mult (*), d(mult) = dii(mult) = 2; 
deer(--), d(decr) = 1. 

m(add, {+}, +) + m(alu, t+K+~ 
m(add, {+}, +) $ 1 x n(addf ·· 
m(alu, {+}, +) $ 1 x n(alu); : 

m(sub, {-}, -) + m(alu, 
m(sub, {-}, -) $ 1 x ~,~,--,·· 
m(alu, {-}, -) $ 1 

+ m(alu, t+, -J, .+) :± 1; 
+ m(:alu, {+, -}, -) = 1; 

· n(add); 
n(sub); 
lu, {+, -}, -) $ 1 x n(alu). 

FIGURE 3.4. Constraints for Figure 3.3, cycle budget IC I 

constraints 
related to the 
additions 

constraints 
related to the 
subtractions 

constraints 
related to both 
operation types 

1. 
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The constraints of constraint set lA related to the {+}-operation type are 
m(addl, {+}, +) + m(add2, {+}, +) = 3; 
m(addl, {+I,+) ::; 2 x n(addl); 
m(add2, {+}, +) ::; 1 x n(add2). 

Consequently three add2 modules would be chosen. Figure 3.1, however, 
shows I COEI(v1) I = I COEI(v2) I 1, requiring mappings to addl modules. 
The respective constraint is: m(addl, {+), +) 2: 2. In general terms we thus 
obtain the additional constraint set lB. 

CONSTRAINT SET lB. 

Let ts !:: To, t E ts, i E and let noo(ts, t, i) be the number of operations v E V, 
't(v) = t, I COEI(v) I ::; i within the had-interval e of the operation type set ts. 
Then the following constraints must always be valid: 

v v v 
ts C TO t E ts i E [1, 2, ... , I e I] 

REMARK. 

I m(m, ts, t) :=:: 
m E µ(It}) I d{m) s; i 

noo(ts, t, i). 

Many of the constraints in set lB are superfluous and can be omitted, which 
can be seen as follows. When the left hand side is equal to the left hand side 
of another constraint, while the right hand side of the other constraint is 
equal or larger, then the first constraint can be omitted. Or, when the right 
hand sides are equal, while the left hand side of the other constraint is a 
subset, then the first constraint can be omitted as well. 

3.4.5 Fixed operation constraints 

The constraint sets lA and lB do not identify that some operations might 
always occupy a module in a certain cycle step. Again consider the example 
of Figure 3.1 with the module library described above. Applying constraint set 
lA/B, one addl module and one add2 module are selected. As can be seen in 
Figure 3.1, the operations v1 and v2 will always be scheduled in cycle zero. We 
already have seen that they must be mapped on addl modules, so this leads 
to a new constraint: n(addl) 2: 2. Now two addl modules, one deer module 
and one multiplier are selected, which constitute the optimal module set. This 
constraint set, related to 'fixed' operations which must be executed within a 
certain amount of time, can be formalized as follows. 

CONSTRAINT SET 2. 

Let ts!:: To, i E N+ and nof(ts, i) be the maximal number of operations v E V, 
with 't(v) E ts and I COEI(v) I ::; i, that always occupy a module in the same 
cycle step. Then the following constraints must hold: 

V V I n(m) :=:: no:ftts, i). 
ts C Toi E [1, ITI] m E µ(ts) I d(m) s; i 
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REMARK. 

Many constraints can be omitted in the same way as constraints of set lB. 

3.4.6 Path delay constraints 

The previous constraints did not consider whether the minimal delay of each 
path in a DFG can be within the time constraint. The critical paths are those 
which can have the largest delay. If two paths have the same number of 
operations of each type, then only one of these paths is taken into account. 
Only such paths are considered in the respective constraints, and in practice 
they can be determined efficiently by breadth first search. The corresponding 
constraints are as follows. 

CONSTRAINT SET 3. 

Leth: TM x To -7 Qo,1 be an auxiliary variable, where Qo,1 is the set ofrational 
numbers in the range of 0 to 1. This variable states whether the delay of a 
module type may be used for the determination of the minimal delay of a 
critical path. Let CP be the set of critical paths to be considered, and nop(c, t) 
the number of operations v E V, 't(v) = t within the path c E CP. Then the 
following constraints must hold: 

v I h(m, t) i. 
tETO mEµ({t)) 

V V h(m, t) :;:;; n(m). 
t E TO m µ({ti) 

V : L L (h(m, t) x d(m) x nop(c, t)) :;:;; IC I . 
cECP tETom µ({ti) 

The first constraint set states, that for each operation type t E To, the sum 
over all module types m E TM of h(m, t) must be equal to one. Ifh(m, t) would 
be allowed to be either 0 or 1, then this constraint set would say that for one 
module type, h(m, t) must be equal to one. However, a close examination of 
the constraints shows, that h(m, t) may be rational instead of integral. 

The second constraint set states, that a h(m, t) may only be larger than 0, if 
at least one module of the corresponding module type m E TM is selected. The 
variables h(m, t) are used in the third constraint set to point out the fastest 
modules in the set of selected modules. The fastest modules in the set of 
selected modules are used in the third constraint set to assure that every path 
in the DFG can be executed within the time constraint. Of course, the 
constraint set 3 does not guarantee that the complete DFG can be executed 
within the time constraint, because the data dependencies between the paths 
are not taken into account. 
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3.5 Reviewing infeasible module sets 

The cycle budget estimation of Section 3.3 is a partial check for the correct­
ness of the module sets derived by the functional area estimation. If the lower 
bound estimate of the cycle budget exceeds the number of cycles for which 
such a module set is derived, then the module set is not correct. It can then 
be tried to detect why the module set is not correct. Subsequently, a better 
lower bound estimate of the module set with minimal area can be determined. 

3.5.1 Detection in case of COEis 

Consider an initial BSG with initial OEis equal to the corresponding COEis, 
i.e., no execution interval reduction has yet taken place, and consider a cycle 
budget equal to the time constraint for which the module set was derived. If 
in such a case no complete matching can be found in the BSG, then there was 
not enough module capacity selected to schedule all the operations in the BSG 
within their COEis. 

In case of a trivial library, extra modules of the applicable module type are 
added until a complete matching can be found, recall Section 3.4.2. In case of 
an unrestricted library, one cannot just add some arbitrary applicable module 
and guarantee that the result is still a lower bound module set. Instead, the 
reason that the module set is not correct is interpreted as follows. 

The distribution intervals of Section 3.4.4 try to detect local 'concentrations' 
of operations. If a module set is not correct, then there exists a local 
concentration within a distribution interval that has not been detected and 
for which there is not enough module capacity selected. During Algorithm 2.5 
for finding a complete matching, some MEI cannot be matched and the 
algorithm stops. All operations that could have been matched with that MEI 
are matched with previous MEis, and the MEI denotes a 'low' in the 
distribution of operations. 

If all operations that could be scheduled within that MEI are not considered 
in the distribution interval construction, the had-interval will be split into 
two (or more) new intervals and the local concentration is expected to be 
'isolated' in one of them. That interval will then become the new had-interval, 
and a renewed module selection can lead to an improved lower bound 
estimate of the optimal module set. If the renewed selection does not lead to 
an improved module set, then the approach of Section 3.5.2 has to be applied. 
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3.5.2 Detection in case of reduced UEls 

If the execution interval analysis detects that a module set is not correct 
during a second or later run of the analysis, then the module set is not feasible 
because of the violation of a combination of resource and precedence 
constraints. A new lower bound module set can then be derived by adding new 
constraints, thus forcing the selection of a different module set with a total 
area equal to or larger than the previous selection. 

Let M be a previous module set that is detected as infeasible, let nM(m) be the 
corresponding number of selected modules of type m e TM, and let 
difIM(m) e N denote an increase in the number of modules of type m with 
respect to the module set M. Note that only increases and no decreases have 
to be considered in this formulation. For these prerequisites, the following 
constraints must be valid. 

L (area(m) x n(m)) 2: L (area(m) x nM(m)). 
m E TM m E TM 

L diff M(m) 2: 1. 
mETM 

\I : (nM(m) + 1) x diffM(m) - n(m) $ 0. 
m ETM 

The first constraint states that the total area of the new module set must at 
least be as large as the total area of the previous module set. The second 
constraint states that for, at least, one module type the number of selected 
modules must increase. The remaining constraints are also needed to force 
the increase of the number of modules of at least one type. Note that the 
increase for one module type can result in the decrease for another module 
type; for instance, two slow modules might be replaced by one fast, but more 
expensive, module. 

The constraints can be added to the constraint sets of Section 3.4 until a 
module set is selected that can be feasible according to the lower bound cycle 
budget estimation. These additional constraints due to the infeasibility of 
some previous module set can be discarded as soon as their total module area 
becomes less than the lower bound area of the latest module selection. In 
[Timm93c] another constraint set has been given that has the same result. 
However, the following constraints result in a better MILP model, thus 
leading to a solution method with a better run time efficiency. 
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3.6 Efficient lower bound AT curve prediction 

Area estimations will often lead to the same module set for different time 
constraints. Based on this observation a unified approach oflower bound area 
and cycle budget estimations to predict the area vs. timing characteristics of 
a design can be derived; see Figure 3.5. The approach starts with the 
derivation of the module set with the smallest area and the lower bound on 
the number of cycles for that module set. The constraints to derive this 
module set are 

\:/ : L n(m) 1. 
t E T 0 m E µ({ti) 

The next step consists of decrementing the number of cycles and determining 
the corresponding lower bound module set. For this new module set the lower 
bound on the number of cycles is derived. The process is repeated until the 
smallest possible number of cycles has been reached. In this approach each 
module set is derived only once which leads to a run time efficient prediction 
of the AT curve. 

Figure 3.5 shows that, for each cycle budget, the lower bound area will be 
larger than or equal to the lower bound area of the cycle budget plus one cycle. 
If area(i), i E N+, is the lower bound functional area for a cycle budget of 
i cycles, then the following constraint must be valid when calculating the 
lower bound area for a cycle budget of i 1 cycles: 

L (area(m) x n(m)) ~ area(i), i E N +. 
mETM 

•: determination minimal functional area; 

horizontal - : lower bound cycle budget estimation; 

vertical 4 : lower bound functional area estimation. 

" time 

FIGURE 3.5. Fast AT curve prediction. 



Lower Bound Analyses 65 

Although the constraint does not change the module selection result, it can 
decrease the search space of an MILP solver. During a branch-and-bound 
process, the solver does not have to investigate module sets which violate this 
constraint, which can lead to considerable run time efficiency improvements. 

3. 7 Experiments and results 

The analyses presented in this chapter have been implemented in the NEAT 
system using a public domain mixed integer linear programming (MILP) 
solver [Berk94]. The solver uses the simplex algorithm with sparse matrix 
methods for the linear programming part and branch-and-bound techniques 
for the integer part. 

In this section results of the approach on two benchmarks are given. The 
benchmarks are: WDELF, the fifth order wave digital filter from [DeWi85], 
see Figure 2.5, and FDCT, the fast discrete cosine transform which originates 
from [Mall90], see Figure 2.3. FDCT contains in contrast to WDELF a lot of 
parallelism which can be reduced significantly when the number of available 
cycle steps increases. 

In Table 3.1, 3.2 and 3.3 different module libraries have been given. Table 3.1 
gives a trivial library which is used in most papers. Table 3.2 gives an 
extended module library which has already been used in [Timm93a], while 
the module library of Table 3.3 with the largest range of delays originates 
from [Ishi91]. The last three columns of the tables state which operation types 
can be executed by some module type. In Table 3.5 and 3.6 the results for the 
Libraries 1 and 2 have been given, while in Figure 3.6 and 3. 7 the results for 
the Libraries 2 and 3 are depicted. An arrow, ~,in Table 3.5 and 3.6 indicates, 
that the optimal solution is equal to the lower bound estimation, i.e., that the 
lower bound estimation is optimal. The tests were run on a HP9000/755 
workstation. The optimal results in these tables have been obtained by either 
exhaustive branch-and-bound or by hand. 

The figures and tables show that there is hardly any difference between the 
lower bound estimates and the optimal AT curve. Table 3.4 presents an 
overview of results and run times. That table also shows that the estimates 
are really accurate and that the average CPU times are small. However, keep 
in mind that the approach for unrestricted libraries uses a MILP formulation 
which can lead to unacceptable run times in some cases. This can be avoided 
by accepting intermediate, but not necessarily optimal lower bound, solutions 
to a MILP problem by ceiling the integer variables. 
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In [Ishi91] module sets are determined for only twelve different time 
constraints ofWDELF with the library of Table 3.3. For those module sets the 
smallest possible cycle budgets were determined as well. Six of the derived 
module sets of[lshi91] are equal to the lower bound estimates ~nd are there-

' fore optimal. One other module set is optimal but not equal to the lower bound 
estimate. The remaining five module sets derived by the scheduling approach 
of[Ishi91] are not exact. Only five of the twelve cycle budgets 6f [lshi91] are 
equal to the corresponding lower bound estimates, so these five are optimal. 
The other cycle budget estimates are the estimates for the seven smallest 
module sets and these seven estimates are not optimal. 

TABLE 3.1. Library 1: trivial library. 

module 
type 

mult 

delay in 
area cycle 

steps 
144 2 

operations 

* + 
x 

x x 

TABLE 3.2. Library 2: extended library. 

module . delay in operations 
. area I cycle 

type · · steps * + i -

mult i 144 • 2 x 
~. a1ur=t~1~mm-1-·~--~-xm~.----J 

. subl i 15 -i=+---~ 
addl • 15 • 1 x 

····· ah~?~ . 9 ..•..• ~. 2~_L __ ~ +--x---+---x __, 

sub2 · 8.5 2 · i 

add2 8.5 

module 
type area 

delay in 
cycle 
steps 

mpyl i 256 • 1 
inpy2- 1321 -16 
mpy3 2 _, 256 
add1 .---w· I 1 

x 
x 

* + 
x 

- +--· '· -------j 
x ! 

x 
x x 

add2 5 4-- ·· -x-J x 
add3 2 16 -r----+-x- x 
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TABLE 3.4. Overview of results. 
range of 

range of %wrong largest largest 
average CPU 

time time per time 
• constraints functional • estima- absolute relative constraint 

(in cycles) area tions difference difference (in sec) 
F, 17 28 160- 480 0% 0 0% 0.19 Library 1 

wDELF, 17-54 152- 480 2.63% 7.5 2.34% 0.21 Library 2 
WDELF, I 14-2144 4- 560 2.30% 16.67% 0.07 Library 3 
FDCT, 8-34 160-1216 7.41% i 2.04% 0.17 

8-52 153-1212 6.67% 14 1.79% 0.30 

Library 3 6-4128 4 2128 3.47% 17 16.67% 0.11 

TABLE 3.5. WDELF results, Library 1 and 2. 
Library 1 2 

!Cl estimated r optimal /Cl estimated optimal 
area area area area 

17 480 - 17 480 -
18to 20 320 - 320 --~n to 27 

···+···· 
312.5~ 176 - 320 

28 to .... 160 -

TABLE 3.6. FDCT results, Library 1 and 2. 
Library 1 Library 2 

/Cl estimated optimal /Cl J estil'liated al 
area area area 

8 1216 - 8 1212 
9 1200 1216 9 

.... 

1198 1212 
~·· 10····· 768 784 766 780 

624 -
....... 

615 622 -- - 615- -
14to17 - 606 -
18 to 25 - 14 to 17 462 -
26 to 33 320 

--······· - -
34 to .... - --

160 -
52 to .... 153 -
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FIGURE 3.6. WDELF results, Library 2 and 3. 

[Rim92] and [Shar93] report lower bound cycle budget estimates for the 
module sets of WDELF with Library 1; see also Table 3.5. One of the four 
estimates reported by [Rim92] and [Shar93] is not exact. Their estimations 
derive a lower bound of 27 cycles for the smallest module 'set, while the 
optimal bound is 28 cycles. This bound is derived by th~ approach of 
Section 3.3. Furthermore, the approaches of [Rim92] and [~har93] do not 
generate the module sets of Table 3.5 by means of a lower bourd estimation. 
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Chapter 

4 Scheduling 

4.1 Introduction 

As has been explained in Section 1.4, a time or resource constrained schedu­
ling problem can be transformed into a time and resource constrained 
scheduling problem. This can be achieved by deriving either a lower cycle 
bound, which is shown in Section 3.3, or by deriving a module set with lower 
bound module area, which is shown in Section 3.4. The transformation is also 
depicted in Figure 4.1. If the lower bound turns out to be infeasible, or a 
schedule cannot be found, then the cycle bound must be incremented or a new 
module set must be derived; recall Section 3.5. This scheme can be repeated 
until a schedule is found. 

In Chapter 2, an approach has been presented that prunes the scheduling 
search space with the help of bipartite schedule graphs (BSGs). This chapter 
deals with exact scheduling methods that try to find a feasible schedule for 
given time and resource constraints, i.e., methods that traverse the search 
space in order to find a feasible schedule. The reason this chapter focuses on 
exact scheduling methods, and not on heuristic methods, is as follows. 

If both time and resource constraints are imposed on a design, the 'only' goal 
of a scheduler is to find a feasible schedule as fast as possible. Because in 
practice the combination of these constraints is very strict, more and more 
instances appear where heuristic approaches render unsatisfactory results; 
see for instance the code generation examples in Chapter 5. So techniques 
like backtracking or branch-and-bound are needed if a scheduler does not 
succeed immediately and has to revoke certain decisions. 

Furthermore, exact methods have gained a lot of interest within the 
architectural synthesis community, especially since the introduction of the 
integer linear programming (IP) formulation of the scheduling problem based 
on node packing; see for instance [Hwang91] and [Gebo92]. This chapter will 
show that IP scheduling is generally not the most run time efficient exact 
method. Another exact method is based on zero-suppressed binary decision 
diagrams (ZBDDs), see [Radi95]. However, that approach has not (yet) 
generated appealing results and is therefore not discussed in this thesis. 
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DFG sites(}Urce 
constraints 

' 

FIGURE 4.1. Towards a time and resource constrained scheduler. 

In Section 4.2, an exact branch-and-bound approach is presented based on 
the BSGs introduced in Chapter 2; see also [Timm95a]. The following two 
aspects are dealt with: problem formulation and bottleneck identification. 

Section 4.2.1 proves that, in case of a trivial module set, the question of the 
existence of a feasible schedule for a given DFG with time and resource 
constraints can be decided more efficiently by finding a correct ordering of the 
operations rather than by generating an exact schedule directly. 

In Section 4.2.2 it is shown that the topology of the graph matching 
formulation yields a wealth of possibilities to identify bottlenecks that 
normally hamper scheduling algorithms. These bottlenecks typically fool 
heuristic methods and are also a source of wasted search effort for exact 
schedulers. 

In Section 4.3, integer linear programming (IP) scheduling is discussed. In 
Section 4.4, well-known benchmarks demonstrate the cut in run time and the 
reliability of the scheduling approach based on BSGs in comparison with IP 
scheduling. 

Again, for reasons of simplicity, only acyclic DFGs are considered in this 
chapter. Chapter 5 on retargetable code generation extends the scheduling 
method of Section 4.2, i.e., the scheduling method based on BSGs, with a loop 
model. Furthermore, due to some theoretical limitations ofthelmethod, only 
trivial module sets are considered in this chapter. However, in [Faber94], an 
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exact method can be found which does handle unrestricted module sets, and 
which is also based on the execution interval analysis of Chapter 2. That 
approach applies a strategy based on list scheduling and backtracking to 
schedule and bind operations. 

4.2 Scheduling based on bipartite schedule graphs 

4.2.1 Problem formulation 

In Definition 4.1, the time and resource constraint scheduling problem 
considered in this chapter has been given. In general, the problem is not 
solvable in polynomial time. Furthermore, many of the common architectural 
synthesis systems schedule operations by deriving their schedule intervals 
immediately, i.e., the operations are directly assigned to specific cycle steps. 
In this section, it will be proven for trivial module sets that the existence of 
a schedule for a problem instance of Definition 4.1 can be decided more 
efficiently by finding a correct ordering of the operations. With a correct 
ordering we mean a linear ordering that corresponds to a feasible schedule, 
see Definition 4.2. 

DEFINITION 4.1. Time and resource constrained scheduling problem. 
Given an acyclic DFG, a set of modules Mon which the operations in the DFG 
must be mapped, and a list of cycles C. Find a feasible schedule <I> E <I> if one 
exists, i.e., if <I> is not empty. 

DEFINITION 4.2. Correct ordering of operations. 
A linear ordering <!:'. of the operations in a BSG is correct if there exists a feasi­
ble schedule that induces that ordering, i.e., if 3 : v <!:'. w <::> Ji~(v) < Ji~(w). 
See Definition 2.32 for the meaning of n:~(v). <I> E <I> 

If a linear ordering on the operations in a BSG is imposed, then each 
operation is adjacent to at most one MEI; see Section 2.3.4. A correct ordering 
implies a bijection between MEis and operations and, consequently, defines 
a complete matching in the BSG. Furthermore, in case of a correct ordering, 
all adjacent and MEls will have equal clock cycle intervals after the 
execution interval analysis is done. Otherwise a OEI or MEI could be further 
reduced and the analysis would continue with a new run. This leads to the 
following theorem. 

THEOREM 4.1. 
Consider a trivial module set and the case in which, for each module type in 
a design problem, a linear ordering is imposed on the operations that have to 
be executed by modules of that type. If the number of modules equals one, 
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then imposing such a linear ordering is equivalent to sequencing the 
operations. Consider the case in which, for the set of these orderings for each 
module type, no infeasibility is detected by the execution interiral analysis of 
Section 2.3. Then these orderings are correct and a feasible sdhedule can be 

I 

derived from the result of the execution interval analysis in linear time. 

PROOF. 

If the schedule intervals of all operations v e V begin in the first cycle of the 
corresponding OEI(v), i.e., the schedule intervals are left justified and equal 
[ASAP(v), ASAP(v) + dmin(v)] for all v e V, then no precedence constraints are 
violated. If for each MEI some module starts the execution of an operation in 
the M1 of that MEI, then no resource constraints are violated, see 
Property 2.2 and Algorithm 2.1. 

The result of constructing the schedule [ASAP(v), ASAP(v) + dmin(v)] for all 
v e V, is that some module will start to execute an operation in the M1 of each 
MEI. This is due to the fact that all adjacent OE Is and MEis have equal clock 
cycle intervals after the execution interval analysis leaves its iteration. Thus 
a feasible schedule can be derived from such a correct ordering of the 
operations by scheduling every operation v e Vin [ASAP(v), ASAP(v) + 
dmin(v)], obtained after the execution interval analysis is done. • 

It follows from Theorem 4.1 that, in case of a trivial module set, the correct­
ness of an ordering can be checked in polynomial time. A correct ordering can 
represent more than one schedule, so the number of different orderings is 
equal to or less than the number of different schedules. Because checking the 
correctness does not become more accurate when the schedule intervals of the 
operations are directly assigned to specific cycle steps, it is more efficient to 
search only for a correct ordering of the operations. So, the problem 
Definition 4.1 can be substituted by problem Definition 4.3. 

DEFINITION 4.3. Scheduling problem revisited. 
Consider the prerequisites of Definition 4.1. Find a correct ordering of the 
operations, if one exists. 

If there is a correct ordering, <P is not empty. From the correct ordering, the 
schedule intervals for all v e V can be constructed in linear time. Note that 
Theorem 4.1 cannot be applied directly to unrestricted module sets. It is 
unknown whether no resource constraints are violated in case the schedule 
intervals of all operations are left justified, after an ordering ofthe operations 
is imposed and the execution interval analysis is done; recaljSection 2.4.2. 
In case of unrestricted module sets, additional steps mus therefore be 
performed to check whether a certain ordering of operations : orresponds to 
a feasible schedule. In [Faber94], this is solved by a strategy based on list 
scheduling and backtracking to schedule and bind operationsi. 
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Theorem 4.1 leads to the following scheduling approach. Starting from the 
BSGs resulting from the execution interval analysis, an ordering is imposed 
by matching the operations one-by-one to specific MEis, while removing the 
arcs that can no longer be part of a complete matching. These arcs are the ones 
previously connected to the operation and the MEI that have just been 
matched, except for the one between them, together with other arcs that are 
no longer part of any irreducible component. 

Each time an operation is matched to a MEI, the whole execution interval 
analysis of Section 2.3 can be rerun. Matching operations and MEis is a 
process in which the BSGs become more and more sparse: once an arc is 
removed, it is not involved again in a BSG as long as a matching is not 
revoked. The search space is also becoming smaller because the OEis and 
MEis are reduced more and more by the execution interval analysis as the 
scheduling proceeds. 

4.2.2 Bottleneck identification 

The previous section showed that, in case of a trivial module set, an exact 
scheduler 'only' needs to find a correct ordering of the operations. If an 
approach based on list scheduling is pursued, then the MEI with the smaUest 

is selected and matched with the operation with the smallest value. 
If a matching between two vertices in a BSG turns out to be infeasible, i.e., 
leading to an incorrect ordering, then the MEI is matched with the next 
operation, and so on. Such an approach is not really capable of identifying 
bottlenecks of the scheduling process. In this section it is shown, that the 
topology of the BSGs yields many possibilities to identify such bottlenecks, 
which may thus be used to guide the scheduling process effectively. This is 
clarified by the following example. 

Example 

Consider the fast discrete cosine transform (FDCT) from [Mall90] in 
Figure 2.3, with the following time and resource constraints: IC I is nine 
cycles, the number of multipliers (d = dii = 2 cycles) is eight and the number 
of adder/subtracters (d = 1 cycle) is three. This set of constraints leads to 
infeasibility as can be seen as follows. An extra adder/subtracter is needed for 
a feasible schedule of FDCT in nine cycles. Because the set of constraints is 
infeasible, i.e., the set of schedules <I> is empty, any kind of exact scheduler has 
to traverse the complete search space before it knows for sure that there is 
no feasible schedule. This example is therefore a good test to check the run 
time efficiency of an exact scheduler. 

Lower bound area or cycle budget estimation approaches, e.g., [Rim92], 
[Jain92] or Chapter 3, cannot detect the infeasibility of the constraints above. 
Also the LP relaxation in case of IP scheduling leads to a solution, so an IP 
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scheduler like the one in [Gebo92] performs an exhaustive branch-and­
bound process before the infeasibility is detected. Therefore, solving this 
problem instance with an IP scheduling approach leads to unacceptable run 
times. 

The same conclusion is valid for an approach based on list scheduling and 
backtracking. Such an approach starts with matching operations to the ME Is 
containing cycle zero. In Figure 4.2, the BSG for the additions/subtractions 
of this problem instance is given. There are three MEis with interval [O, O] 
and eight operations are adjacent to these MEis, so three out of eight opera­
tions have to be matched with the first three MEis, i.e., have tol be scheduled 
in cycle zero. For the same reason, three out of nine operations have to be 
matched with MEI( 4), MEI(5) and MEI(6), etc. This leads to a very dense and 
wide search tree and again to unacceptable run times before the infeasibility 
is detected. 

Instead of using an approach based on list scheduling, a careful analysis of 
the topology of the BSGs is performed to obtain a sparse search tree for the 
branch-and-bound. Figure 4.2 shows that only three out of four operations 
have to be matched with MEI(16), MEI(l 7) and MEI(18), instead of three out 
of eight operations in cycle zero. So the top of the search tree will be less wide 
if an exact branch-and-bound scheduler first matches these MEis. 

Every scheduling decision in terms of matching an operation to a MEI 
removes arcs from BSGs, so at the time the scheduler has to decide which op­
erations to match to MEI(l), MEI(2) and MEI(3), the number of operations 
to choose from may be much smaller. Also the possibility of a wrong decision 
will be smaller, if a scheduler favours the choice of three out of four operations 
above the choice of three out of eight operations. In this way the search tree 
becomes much sparser than in an approach based on list scheduling and 
backtracking. In fact, after trying each of the four possibilitie~ of matching 
three operations with the MEis containing interval [5, 5], the scheduler has 
already detected that the problem instance is infeasible. 

Comparison with force directed scheduling 

The approach pictured above is somewhat counterintuitive though, as will be 
shown by a comparison with force directed scheduling. In the force directed 
scheduling approach [Paul87], the notion of the 'probability distribution' 
function is introduced to characterize the way operations are distributed over 
the different cycle steps. In the calculation of the distribution function, the 
probabilities of the start times of an operation are considered to be uniformly 
distributed over its COEI; see Definition 4.4 or [Stok91]. Then the sum of the 

I 

probabilities of operations being executed in a cycle step is calcq.lated for each 
(set of) operation type(s) and each cycle step; see Definition 4.5. 
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DEFINITION 4.4. Probability P(v, c) of v E V being scheduled in cycle c E C. 

N(v, c) 
P(v, c) = F(v) + 1' 

where F(v) is the freedom of v, see Definition 2.39, and N(v, c) 
gives the number of different schedules in which operation v is 
being executed in cycle c if unlimited resources are available, i.e: 

min { 

c - CASAP(v) + 1 
CALAP(v) - c 

if c E COEI(v) 
N(v, c) = dmin(v) 

F(v) + 1 

0 if c $. COEI(v) 

COEI MEI 

N-15 [0,1] [0,0] #1 

N-16 [0,1] [0,0] #2 

N-10 [0,2] [0,0] #3 

N-11 [0,2] [1,1] #4 

N-12 [0,2] [1,1] #5 

N-13 [0,2] [1,1] #6 
COEI MEI 

N-32 [6,8] [6,6] 
N-14 [0,4] L2,2J #7 

N-33 [6,8] [6,6] 
N-17 [0,4] [2,2] #8 

N-33 [6,8] L6,7J 
N-20 [1,3] [2,2] #9 

N-34 [6,8] [7,7] 
N-21 [1,3] l3,3] #10 

N-48 [7,8] [7,7] 
N-22 [1,3] [3,3] #11 

N-49 [7,8] [7,8] 
N-23 [1,3] l3,3] #12 

N-50 [7,8] [8,8] 
N-30 L3,4] [4,4] #13 

N-51 [7,8] l8,8] 
N-31 [3,4] [4,4] #14 

N-36 [4,5] L4,4J #15 

N-37 [4,5] [5,5] #16 

N-38 [4,5] [5,5] #17 

N-39 [4,5] [5,5] #18 

FIGURE 4.2. BSG for additions/subtractions ofFDCT in Figure 2.3. 
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DEFINITION 4.5. probability distribution function DF(ts, c) for ts ~ To. 

DF(ts, c) = L P(v, c). 
v E V I t(v) E ts 

In Figure 4.3, the probability distribution of the additions I subtractions has 
been given according to the Definitions 4.4 and 4.5. Force directed scheduling 
starts with decreasing the probability function in cycle one, i.e., it tries to 
'move' operations away from cycle one, because the maximum of the 
probability distribution lies in that cycle. 

The discussion on the example above showed, that the scheduling approach 
based on finding correct orderings in the BSGs starts in an opposite direction: 
it starts with deciding which operations will be scheduled in cycle five, recall 
the topology of the BSG in Figure 4.2. The decision which operations to sched­
ule in cycle one is postponed as long as possible. Instead of starting the search 
tree at a high point in the probability distribution, i.e., trying to decrease the 
probability in cycle one, the scheduler starts with a low point in the 
probability distribution, i.e., trying to increase the probability in cycle five. 

Resume of the proposed scheduling heuristic 

The discussions above showed that the first step in the variable & value 
selection part of our scheduling approach is the variable selection, i.e., the 
selection of a set of MEis to match operations to. Note that there was little 
discussion about the value selection part. Experiments showed that the 
quality of the value selection is not very sensitive to the applied heuristic, if 
a careful variable selection is performed like the one described above. 

0 
0 2 3 4 5 6 7 8 cycle 

FIGURE 4.3. Probability distribution of FDCT in Figure 2.3. 
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The way the set of MEis is selected, is as follows. If the number of cycles 
within a MEI is equal to the corresponding execution delay, then some 
module must start an execution in the M1 of that MEI, and the MEI is said 
to be fixed. Such a fixed MEI is said to be critical if it also has only a small 
number of adjacent operations in the BSG. 

From the critical MEis the one with the smallest number of adjacent 
operations is selected. A set of critical ME Is can be selected, if they belong to 
the same BSG and if they have the same start cycle. MEI(16), MEI(l 7) and 
MEI(18) in Figure 4.2 form such a set of critical MEis. If there are no critical 
MEis, then the MEI with the smallest M2 is selected, i.e., then the scheduling 
process continues in a list scheduling manner. 

After a MEI or set of MEis is chosen, it is tried to find an operation or set of 
operations that are suitable to be matched with the selected set ofMEis. The 
priority of matching an operation with a MEI is chosen to be inversely propor­
tional to the difference between the ALAPs of the operation and the initially 
matched operation in Algorithm 2.5. So matching the operations according to 
the initial complete matching of Algorithm 2.5 has the highest priority. If a 
matching turns out to be incorrect, then a next operation is selected until a 
correct matching is found, or infeasibility is detected. 

4.3 Scheduling based on integer linear programming 

4.3.1 Polyhedral theory, node packing and scheduling 

Before discussing integer linear programming (IP) formulations of the 
scheduling problem in general and those based on node packing in particular, 
the basics of the polyhedral theory are discussed in this section; see [Nemh88] 
for a very elaborate discussion on this topic. The background and motivation 
for the polyhedral theory is the notion that formulating a good model is of 
crucial importance to solve an problem instance of the model. 

Basics of the polyhedral theory 

The polyhedron of an IP problem instance is the region of integer and non­
integer solutions that form all feasible solutions of the linear programming 
(LP) relaxation of the problem instance [Nemh88]. The LP relaxation of an 
IP problem is obtained by dropping the requirement that the variables of the 
problem must be integral in the solution. 
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The convex hull of a polyhedron is the smallest convex polygon for which each 
integer solution of the polyhedron is either on the boundary of the polygon or 
in its interior. A bounded polyhedron is called apolytope. It has been proven 
that for every polytope, there exists an integral polyhedron whose 
corresponding problem instance can be solved as a LP problem in polynomial 
time and yet always produces integral solutions for the variables. 

The constraints that model the so called facets are the necessary constraints 
required to define the integral polyhedron. In fact, these facets together 
define the convex hull of a polytope. General IP problems are NP-complete, 
so finding all facets is in general NP-hard and in many cases their number 
cannot be bounded by a polynomial. However, if one can find the facets over 
the region of the minimum objective function, then one can solve an IP 
problem as a linear programming problem. 

Another, less 'ambitious', possibility is to improve an IP model by making it 
as tight as possible, meaning that so called valid inequalities for the model 
are derived. These valid inequalities reduce the polyhedron without affecting 
the convex hull, but do not necessarily represent facets. Because less branch­
and-bound effort may be needed to obtain an optimal integral solution if a 
polyhedron is smaller, the derivation of valid inequalities could lead to 
improved run time efficiency for solving IP problem instances. 

Node packing and IP scheduling 

Nowadays there is much interest in modelling scheduling and other archi­
tectural synthesis problems as integer linear programming problems 
[Hwang91]. It can be useful to have an exact model of some optimization 
problem, but a model itself does not necessarily provide an efficient solution 
method. So the question is whether this is the case for architectural synthesis 
scheduling. 

Recent research [Gebo92] showed that the resource constrained scheduling 
problem can almost, but not completely, be modelled as a node packing 
problem. A feature of the node packing problem is that the characteristics of 
the facets are partially known. The exact definition of this problem is as 
follows. 

DEFINITION 4.6. node packing problem. , 
Let NPG be an undirected graph represented by the 2-tuple (N', A'), where 
N' is the set of vertices (binary variables) and A' the set of arcs between the 
vertices. The objective is to find the maximum independent set of vertices in 
the graph, i.e., the largest set of vertices that do not induce a single arc. 
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Maximum clique constraints, i.e., constraints expressing that the sum of a set 
of binary variables may not exceed the value one, can possibly represent 
facets of a node packing polytope, as well as some other constraints [N emh88]. 

The most run time efficient way to obtain an integer solution for a node 
packing problem instance is in general as follows; see for a more elaborate 
discussion [Nemh92]. First, it is tried to identify violated clique constraints. 
Then it is tried to identify other constraints that can possibly represent facets 
and to perform a process called 'lifting of variables' [Nemh88]. As a last step 
a branch-and-bound process is performed. Section 4.2 already showed, that 
a well structured branch-and-bound scheme can help to obtain a solution 
efficiently. 

The resource constrained scheduling problem cannot always be modelled as 
a pure node packing problem, because the objectives in the resource 
constrained scheduling problem, i.e., minimize the number of clock cycles 
needed to execute a DFG, and the node packing problem can differ. However, 
the constraints of the resource constrained scheduling problem can be 
modelled in terms of (possibly maximum) clique constraints, which are in 
accordance with the constraints in the node packing problem. Modelling the 
constraints in this way leads to a better, i.e., 'tighter', IP model than 
previously published models [Gebo92]. So, the application of this model can 
in some cases lead to short run times; see [Gebo92J and the results in 
Section 4.4. 

4.3.2 Evaluation of time versus resource constrained scheduling 

The constraints of time constrained scheduling can, in contrast to resource 
constrained scheduling, not be modelled as pure node packing constraints 
[Gebo91]. The following time constrained IP scheduling formulation is 
moulded to be as close as possible to the node packing model. 

DEFINITION 4.7. Objective function for time constrained scheduling. 
The objective of time constrained scheduling is to minimize the total module 
area as is the case in the functional area estimation of Section 3.4: 

I (area(m) x n(m)). 
mETM 

Given Definition 4.8 and the case in which no chaining of operations is 
allowed, the corresponding constraints for a trivial module library are given 
in Definition 4.9, 4.10 and 4.11. 

DEFINITION 4.8. IP decision variables for time constrained scheduling. 
Letx(v, c) E {0, l}, andletx(v, c) = 1 represent that l<l>l(v)j = c, with v E Vand 
c E C, i.e., operation v starts its execution in cycle c. 
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DEFINITION 4.9. Operation assignment constraints. 
The operation assignment constraints ensure that the start time <l>i ( v) of each 
operation v E Vis assigned to exactly one cycle step: 

v 
vEV 

I x(v,c) 
c E COEI(v) 

1. 

DEFINITION 4.10. Module constraints. 
The module constraints prevent that too many operations are assigned to the 
same module type: 

c+dii(m)-1 

v v 
m E TM c EC 

I I x(v, s) ::; n(m). 
vEV Im E µ(i:(v)) s=c 

DEFINITION 4.11. Precedence constraints. 
The precedence constraints ensure that the precedence relations in the DFG 
are maintained; see for an explanation of these constraints [Gebo92]: 

v v 
(v,w) E c COEI(v) n COEl(w) 

I x(w, s) + I x(v, s) ::; 1. 
s,;:;c+dmin(v}-1 C$S 

The time constrained scheduling constraints cannot be modelled as strict 
node packing constraints, because the module constraints above cannot be 
interpreted as node packing constraints. So, the module constraint cannot 
represent facets of a node packing problem. 

Another modelling of this time constrained scheduling problem is also 
possible. By specifying an upperbound on the number of modules of each type, 
binary variables can be used to identify whether a module is used or not. The 
objective function and constraints can be changed accordingly, but the 
scheduling problem is still not transformed into a node packing problem. So, 
time constrained scheduling can be modelled as an IP problem, but the 
question is how 'tight' such a problem formulation is. 

It is therefore important to see what the quality of the linear programming 
(LP) relaxation of the time constrained IP scheduling problem is, because it 
indicates the 'tightness' of the IP model. In Figure 4.4 and 4.5, the results of 
this relaxation for the module library of Table 3.1 have been given, together 
with the estimates and optimal results that have been presented in Table 3.5 
and Table 3.6. The LP relaxations of Figure 4.4 and Figure 4.5 take into 
account that at least one module of each type is needed. 

As can be seen in the figures, the LP relaxations are in no cases more accurate 
than the lower bound estimates of Chapter 3. In many cases the difference 
between an LP relaxation and the lower bound estimate is a multiple of the 
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area of the smallest module. This means that a branch-and-bound process 
on top of such a LP relaxation is unavoidable to get 'even' with the lower 
bound estimation results presented in the Tables 3.5 and 3.6. 

Furthermore, also in the case of resource constrained scheduling, the LP 
relaxation of the IP scheduling problem is less accurate than the lower bound 
cycle budget estimates for these examples. For instance, according to the LP 

t\j 500-

~ 
400-

300-

200-

100~ 

lower bound estimation c.q. 
/ exact curve from Table 3.5 

I (border of dark grey area) 

O- 17 18 19 20 21 22 23 2~,> 25 26 27 28 

delay (in cycles) 

FIGURE 4.4. LP relaxation results for WDELF. 

t\j 1200- ' 
~ 

0-' 

exact curve from Table 3.6 (border of black area) 

lower bound estimation 
curve from Table 3.6 

/ (border of dark grey area) 

' 
(bet~~ ofJI~ht grey area) 

8 10 12 14 16 18 20 22 24 26 28 30 32 34 
delay (in cycles) 

FIGURE 4.5. LP relaxation results for FDCT. 



84 From Design Space Exploration to Code Generation 

relaxation, the lower bound for the schedule of WDELF with the smallest 
possible module set is 27 cycles. However, the lower bound estimate from 
Table 3.5 shows that at least 28 cycles are needed. 

The lower bound analyses of Chapter 3 are in general more accurate, and can 
be obtained more efficiently than the LP relaxation of the IP scheduling 
model based on node packing. This means that, even in the case of IP based 
scheduling, it is always more efficient to use the approach of Figure 4.1, i.e., 
to transform an initial scheduling problem into a time and resource 
constrained scheduling problem. So, if one wants to use IP scheduling, one 
should use the same solution strategy, see also the discussions in the next 
section and in Chapter 6. 

4.3.3 Enhancements of the IP model 

In this section improvements of the IP model for time and resource 
constrained scheduling are given, which are the result of the exploitation of 
the node packing model. However, the exercise will show that even more accu­
rate forms of the IP scheduling problem do not provide run time advantages. 

This section starts with the exact formulation of the time and resource 
constrained scheduling problem. Note that in the previous section, the 
formulation for time constrained scheduling was given. It will be shown that 
time and resource constrained scheduling problem can easily be modelled as 
a pure node packing problem, in contrast to time or resource constrained 
scheduling. 

IP problem formulation 

In case of time and resource constrained scheduling there is no objective 
function, but the objective function of the node packing problem, maximizing 
the sum of all variables, can be taken. Given Definition 4.12, the constraints 
for a trivial module library are formulated in Definition 4.13, 4.14 and 4.15. 

DEFINITION 4.12. IP variables for time and resource constrained scheduling. 
Recall Definition 2.19, in which it was stated that $1(v) is the start time of 
operation v EV in the schedule$ <I>. Letx(v, c, k) E {0, 1) and letx(v, c, k) 1 
represent that l$1(v)j = c, with c C, and that operation v E Vis bound to 
module k EM. 

DEFINITION 4.13. Operation assignment constraints. 
The operation assignment constraints ensure that the start time of each 
operation is assigned to one cycle step only. If the node pa6king objective 
function is taken, the equal sign of Definition 4.9 can be replaced by a :=:;: 

'V 
vE V 

I I x(v,c,k) 5 1. 
c E OEI(v) /;(k) E µ((i:(v)}) 



Scheduling 85 

DEFINITION 4.14. Module constraints. 
The module constraints prevent that too many operations are assigned to the 
same module: 

c + dii(;(k) )-1 

v v 
k M c EC 

L L x(v,s,k) s 1. 
vEV I ;ckl E µ((1:(v)}) s=c 

DEFINITION 4.15. Precedence constraints. 
The precedence constraints ensure that the precedence relations in the DFG 
are maintained; see for an extensive discussion of these constraints [Gebo92]. 
The difference with Definition 4.11 is related to the IP variables in the 
formulation. 

v v 
(v,w) E E c E OEI(v) n OEI(w) 

;(k) E µ((1:(w)J) s ~ c+dmin(v)-1 

x(w,s,k) + L L x(v,s,k) s 1. 
;<kl E µ({1:(v)]) c~s 

In almost all cases, the constraints above lead to a fractional solution of the 
LP relaxation. So the question remains whether modelling the scheduling 
problem as an IP problem can result in run time efficiency improvements. 

IP model improvements 

In practice, solving an IP scheduling problem depends heavily on the branch­
and-bound process. Applying an IP model for scheduling can therefore only 
be useful if the LP relaxation detects a certain scheduling decision leading to 
infeasibility at an earlier stage than the execution interval analysis of 
Chapter 2. 

It was already shown in Section 4.3.2 that the LP relaxation leads to less 
accurate results than the lower bound analyses of Chapter 3. This means 
that, in most cases, the LP relaxation of the IP formulation above does not 
achieve the objective of detecting a certain scheduling decision leading to 
infeasibility at an earlier stage. The only way the LP relaxation can achieve 
an early detection is when the IP constraints formulated above can be 
extended with violated constraints. This means that constraints have to be 
found which reduce the polyhedron, but do not affect the convex hull of it, and 
which are violated by the current LP solution. 

In [Chau93], two new sets of constraints are proposed to tighten the IP model. 
The first set of constraints deals with the fact that all the predecessors of an 
operation must be scheduled on the set of available modules before the 
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operation itself can be scheduled. The proposed method is a proper subset of, 
i.e., similar to but less accurate than, the execution interval analysis of 
Chapter 2. So this set of constraints from [Chau93] is obsolete if the execution 
interval analysis is applied. 

The second set of constraints from [Chau93], which will be dealt with in the 
remainder of this section, is more interesting, because it combines precedence 
and resource constraints. Here lies an advantage of the IP scheduling model. 
Most scheduling techniques, like the execution interval analysis of 
Chapter 2, list scheduling, etc., consider the precedence and resource 
constraints alternately. 

The IP scheduling constraints mentioned until now also treat the resource 
and precedence constraints separately. This is the reason that such an IP 
model does not detect an infeasibility at an earlier stage than the execution 
interval analysis. By combining precedence and resource constraints into a 
unified constraint set, an IP model can possibly add to the solution method 
by means of an early detection of infeasibility. 

Below, such a formulation, i.e., the second constraint set originating from 
[Chau93], is presented. Let V m,c be the set of operations that must be mapped 
to modules of type m E TM, in cycle c E C, i.e. V m,c = {v E V I m E µ(('t(v)}) /\ 
c E OEI(v)}. 

The set V m,c results in a module constraint, see the beginning of this section, 
indicating that not more than one operation from V m,c can be mapped to a 
module k E Kin cycle c E C, where Kis the set of modules of type m. If there 
are also precedence constraints between operations from V m,c, then these 
precedence constraints can be incorporated in the resource constraints to 
tighten the IP model. 

In [Chau93] these precedence constraints in V m,c are used to construct a 
minimal, but not unique, clique cover Vm,c = LJ f;:~v m,c,l• where each Vm,c,l 
represents a clique based on the precedence arcs in the DFG. See [Chau93] 
for an extensive discussion on this topic. Let Pm,c,v give the corresponding 
number of cliques that contain v E V m c· Then it can be proven that the 

' 
following constraints are also valid [ Chau93]. It is assumed that Pm,c > I KI , 
because otherwise the corresponding resource constraints can be omitted. 

c+ dii(m)-1 

'rf 'rf 
m TM c EC 

L L L Cm,c,v X x(v,s,k):::;; IKI, 
V Vm,c S = C k K 

whereCmcv=max{l, IKI +Pmcv-Pmcl· 
'' '' ' 
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If I KI + Pm c v Pm c ~ 1 for all v e V m c• then there is a (linear) combination 
'' ' ' of clique constraints that is tighter than the constraint set above. Such 

constraints are more in accordance with the fact that clique constraints can 
possibly represent facets of the polytope of a node packing problem. These 
clique constraints are given in theorem 4.2. 

THEOREM 4.2. 
If I KI + Pm,c,v Pm,c ~ 1 for all v e V m,c, then the linear combination of the 
following valid clique constraints is tighter than the constraints above, i.e., 
then the following constraints lead to a tighter model. 

c+dii(m)-1 
\:/ 

V m,c,l !;;;;; Vm,c v 
L L L x(v,s,k) :::; 1. 
V m,c,l s = c k K 

PROOF. 

The summation over all cliques V m,c,l <:;;:; V m,c leads to: 
c+dii(m)-1 

\:/ \:/ · L L L (Pm,c,v X x(v, s, k)) :::; Pm,c· 
m E TM c EC V c k EK vE m,c S 

Multiplying the left and right hand sides with ( I KI I Pm,c) yields: 

c+dii(m)-1 ( IKI x p ) L L L Pm,c m,c,v X x(v,s,k) :::; IKI. 
vEVm,c s c kEK 

This means that Theorem 4.2 is true if and only if: 

IKI x Pmcv 
p ' ' :C: I K I + Pm c v - Pm c• 

m,c '' ' 

The inequality is equivalent to: 

(Pm,c)
2 
-(Pm,c X Pm,c,v) + I KI X (Pm,c,v Pm,c) :C: 0. 

Both I K I and Pm,c,v are smaller than or equal to Pm,c• so they can be 
substituted by I KI = Pm,c a and Pm,c,v = Pm,c - ~m,c,v, with a and ~m,c,v non­
negative. Then the inequality above is true if and only if: 

(Pm,c)
2 

- ( (Pm,c)
2 

- (~m,c,v X Pm,c,v)) + (Pm,c - a) X (- ~m,c,v) :C: 0. 

This results in: a x ~m,c,v :c: 0, which is always true because a and 13m,c,v are 
non-negative. • 
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The constraint set of Theorem 4.2 denotes a set of clique constraints that were 
not captured by the three sets of constraints established before. However, in 
general, a large number of other (clique) constraints can be found that are still 
violated by the LP relaxation, even if the constraints of Theorem 4.2 are 
added to the problem formulation [Leeu95]. In many cases, these violated 
constraints are also based on combinations of both resource and precedence 
constraints. 

In [Leeu95], a comprehensive survey can be found of violated constraints. 
However, even by adding more violated constraints, in most cases the IP 
model still does not detect infeasibility any earlier than the execution interval 
analysis of Chapter 2. Thus, in the experiments we conducted, the addition 
of extra constraints lead to a loss of run time efficiency of the IP problem 
formulation. Due to this, only the first three constraint sets at the beginning 
of this section are considered in the following section. 

4.4 Experiments and results 

The two time and resource constrained scheduling approaches presented in 
this chapter, i.e., the approach based on BSGs and the IP approach, have been 
implemented in C++ using the interface of the NEAT system. Both 
approaches use the execution interval analysis before scheduling, thus 
reducing the number of variables and constraints for the IP scheduler. 

The number ofIP variables is directly related to the amount off reed om of the 
operations, which is expressed in the size of the OEis. So, if the average 
freedom of the operations decreases, the number of variables will also 
decrease. The solution space of any IP scheduling model does not change due 
to the execution interval analysis, so a decrease in the number of variables 
and constraints leads in most cases to run time efficiency improvements. The 
public domain MILP solver which was used for the module selection problem, 
see Section 3.7, also has been used to solve the IP problems. 

In Table 4.1 and 4.2, results for FDCT and the fifth order wave digital filter 
(WDELF) are given. The tests were run on an HP9000/735 workstation. The 
last column of each table shows two numbers. The first one indicates the 
number of infeasible branches in the BSG scheduling approach, i.e., the 
number of times an operation was matched to some MEI without detecting 
immediately that the matching leads to an incorrect ordering. The second 
number indicates the number of times a matching was immediately detected 
to be incorrect, so the branch-and-bound process does not follow such a 
branch at all. 
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TABLE 4.1. Scheduling results for FDCT. 
#adder I CPU times CPU times # infeasible 

ICI #multipliers subtracters IP scheduler BSG scheduler branches 
(d = dii = 2) (d = 1) (sec) (sec) BSG 

8 8 4 0.5 ~ ~ 

9 

:~feas.) 
1.3 010 

9 13,988 0.5 0/3 

IO 5 4 20 1.2 010 

IO 5 3 (not feas.) > 2 hrs > 2 hrs 

11 4 3 128 1.4 016 

12 4 3 I02 1.2 012 

13 4 2 501 1.0 0 

14 3 2 230 1.1 0 

15 3 2 243 1.3 0 

~ 
3 2 590 1.2 Oil 

3 2 853 l.l Of I 

18 2 2 240 1.0 010 

19 2 2 449 1.3 0/3 

20 2 2 496 1.1 010 

21 2 2 434 1.2 010 

22 2 2 2,496 l.2 010 

23 2 2 854 1.2 010 

2 1,590 1.2 010 

2 2 453 1.2 010 

26 2 l 3,093 1.7 017 

27 2 l > 2 hrs 1.9 017 

28 2 I 2,331 1.2 010 

29 2 l 4,765 1.2 010 

30 2 I 4,757 1.2 0/1 

31 2 l > 2hrs 1.3 010 

=H=~ l 54 1.2 010 

l 4,467 1.2 010 

34 l l > 2 hrs 1.2 010 

The tables show that WDELF is a 'simple' example in comparison with FDCT: 
for WDELF there was not a single case in which the scheduler tried a wrong 
assignment of an operation to an MEI. Both schedulers have about the same 
run times for WDELF, although the IP scheduler tends to become less 
efficient as the number of cycles increases. In general, the number of IP 
variables and constraints increases as the cycle bound increases. 
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TABLE 4.2. Scheduling results for WDELF. 
#adder I CPU times CPU times # infeasible 

ICI #multipliers subtracters IP scheduler BSG scheduler branches 
(d dii = 2) (d I) (sec) (sec) BSG 

17 3 3 1.6 0.5 010 

18 2 2 1.8 0.4 010 

19 2 2 2.2 0.5 010 

20 2 2 2.9 0.8 010 

1 2 1.8 0.9 010 
·····-

22 1 2 3.8 1.0 010 

23 2 1.1 010 

24 1 2 6.0 1.1 

25 2 7.2 1.2 

26 2 8.0 1.1 010 

2 10.6 1.1 010 

11.1 1.0 010 

The results for FDCT clearly show the limits of an IP scheduler, which 
becomes very inefficient for that example. The inefficiency is due to the 
parallelism and the symmetry of FDCT, which makes it very difficult to 
obtain an integral solution for the IP formulation of the scheduling problem. 
The scheduler based on the BSGs remains very efficient for FDCT. The only 
exception is the infeasible module set for 10 cycles; the search space for this 
example is large for any kind of scheduler and there is no method (yet) which 
solves this problem instance efficiently. 



Chapter 

5 Retargetable Code Generation 

5.1 Introduction 

The previous chapters of this thesis are targeted towards the synthesis and 
optimization of datapaths of hard-wired VLSI circuits, i.e., application 
specific I Cs (ASICs). Another class of VLSI circuits that is gaining a lot of 
interest are the so called application domain specific processors or 
application specific instruction-set processors (ASIPs), especially in the field 
of digital signal processing (DSP). These DSP cores, which are tailored 
towards specific application domains, are becoming increasingly popular due 
to their advantageous trade-off between flexibility and cost; see Figure 5 .1. 

Such a core is relatively flexible in comparison to an ASIC: different 
algorithms can be mapped on it, while an ASIC is a tailored solution for only 
one algorithm. On the other hand, domain specific DSP cores are more 
targeted towards a specific application domain, making them more suitable 
for such a domain than general processors: dedicated hardware is available 
for time critical tasks, e.g., a module performing a FFT butterfly in a single 
cycle. So, domain specific cores are applied to allow the fine tuning of an 
application. Therefore a new research topic is emerging: 'retargetable' code 
generation for domain specific DSP cores and other application specific 
instruction-set processors. 

.,, ....... v, •. ..,,."""',,,,'" specific 
mal:Jt~~iP,r~,cessor (or ASIP) 

general purpose programmable processor 

FIGURE 5.1. Processor spectrum indicating application domain sizes 
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Tight feasibility constraints 

The size of the application domain of a core is inversely proportional to the 
required efficiency. Experiments show that in some cases the utilization of 
the functional units, in this chaptercalledoperationprocessingunits (OPUs), 
in an application domain specific core exceeds 90% of the total cycle budget 
[Strik95]. So, there is a need for a code generator capable of generating very 
efficient, i.e., compact, microcode under tight feasibility constraints. These 
feasibility constraints originate from the algorithm, i.e., the timing and 
precedence constraints, and from the DSP core and instruction set, i.e., the 
resource constraints. The combination of these constraints results in high 
OPU utilization rates, while the objective is to find a feasible, i.e., correct, 
mapping from algorithm to domain specific DSP core. 

Because of the relatively high efficiency required, the use of domain specific 
DSP cores leads to new design tools and I or methods [Paul92]. Despite the 
fact that many researchers consider (retargetable) code generation as a 
separate research area, it can be seen as a natural part of, and the last step 
in, an architectural synthesis system; recall Section 1.3 and 1.4. Retargetable 
code generation is therefore a good test case for the validity of the synthesis 
flow depicted in Section 1.4. 

Code generation can roughly be divided into three interdependent subtasks: 
code selection, instruction scheduling and register binding. Previous 
approaches concentrate on the code selection problem [Marw93], [Liem94], 
[Praet94] or the register binding problem [Cheng94], [Lann94]. However, 
under the regime of tight feasibility constraints, heuristic approaches for the 
instruction scheduling problem render unsatisfactory results for many 
instances, i.e., they often do not find a feasible schedule within the 
throughput constraints although such schedules do exist. 

The existing scheduling methods do not produce satisfactory results because 
they are hampered by the combination of tight timing and resource 
constraints, instead of exploiting them. On one hand, in the field of software 
compilation, the completion time of an algorithm is often not that important 
in comparison with the hard constraints on the throughput, of DSP algo­
rithms. An exception is [Chou94], but in that approach the resulting schedule 
is fully serial, so no parallelism in the datapath is allowed. However, 
Section 5.3 shows that a lot of parallelism in the datapath is ~eeded in DSP 
applications. On the other hand, in the field of hardware compilation, most 
architectural synthesis systems do not handle hard resource constraints 
correctly, i.e., they often just add resources in order to find a Solution. 

This chapter therefore concentrates on modelling the resource and 
instruction set conflicts and exploiting the combination of all possible 
constraints, by applying the methods developed in Chapter 2 and 4. Because 
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of the large number and the tightness of the different resource constraints, 
these methods are highly suitable for the code generation problem. The target 
cores considered are in-house DSP cores for which the application domains 
are relatively small and the microcode efficiency must be high. As a conse­
quence of the use of in-house DSP cores, design rules can be developed and 
enforced for the core architectures and the instruction set definitions, to 
facilitate the code generation approach presented in this chapter. The design 
rules can be found in [Strik94] and will only be mentioned in this chapter if 
they are a prerequisite to understand the code generation approach. 

Chapter overview 

The outline of this chapter is as follows. In Section 5.2, it is shown how 
different resource constraints, with respect to 0 PU s, memory accesses, buses 
and multiplexers can be modelled uniformly. In our case, the instruction set 
cannot activate all modules in the datapath simultaneously, in order to limit 
the instruction word width. So, the instruction set definition imposes 
additional restrictions on the amount of parallelism in the datapath. A 
method has been developed, such that these restrictions can be handled as 
normal resource conflicts. This means that the instruction set conflicts are 
modelled statically before scheduling, making a compaction pass, which is 
used in other code generation systems like CodeSyn [Paul94], superfluous. 
Note that register file size constraints are not yet dealt with automatically in 
the approach presented here. 

In Section 5.3, the different resource conflicts are cast into the bipartite graph 
matching formulation introduced in Chapter 2. The method is based on that 
formulation, but is completely tailored to the code generation flow. Two 
methods to construct BSGs are proposed and it is explained which of the two 
leads to the best formulation. Furthermore, the scheduling method based on 
finding a correct complete matching in the BSGs, see Chapter 4, is also 
applied to the code generation problem. Section 5.4 presents results for real 
life examples demonstrating the efficiency of the approach. 

5.2 Modelling resource and instruction set conflicts 

5.2.1 Register transfer generation 

For the code generation flow of the application domain specific DSP cores, 
tools and therefore parts of the synthesis flow from the Mistral2™ compiler 
[Nieu94] have been reused. Preceding the instruction scheduling step, 
register transfers (RTs) and their dependencies are generated from the input 
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OPU 

FIGURE 5.2. Generic datapath architecture. 

description using a generic architectural model. Figure 5.2 shows the 
architectural model in which a number of, possibly pipelined, OPUs appears. 
Each OPU input is connected to a register file (RF). The outputs of the OPUs 
are connected to RFs via buffers, buses and (optionally) multiplexers. 

RTs correspond to a complete, in this case single clock cycle, path from source 
register files to a destination register file. So the RTs already contain the 
binding information regarding the resources on which actions from the input 
description are mapped. RTs are fully characterized by the resources that are 
used and the mode in which these resources have to operate. 

An example is given in Figure 5.3, in which the destination RF is 
reg_2_ram_l and the origin RFs are reg_l_acu_l and reg_2_acu_l. The 
resources of the RT are found at the left hand side of the'=' sign and the mode, 
or 'usage', is positioned at the right hand side. Figure 5.3 shows an addition 
on an OPU called 'acu_l' and the storage of the result in a register of the OPU 
called 'ram_l' via the second of the two available multiplexer inputs. 

Dest_ l: reg_2_ram_l <- Source_!: reg_l_acu_ l, 

Source_2: reg_2_acu_l, 

acu_l 

buf_l_acu_l 

bus_l_acu_l 

mux_2_ram_l 

add, 

write, 

'add(Source_l, Source_2)', 

pass[O. 1). 

FIGURE 5.3. Example register transfer. 
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The RT generation step has similarities to the instruction set matching and 
selection techniques of other approaches like [Liem94]. However, in this case 
the step is performed by the existing RT generation tool from the Mistral2™ 
compiler. The tool uses the architectural model of Figure 5.2 as a starting 
point. Register files and buses that are merged in the actual core are taken 
into account by modifying the generated RTs [Strik94]. Restrictions due to 
the instruction set are taken into account as well by modifying the RTs, as will 
be shown in Section 5.2.3. 

5.2.2 Resource conflicts 

RTs can be combined into a single instruction by a scheduler if they do not 
have any resource conflicts. If RTs do not use the same resources, then they 
can be combined. Otherwise it depends on the usage of these resources. In 
Figure 5.4a, an RT is given that can be combined with the RT of Figure 5.3, 
because the usage of the shared resources is the same. The only difference 
between the two RTs is the destination RF, see the resources in bold in 
Figure 5.4a. In Figure 5.4b, an RT has been given that cannot be packed into 
the same instruction as the RT of Figure 5.3. The OPU is used differently, see 
the usage in bold in Figure 5.4b, which leads to a conflict. 

Let M be the set of resources in the data path, i.e., not only the OPUs, but also 
buses, multiplexers and so on. For each resource k e M, the following conflict 
graph CG(k) can be constructed. The CGs will be used in the discussions and 
methods that are presented in the sequel of this chapter. 

DEFINITION 5.1. Conflict graph. 
CG(k) for resource k e M is an undirected graph represented by a tuple 
(W', A'), where: 

• W' is the set of vertices representing the RTs that use resource k; 
• A' ~ W' x W' is the set of arcs, such that there is an arc (vi, Vj) e A' 

if and only if Vi e W' and Vj E W' have a different usage of resource k. 

(a): 

Dest_l: reg_2_acu_l <- Source_l: reg_l_acu_l, 

Source_2: reg_2_acu_l, 

acu_l =add, 

buf_l_acu_I = write, 

bus_l_acu_l = 'add(Source_l, Source_2)', 

mux_l_acu_l = pass[O, J]. 

(b): 

Dest_l:reg_2_ram_I <- Source_!: reg_l_acu_l, 

Source_2: reg_2_acu_l, 

acu_l = addmod, 

buf_l_acu_l write, 

bus_l_acu_l 'add(Source_l, Source_2)', 

mux_2_ram_l = pass[O, l]. 

FIGURE 5.4. RTs without (a) or with (b) a conflict with RT of fig. 5.3. 
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The CGs point out that the resource conflicts are modelled statically before 
scheduling. Two RTs can be packed into one instruction if they are not 
adjacent to each other in the CG of any resource (and, of course, if dependency 
relations between RTs are not violated). For all possible cliques of RTs only 
one RT at the time can be packed into one instruction. Solving the resource 
conflicts of a design problem can therefore be interpreted as finding 
independent sets of RTs for each cycle step, such that the dependencies in the 
DFG are not violated. 

5.2.3 Instruction set conflicts 

A given DSP core is not only specified by its datapath but also by its 
instruction set. In our case, the instruction set cannot steer all modules in the 
data path simultaneously, in order to limit the instruction word width. So, the 
instruction set definition imposes additional restrictions on the amount of 
parallelism in the datapath. 

These restrictions are modelled by adding artificial 'resources' to the RTs. As 
an example, load immediate (LDI) is often a separate instruction class, or 
'optype', during which no other RTs can take place. In Figure 5.5, the 
artificial resource LDI with the mode false has been added to model this 
instruction set conflict. The advantage of modelling the instruction set 
conflicts as artificial resource conflicts is twofold. First of all, a uniform 
modelling of all conflicts is obtained. Secondly, and more importantly, the 
domain reduction techniques of Chapter 2 can be applied for the instruction 
set conflicts, if they can be modelled as artificial resource conflicts. 

There is however a catch in this approach. The CGs in Section 5.2.2 showed 
that the resource conflicts from the datapath are modelled statically before 
scheduling. The bipartite graph matching formulation introduced in Chap­
ter 2 uses a similar static modelling of conflicts as well. The question arises 

Dest_ I: reg_2_ram_l <- Source _I: reg_l_acu_I, 

acu_ 1 pass, 

buf_l_acu_ 1 write, 

bus_l_acu_l 'pass( Source_ I ) ', 

mux_2_ram_ 1 pass[O, l], 

LDI false. 

FIGURE 5.5. Example RT with artificial resource. 
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whether such a static modelling of the instruction set conflicts imposes any 
restrictions or demands on the instruction set definition itself. Recall that in­
house DSP cores are considered, so the definition of the instruction sets can 
be controlled to make them suitable for the code generation method presented 
in this chapter. To model the instruction set conflicts statically before 
scheduling, the instruction set conflict graph of Definition 5.2 is used. 

DEFINITION 5.2. Instruction set conflict graph. 
Let an RT class be a set of RTs which use the same resources in the same 
mode. We can then define the following instruction set conflict graph (ICG), 
which has similarities to the CGs for the different resources in the datapath. 
ICG is an undirected graph represented by a tuple (C', A'), where: 

• C' is the set of vertices representing the RT classes; 

• A' ~ C' x C' is the set of arcs such that there is an arc (cli, clj) E A' if and 
only if two RTs from the respective RT classes cli E C' and clj E C ' cannot 
be combined into one instruction because of an instruction set conflict. 

Such an ICG is a valid model for the instruction set conflicts, if and only if the 
following condition is satisfied. For every arbitrary set of operations, for which 
the set of their resource classes form an independent set within the I CG, there 
must be a legal instruction. This means, amongst others, that NOP 
(no operation) must be a possible instruction, as well as an RT from each 
individual RT class on its own. So the use of an ICG puts some demands on 
the definition of the instruction sets. However, these demands are very well 
acceptable in real life situations and have no influence on the efficiency of the 
implementation. 

Artificial resource conflicts 

The conflicts modelled by the ICG can be transformed into artificial RT 
resource conflicts in two ways. First of all, an approach can be followed which 
is implied by Figure 5.5. For each RT class cl E ICG, a resource is added to 
the corresponding RTs with the mode 'true'. To all RTs whose classes are 
adjacent to cl in ICG the same resource is added, but with the mode 'false'. In 
Figure 5.6, as an example, a resource 'S' with the mode 'true' can be added to 
RTs belonging to the class S. RTs belonging to the classes X and Y obtain a 
resource 'S' as well, but with the mode 'false'. With this model, the number 
of artificial resources equals the number of RT classes, which is six in the 
example. 

Secondly, we can find a minimal set of cliques such that all arcs in the ICG 
are covered at least once. For each clique, all corresponding RTs obtain a 
resource identifying that clique, with a mode corresponding to their individ-
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x y 

FIGURE 5.6. Example instruction set conflict graph (ICG). 

ual RT class. Such a clique cover for Figure 5.6 is given by the set IT, U, V, X}, 
{T, U, V, Y}, {S, X} and {S, Y}. As an example, a resource 'TUVX' is added to 
RTs belonging to the classes T, U, V and X, with a mode 'T', 'U', 'V' or 'X' 
depending on their class. With this model, the number of artificial resources 
equals the number of cliques, which is four in the example. 

The run time efficiency of the instruction scheduling step can depend on the 
total number of resources, see the following sections. Therefore, the choice 
how to model the instruction set conflicts is based on the number of artificial 
resources each model introduces. 

5.3 Instruction scheduling based on BSGs 

5.3.1 Background 

Because of the large number and tightness of the different resource and 
instruction set constraints, the execution interval analysis and scheduling 
approach based on BSGs is highly suitable for the retargetable code genera­
tion problem. A bipartite graph matching formulation is therefore used to 
map algorithms to the application domain specific DSP cores. However, an 
adaptation of the approaches of Chapter 2 and 4 is needed ~o make them 
suitable for the code generation flow, due to the following thr~e reasons. 

• In general, the number of times a certain resource is occupied is not known 
beforehand in the RT model used. Consider the case in which two RTs do 
not have any resource conflicts, although they do use the same resources, 
i.e., they use resources in the same mode. In that case it depends on the final 
schedule whether these resources are used once or twice folj the two RTs. 
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• In the approaches of Chapter 2 and 4, only resource constraints with 
respect to functional units, i.e., OPUs, were taken into account. The 
methods are extended for all other resource types that are part of an RT, 
i.e., constraints with respect to memory accesses, buses, multiplexers and 
the instruction set are now considered as well. 

• In many cases, the loops in a data flow graph have to be 'folded' to satisfy 
the throughput constraints, see Definition 5.3. This was not considered in 
the previous chapters. 

DEFINITION 5.3. Loop folding. 
Consider a data flow graph with possibly cyclic paths. Let the throughput 
constraint of the DFG be defined by a list of clock cycles D and the execution 
delay constraint by a list of clock cycles C. Furthermore, let the difference in 
clock cycles between two executions (instantiations) of an RT in the DFG be 
equal to ID I , i.e., the period of the RTs is ID I. If it is not possible to construct 
a schedule for the DFG, such that IC I equals ID I, then the DFG has to be 
'folded'. If I C I equals ID I , then the DFG is said to be unfolded. If I C I equals 
2* ID I , then the graph is folded once, if I C I equals 3* I D I , then the graph is 
folded twice, etc. 

5.3.2 Time potentials 

Let the execution delay of a DFG be equal to I C I clock cycles. Then, in case 
ofloop folding, an RT is not repeated every I C I cycles, but every I D I cycles, 
with I D I < I C I . For detecting resource constraints, it is not sufficient 
anymore to check whether two RTs occupy a resource in the same clock cycles, 
as the following example will show. 

Consider two RTs, v and w, with <j>(v) = [1, 2] and <j>(w) [9, 10]. If ID I is equal 
to eight, then the two RTs may not have resource conflicts: the second 
instantiation of v occurs in the same clock cycle as the first instantiation of w. 
Therefore, the resource conflicts have to be considered with the period I D I 
of the RTs in mind. In Figure 5. 7, a DFG has been given with I D I = 4 cycles 
and I C I = 8 cycles. As a next example, RT 5 is executed in cycle zero for the 
first time, while RT 3 is scheduled in cycle four for the first time. However, 
because I D I = 4, the second instantiation of RT 5 takes place in cycle four, 
so RT 5 and RT 3 may not have resource conflicts. 

The schedule of an RT is fully defined by the first clock cycle in which it is 
executed together with its period ID I . Iffor two RTs, v and w, $1 ( v) mod ID I 
and $2( w) mod I D I are equal, then their start times are said to be in the same 
time potential, or phase. So, RT 5 and RT 3 of Figure 5. 7 may not have resource 
conflicts, because they are both scheduled in the same time potential, i.e., in 
time potential zero. 
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schedule (ID I = 4 cycles, IC I = 8 cycles): 

data flow graph: 
time 

potential cycle RT 

2 5 4 9 
0 5 
1 6 pre-amble 
2 
3 2 

0 4 5 3 
1 5 6 411 loop body 2 6 8 912 
3 7 2 710 

10 
3 post-amble 
4 11 

12 8 9 12 
7 10 

FIGURE 5.7. Example of a folded DFG with schedule. 

Figure 5. 7 shows that after IC I ID I cycles the loop body of the schedule 
begins. In the loop body, the full concurrency of the RTs is present. The pre­
amble precedes the loop body, so RTs are scheduled for the first time in either 
the pre-amble or the loop body. If the loop body is not executed an infinitely 
number of times, then there is also a post-amble. In the post-amble, all RTs, 
that were not executed in the pre-amble, are executed for the last time. 

Because the full concurrency of the RTs is present in the loop body, the list of 
time potentials D can be interpreted as the clock cycles of the loop body. In the 
application domain specific cores considered, the data introduction intervals 
(diis) of all OPUs are equal to one. Due to that reason, the schedule of each 
RT corresponds to the occupation ofresources during one time potential in the 
loop body. So, resource conflicts occur when two RTs are scheduled at the 
same time potential in the loop body, while they use the same resource in a 
different mode. 

5.3.3 Definitions 

In Definition 2.27, the operation execution interval OEI, based on clock 
cycles, has been defined. A similar execution interval can now be determined 
based on the time potentials, see Definition 5.4. 
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DEFINITION 5.4. Operation time potential interval. 
Consider a data flow graph, and let the set of constraints consist of 
precedence, resource and timing constraints. Let D be the list of time 
potentials denoting the throughput constraint and C the list of cycles 
denoting the execution delay constraint. The operation time potential 
interval OTI(v) ofv E Vis then defined by the following set of time potentials: 

OTI(v) = LJ (4> 1(v) mod ID I). 
qi <I> 

In Definition 5.4, only the start times ofRTs are considered. The reason is that 
in our case the diis of all OPUs are equal to one, i.e., every RT 'occupies' an 
OPU for only one time potential. However, the execution delay of an RT can 
be more than one clock cycle. 

Note also that, in case there is no execution delay constraint C and the 
register file sizes are not taken into account, all RTs have all time potentials 
in their OTI. In case of an execution delay constraint C, the OTis cannot be 
calculated in polynomial time anymore. This is due to the same reasons the 
OEis in Chapter 2 can, in general, not be determined in polynomial time. 
Therefore, the conservative estimate of an OTI is defined, see Definition 5.5. 

DEFINITION 5.5. Conservative estimate of time potential interval. 
The conservative estimate OTI(v) of an operation v E Vis an estimate of 
OTI(v), satisfying OTI(v) :2 OTI(v). 

Furthermore, loop folding can result in extra timing constraints for the RTs 
as well. In case each instantiation of a value is stored in the same memory 
location, extra timing constraints are required. These constraints have to 
assure that the consumption of a value occurs before a new version of the 
value is produced: V : <j:> 1(w) :::;; <j:> 2(v) + ID I 1. 

w succ(v) 

It is now possible to formulate the exact problem definition related to the 
instruction scheduling problem, see Definition 5.6. Recall that the only 
conflicts not considered in this problem formulation are the conflicts that can 
result from limited register file sizes. 

DEFINITION 5.6. Instruction scheduling problem. 
Given a DFG and a set of, possibly artificial, resources M to which the RTs in 
the DFG have been mapped. Let D be the list of time potentials denoting the 
throughput constraint and C the list of clock cycles denoting the execution 
delay constraint. Let I D I be the period of all RTs, and let dii(m) = 1 for all 
m E TM. Furthermore, let each instantiation of a value be stored in the same 
memory location, see the discussion above. Determine whether the set of 
schedules <I> is empty or not. If <I> is not empty, calculate a correct <t>(v) for all 
operations v E V. 
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5.3.4 Module execution intervals 

All the considerations mentioned above have a huge impact on the definition 
and calculation of the MEls, which account for the resource conflicts. 
Resource conflicts occur when two RTs are scheduled at the same time 
potential in the loop body, while they use the same resource in a different 
mode. Therefore, the MEis have to be defined based on the time potentials, 
and not on the clock cycles. So, a redefinition of Definition 2.33 is needed. 

Consider an arbitrary, possibly artificial, resource k from the datapath or 
instruction set. This is because the MEis can now be calculated for each 
resource separately, recall that the binding to resources has already taken 
place. Let Wk be the set of RTs that use resource k, the index 'k' is dropped 
whenever possible. In the instruction scheduling approach of this chapter, a 
schedule qi E <I> imposes a notion of order on the set W by assigning time 
potentials, and not start times, to the elements v E W. Any time some RTs 
have equal time potentials this tie is broken arbitrarily, in analogy to 
Definition 2.32. 

DEFINITION 5. 7. Linear ordering of scheduled RTs. 
Let ~ represent an arbitrary linear ordering on the set W. Furthermore, let 
qio(v) be the short hand notation for l qii(v)j mod ID I. Given a schedule qi E <I>, 
< c1> is a linear ordering relation defined by: 

'V 'V : v < <P w ~ ( tj>0 (v) < tj>0 (w)) v ( tj>0 (v) = tj>0 (w) /\ v ~ w ). 
cj> E II> v,w E W 

Again, 1t;j>(i) is defined as the ith RT under the linear order induced by the 
schedule qi according to Definition 5. 7. Module execution intervals can now 
be defined as follows, which is analogous to Definition 2.33. 

DEFINITION 5.8. Module execution interval MEI. 
Consider the set of RTs from W assigned to the value i E [1, I WI Jover the set 
of all schedules <I>. Furthermore, let qio(i) be the short hand notation for 
lqi1(Teqi(i))j mod ID I, i.e., $o(i) is the time potential of the ith RTE Win the 
schedule qi E <I>. Then MEI(i) is defined by the following interval of time 
potentials. Note that, in this case, the MEis are defined by time potentials 
and not by clock cycles: 

MEl(i) = [M1(i), M2(i)] = [min tj>0 (i), max <Pn(i)]. 
cj>Ell> cj> E II> 

Thus, for any schedule qi E <I>, the time potential of the ith RT must be within 
the interval of time potentials of MEl(i). Again, we have to be content with 
estimates of those bounds which do not limit the solution space. For this 
reason the estimates have to satisfy Definition 2.34. 
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5.3.5 Construction of BSGs per resource 

In this section, the exact details of the MEI calculation are given when BSGs 
are constructed for each, possibly artificial, resource separately. In the next 
section, another formulation will be introduced that constructs the BSGs 
differently and in a better way, see also [Timm95b]. This means that one can 
skip reading this section. The reason to give both approaches is to show what 
the difference between a good and a less good formulation is. Furthermore, 
the formulation in this section is more general than the formulation of 
Section 5.3.6, and might therefore be more appropriate for other scheduling 
problems that could arise in the future. However, we restrict ourselves in this 
section to a more or less constructive explanation of the method. 

Definition of main auxiliary variables 

Because, in general, it is not known beforehand how many times a resource 
will be occupied, the MEis cannot be calculated directly if BSGs are 
constructed per resource. For that reason, one must start with determining 
the maximum number of RTs that can be executed within the first c time 
potentials of the loop body, c E [O, ID 1-1]. Let 'usages' be the set of different 
usages (modes) of resource m, and let Wu== {v E W I v uses resource k with 
mode u}. For each mode u E usages, the following values are determined. 

• \Jlu(c): a lower bound estimate of the minimum number of cycles within the 
first c time potentials that resource k must be occupied by RTs from Wu. 

• Su(c): an upper bound estimate of the maximum number ofRTs from the 
set Wu that can possibly be executed if the number of occupations with 
usage u equals \Jlu(c). 

With the values \Jlu(c), u E usages, it is possible to determine the minimum 
total number of time potentials in which resource k must be occupied within 
the first c potentials. This number is given by: 

occ(c) = 

u E usages 

The corresponding maximum total number of RTs that can possibly be 
executed ifthe number of occupations ofresource k equals occ(c) is given by: 

rts(c) = 
u E usages 

Let holes( c) be the number of time potentials within the first c time potentials 
in which resource k will never be occupied by an RT, because there isn't any 
RT that can be executed in such a time potential. 
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If c - occ(c) - holes(c) < 0 for any resource or range of time potentials, then 
the combination of timing, resource and instruction set constraints is not 
feasible and the set of schedules <I> is empty. If c - occ(c) - holes(c) > 0, then 
the number of time potentials in which resource k is occupied during the first 
c time potentials may exceed occ(c). 

Calculation of auxiliary variables 

Let the list of time potentials D be ordered from 0 to ID 1-1. Each subset Wu 
can then be split into the following two disjoint lists: Wu,a = {v E Wu I v can 
possibly be scheduled in time potential 0 and v can possibly be scheduled in 
time potential ID 1-1} and Wu,b =Wu\ Wu,a· Wu,a is the list of RTs that can 
either be scheduled at all time potentials, or have a discontinuous interval of 
time potentials in which they can possibly be scheduled. Wu,b is the list ofRTs 
with a continuous interval of time potentials. In Figure 5.8, Wu,a = {g, h, i) and 
Wu,b ={a, b, c, d, e, fl: g and h have a discontinuous interval of time potentials 
and i can be scheduled at all time potentials. 

For all v E Wu,b, OTI(v) consists of a continuous interval of time potentials and 
can therefore be represented by a 2-tuple. Let MASAP(v) and MALAP(v) be 
the shorthand notations for ASAP(v)mod ID I andALAP(v)mod ID I respec­
tively. Then OTI(v) = [MASAP(v), MALAP(v) - l] for all v e Wu,b· Let Wu,b 
be ordered by increasing MALAP, and let Wu,b(i) be the ith entry in that order. 
If two RTs have the same MALAP, then the tie is broken in an arbitrary way. 
Algorithm 5 .1 then constructs a list Lu of RTs from Wu,b that do not have any 
overlap in their OTI. The list is kept ordered by increasing MALAP, and Lu(i) 
is the ith entry in that order. With the use of this list, the lower bound estimate 
of the minimum number of times resource k must be occupied, 'f'u(c), can be 
calculated. 

+r--t-,..-+--~t~+--i-~rl--11 

4 IDl-1 

FIGURE 5.8. Example DTis. 
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ALGORITHM 5.1. Construct list Lu of RTs without overlap from Wu,b· 

j := 1; 
Lu(j) := Wu,b(1 ); 
for (i := 2 to IWu,bl) -

if (MASAP(Wu,b(i)) ;::: MALAP(Lu(j))) _.. 
j := j + 1; 
Lu(j) := Wu,b(i); 

For the example of Figure 5.8, Lu= {b, c, d, e}. 

'Pu(c) can now be calculated with the following formula. 
'Pu(c) = 'Pu(MALAP(Lu(n))) = n, where n has to satisfy: 
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MALAP(Lu(n)) ::;; c < MALAP(Lu(n + 1)), 1 ::;; n < I Lu I and 1 ::;; c < ID I . 

For the example of Figure 5.8, we thus obtain the following values. 
No RT has to be finished after the first cycle, so 'Pu(l) = 0. 
MALAP(Lu(l)) = MALAP(b) = 2, so '¥u(2) = 1. 
MALAP(Lu(2)) = MALAP(c) = 4, so '¥u(3) = '¥u(2) = 1 and '¥u(4) = 2, etc. 

Based on Lu, Wu can be partitioned into the following new disjoint subsets. 

ILul +1 
Wu= u Wu,n' whereWu,ILul+1=Wu\IWu,1U ... UWu,ILul},and 

n = 1 

I n-1 _ _ } 
"if : Wu,n = 

1
v E I Wu\ LJ Wul} I OTl(v) n OTI(Lu(n)) -;&: 0 . 

1 ~ n ~ ILul 1 = 1 ' 

For the example of Figure 5.8, the following subsets are obtained: 
Wu,1 ={a, b, h, i}, Wu,2 = {c}, Wu,3 = {d, fl, Wu,4 ={el, Wu,5 = {g}. 

Depending on whether the set Wu, 1Lu1 +1 is empty or not, the estimate of the 
total minimum number of times resource k must be occupied equals I Lu I or 
I Lu I +1. SoifWu, I Lu 1 +1 = 0, then 'Pu( ID I)= I Lu I, otherwise it is I Lu I +1. For 
the example of Figure 5.8, the set Wu, 1Lu1 +1 = Wu,5 -;&: 0, so 'Pu( ID I)= 
I Lu I + 1 = 5, i.e., the resource must be occupied during five time potentials or 
more. 

Consider the case in which the number of occupations in the first c potentials 
equals 'Pu(c) = n. Then an upperbound for the maximum number of RTs that 
can be scheduled with these occupations is: Su(c) = I IWu,1 U Wu,2 U ... U Wu,nl I. 
For the example of Figure 5.8, if the number of occupations after the first five 
potentials equals two, then 2u(5) = I {Wu,1, Wu,21 I = I {{a, b, h, ii, {c}} I 5. 
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Sometimes more RTs can be scheduled within c time potentials than the RTs 
determined above. For instance, if c > MALAP(Lu(n)), then extra RTs can 
possibly be scheduled from the set Wu,n+l at the cost of, at least, one extra 
occupation of resource k. This set of extra RTs is given by: 
Wu,n+l,c = [v E Wu,n+l I MASAP(v) < c}. 

Continuing the example of Figure 5.8 after the first five time potentials, we 
get: Wu,3,5 = {v E Wu,3 I MASAP(v) < 5} = {v E {d, f1 I MASAP(v) < 5} = {d}. 

Also RTs from the set Wu,a that are not part of the set IWu,1 U Wu,2 U ••• U Wu,kl 
can possibly be scheduled at the cost of, at least, one extra occupation of 
resource k. This set of extra RTs is given by: 
Wu,a,n = Wu,a I llWu,1 n Wu,al U IWu,2 n Wu,al U ... U IWu,n n Wu,all· 

Continuing the example of Figure 5.8, we obtain: 
Wu,a,2 = {g, h, ii I {h, ii= {g}. 

The sets Wu,n+ 1,c and Wu,a,n contain all RTs that can additionally be executed 
if the number of occupations of resource k exceeds the value "Pu(c) = n. 
Because Wu,n+ 1,c n Wu,a,n can be non-empty, the maximum additional number 
of RTs that can be scheduled with one extra occupation is given by: 
2u1(c)=max[IWun+lcl, IWuanll. 

' ' ' ',. 

The maximum additional number ofRTs from Wu that can be scheduled with 
a second extra occupation of resource m is given by: 
Su,2(c) = I Wu,n+l,c I + I Wu,a,n I I IWu,n+l,c n Wu,a,nl I Su,1(c). 

So, the maxim um number of RTs from Wu that can possibly be scheduled after 
c time potentials equals: Su(c) + Eu,1(c) + 2u,2(c). 

Let Ee be the list of2u,1(c) and Eu,2(c) for all u E usages, ordered by decreasing 
cardinality, and let 2c(i) be the ith entry in that order. Let mn(c) be the 
maximum number of RTs that can possibly be scheduled in the first c poten­
tials on resource k. Then it is possible to formulate the following theorems. 

THEOREM 5.1. 
c occ(c)-holes(c) 

'V : mn(c) :5 rts(c) + I Ec(i). 
0::; c < IDI 

i = 0 

Proof. 
The term rts(c) gives an upper bound on the number of RTs that can be 
scheduled for the minimum number of occupations occ(c). The number of 
remaining time potentials still available to occupy the resource equals 
c - occ(c) holes(c). Thus the second term of the right hand side gives the 
maximum number of RTs that can be scheduled in the remaining cycles. • 
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THEOREM 5.2. 
Let nu(c) be the maximum number of RTs with usage u that can be scheduled 
at time potential c on resource k. Then one can postulate: 

V : mn(c) :::; (mn(c-1) + max nu(c)). 
O<c<IDI uEusages 

Proof. 
The proof follows from the fact that the maximum difference between mn( c-1) 
and mn(c) cannot exceed max nu(c). • 

u E usages 

Estimation of the module execution intervals 

With the theorems above, we can now estimate the module execution 
intervals when they are based on time potentials. 

THEOREM 5.3. 
Let mn(c) be the minimum of the right hand sides in the Theorems 5.1 
and 5.2. Then the following calculation of M1(i), i E [1, I WI], satisfies the 
properties of Definition 2.34. The values for M2(i) can be calculated similarly. 

a-1 a 

M1(i) =a, where a has to satisfy: L mn(c) < i :::; L mn(c). 
c=O c=O 

Proof. 
The value for mn(c), 0 :::; c < ID I , gives a correct upper bound for the number 
ofRTs that can be scheduled in the first c potentials. With Theorem 5.3, the 
cardinality of (M1(i) I i E [1, I WI] A M1(i) = 1) equals mn(l), the cardinality 
of(M1(i) I iE [1, IWI] A M1(i)=2)equalsmn(2)-mn(l),andsoon.Thetotal 
number of ME Is started after c time potentials equals mn(c), which is correct 
because no more than mn(c) RTs can have been scheduled after c time 
potentials. • 

With the calculated MEis, the resource conflicts can be cast to BSGs, similar 
to the formulation in Section 2.3.3. The only difference is that predecessors 
of an RT do not necessarily have to be matched with preceding MEis in case 
a DFG is folded. This is different to the approach described in Section 2.3.4. 
So, initially there is an arc (v, MEI(i)), i E [1, I WI], in a BSG if and only if 
register transfer v E W can be scheduled in MEl(i) E R. 

To schedule a DFG, the approach based on finding a correct ordering of 
operations can be applied again; recall Chapter 4. The only difference is that 
the following Theorem 5.4 must be applied as well, in order to guarantee that 
an ordering is indeed correct, after the execution interval analysis introduced 
in Chapter 2 is done. 
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THEOREM 5.4. 
Let the arcs (v, MEI(i)) and (w, MEI(i+l)), 1 s i < I WI, be member of a BSG 
with a bijection between RTs and MEis. If there is a resource that both v and 
w use in a different mode, then Mi(i+l) 2: Mi(i)+l, and M2(i+l) 2: M2(i)+l. 

Proof. 
The RTs v and w cannot be scheduled at the same time potential, and 
therefore their adjacent MEis must differ in their first and last cycles. • 

Because an RT can be an element of several BSGs, the priority functions in 
the instruction scheduling process are as follows. First the MEI with the 
smallest M2 is selected. This MEI is matched with an RT, and the selected RT 
is also matched with the first ME Is in the other BSGs of which the RT is an 
element. Then the next MEI with the smallest M2, which is not yet matched, 
is selected, then matched with an RT and so on. If a matching turns out to be 
incorrect, the matching is revoked and another RT is matched to the So, 
again a backtracking approach is applied to obtain an exact scheduler. 

5.3.6 Construction of BSGs per clique of RTs 

BSGs try to model the combination ofresource and timing conflicts between 
different RTs as accurately as possible. A drawback of the BSG construction 
per resource in Section 5.3.5 is, that two RTs can be part of the same BSG 
while they can not have any conflict with each other. So, such RTs can be 
scheduled in the same time potential although they use the same resource, 
recall Section 5.2.2. This leads to a very cumbersome estimation of the ME Is, 
which is inevitably accurate than the original approach of Chapter 2 as 
well. Therefore, in case the BSGs are constructed per resource, the BSG 
formulation is not as powerful as the original formulation of Chapter 2 and 4. 

Luckily it is possible to overcome these problems, namely by modelling the 
resource conflicts differently, i.e., not per separate resource. Consider the 
following definition of an overall conflict graph (OCG). 

DEFINITION 5.9. Overall conflict graph. 
The overall conflict graph OCG is an undirected graph represented by a tuple 
(V, A'), where: 

• Vis the set of vertices representing all the RTs that are pa11t of a DFG; 

• A' ~ V x Vis the set of arcs; there is an arc (vb Vj) E A' if atj.d only 
if there is a CG(k), k E M, with (Vi, Vj) E CG(k) or ifthere is ah arc between 
the RT classes of vi and Vj in the ICG. · 
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Every clique of RTs from the OCG represents RTs that have resource conflicts 
with each other, and for all possible cliques only one RT at the time can be 
packed into one instruction. Similar to the ICG in Subsection 5.2.3, it is 
possible to construct a clique cover such that all arcs in the OCG are induced, 
at least, once by a clique of RTs from the clique cover. 

BSGs can now be constructed for each clique from such a clique cover, thus 
modelling all possible resource and timing constraints correctly and more 
accurately than the approach of Subsection 5.3.5. Note that a clique from the 
OCG can incorporate resource conflicts from different resources; the BSGs 
are therefore not related to individual resources anymore. 

Consider a clique W of RTs from the OCG. Let FTP(v) be the first time 
potential in which register transfer v E W can possibly be scheduled, i.e., 
FTP(v) =min {c I c E OTI(v)}. Let the list ofregister transfers W be ordered 
by increasing FTP. If two RTs have the same FTP then the tie is broken in an 
arbitrary way. Let W(i), 1 :::; i :::; I WI , be the ith RT in that order. If a BSG 
is constructed for each clique of RTs from the clique cover mentioned above, 
then the following two properties hold. The two properties are analogous to 
the Properties 2.1 and 2.2. Note that Property 5.2 does not hold in case the 
BSGs are constructed per resource. 

PROPERTY 5.1. Start of MEI(i) cannot be smaller than the ith FTP. 
'r:/ : M1 (i) ~ FTP(W(i)). 

lo:;io:;IWI 

PROPERTY 5.2. At each time potential, at most one MEI can start. 
'r:/ : M 1(i) ~ M 1(i-1) + 1. 

2,sio:;IWI 

LEMMA5.1. 

Analogous to Lemma 2.1 and Algorithm 2.1, Algorithm 5.2 determines M1 (i), 
1 :5 i :5 I WI , while satisfying the properties in Definition 2.34. The proof 
follows directly from Property 5.1 and Property 5.2. 

ALGORITHM 5.2. Calculation of M 1 (i), i E [1, I WI]. 

M1(1) := FTP(W(1)); 
for (i := 2 to IWI) ~ 

M1(i) :=max {FTP(W(i)), M1(i-1) + 1}; 
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Values for the M2s can, again, be determined similarly. With this simple 
determination of MEis and corresponding BSGs, a much more powerful 
formulation of the scheduling problem is achieved than the formulation in the 
previous Section 5.3.5. This will be shown by the results in Section 5.4 as well. 
Aspects, like the determination of the arcs of the and the scheduling 
priority functions, remain as described at the end of the previous 
Section 5.3.5. 

5.4 Experiments and results 

In [Strik95], a DSP core together with an instruction set containing 13 RT 
classes has been given. The examples of Table 5.1 have been mapped onto this 
core, and it is tried to obtain the highest throughput possible within 
acceptable run times. The examples range from a simple delay line to a 
portable audio application, which is a real life industry example. The 
instruction scheduler based on BSGs has been implemented in C++ using the 
NEAT system. 

In Table 5.2, the lower bound throughput estimates, recall Section 3.3, of the 
two BSG formulations are given. In one case, Example 4b, the formulation 
based on BSGs per OCG clique is already more accurate. 

In Table 5.2, the dominant factors that lead to the lower bound throughputs 
are given as well. These factors are obtained by comparing the lower bound 
results with the sizes of the largest cliques and the largest critical paths in 
Table 5.1. If a lower bound throughput is totally determined by the number 
ofRTs in the largest critical path, then the precedence relations in the DFG 
are dominant. This is denoted in the table by a 'P'. 

If a lower bound throughput is equal to the size of the largest OCG clique, then 
the resource conflicts are totally dominant. This is denoted in the table by an 
'R'. In three cases, either the precedence relations or the resource conflicts 
determine almost completely, but not totally, the lower bound throughput: 
this is denoted by 'P + 1', 'P + 3' and 'R + 4'. The values added denote the extra 
cycles in comparison to a totally precedence or resource dominated through­
put. In two cases, the combination of precedence and resource conflicts leads 
to the lower bound throughput. This is denoted by a 'C' in the table. 

In Table 5.3, the two BSG approaches depicted in this chapter have been 
compared with an industrial high-level synthesis (HLS) list scheduler. The 
table shows that the HLS list scheduler only finds the guaranteed optimal 
throughput, if the precedence relations are dominant, i.e., if there is a 'P' or 
a 'P+l' in the last column of Table 5.2. 
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A comparison between the two BSG approaches shows that the outcome and 
the run times of the approach based on BSGs per OCG clique are better. That 
approach finds the guaranteed optimal throughput within acceptable run 
times for all but two cases. These two cases are the ones in which the combina­
tion of precedence and resource conflicts leads to the lower bound throughput, 
i.e., the cases in which there is a 'C' in the last column of Table S.2. 

TABLE 5.1. Characteristics of the various examples. 

size largest 
Example #RTs #OCG largest critical 

cliques clique path 

la: RAM delay line (unfolded) 12 4 4 4 

lb: RAM delay line (folded once) 12 4 4 4 

2a: FIR filter (unfolded) 37 11 7 17 

2b: FIR filter (folded once) 37 11 7 17 

3a: FIR & Bass Boost (unfolded) 114 12 16 27 

3b: FIR & Bass Boost (folded once) 114 12 16 27 

4a: Sym. FIR & Bass B. (unfolded) 288 22 29 24 

4b: Sym. FIR & Bass B. (folded once) 288 22 29 24 

Sa: Portable audio appl. (unfolded) 3S8 21 S8 14 

Sb: Portable audio appl. (folded once) 3S8 21 S8 14 

TABLE 5.2. Lower bound throughput results of the BSG approaches. 

BSGper BSGper dominant 
Example OCG clique factor * resource 

la: RAM delay line (unfolded) S cycles S cycles P+l 

lb: RAM delay line (folded once) 4 cycles 4 cycles R 

2a: FIR filter (unfolded) 17 cycles 17 cycles p 

2b: FIR filter (folded once) 9 cycles 9 cycles p 

3a: FIR & Bass Boost (unfolded) 30 cycles 30 cycles P+3 

3b: FIR & Bass Boost (folded once) 2S cycles 2S cycles c 
4a: Sym. FIR & Bass B. (unfolded) 36 cycles 36 cycles c 
4b: Sym. FIR & Bass B. (folded once) 28 cycles 29 cycles R 

Sa: Portable audio appl. (unfolded) 62 cycles 62 cycles R+4 

Sb: Portable audio appl. (folded once) S8 cycles S8 cycles R 
* P = precedence relations are dominant, R = resource conflicts are dominant, 

C =combination of precedence and resource conflicts leads to lower bound throughput. 
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TABLE 5.3. Instruction scheduling results. 

HLS list BSG per CPu** BSGper CPu** 
Example scheduler resource (sec) OCG cfique (sec) 

la 

lb 

2a 

2b 

3a 

3b 

4a 

4b 

5a 

5b 

'tf cycles. 5* cycles 0.3 5* cycles' ··.1.· .•• :.Q. 
5 cycles'; 4* cycles 4* cycles 

·. 
0.3 0.3 

17* cycles 17* cycles 1.8 l 7*~ycles 1.2 

9* cycles 9* cycles 1.9 9* cycles I'··: 1.2 ... ,, 
31 cycles 30* cycles 15.9 30* cycles 7.9 

... , 

26 cycles 26 cycles 17.2 ~~.cycles, . 8.0 

43 eyeles 43 cycles 259.6 38 cycles!····· •·.1 56.2 
., 

36 cycles 29* cycles 36 cycles 328.l 56.3 

67 cycles 62* cycles 381.4 '
162* cycle~, 138.3 

6l'~ycles 58* cycles 373.0 * ···'.· 58 cycles 139~l 

*the throughput equals the lower bound estimate, i.e., is guaranteed to be optimal. 

** measured on a HP 9000/735 workstation. 

The most interesting example is the largest Example 5a, consisting of 
58 multiplications, 58 additions, clip actions and delays. The throughput 
constraint of this real life application is 64 cycles. The results on Example 5a 
show, that a dedicated instruction-set scheduler exploiting the combination 
of resource and timing constraints is needed to meet this throughput 
constraint without folding. Furthermore, the result on Example 5b is also 
interesting. It shows that the BSG approaches succeed in generating a 
schedule in which the multiplier, ALU and RAM in the DSP core have a 100% 
utilization during all clock cycles. 

Although the number of examples is too small to make a well-founded 
comment on the results, they could be explained by considering the dominant 
factors of Table 5.2. The list scheduler is only capable of generating good 
results if the precedence relations are dominant. In fact every scheduler 
should be capable of handling these relations correctly, so schedulers of any 
type should be able to obtain results that are at least as good. 

The results of the scheduler based on BSGs per OCG clique can be explained 
in two ways. First of all, if the combination of precedence and resource 
conflicts leads to the lower bound throughput, then the approach could have 
trouble finding the optimal solution because the precedence relations are 
modelled in one graph, the DFG, while the resource conflicts are modelled in 
other graphs, the BSGs. 



Retargetable Code Generation 113 

A second explanation is as follows. On one hand, if the precedence relations 
are dominant, many OTis consist of one time potential. On the other hand, 
if the resource conflicts are dominant, many MEis consist of one time poten­
tial. However, if the combination of precedence and resource conflicts leads 
to the lower bound throughput, then neither many OTis nor many MEis will 
consist of one time potential. This will lead to relatively many arcs in the 

thus resulting in a possibly less effective modelling of the search space. 
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Chapter 

6 Conclusions and Discussion 

Conclusions 

In this thesis, we presented an architectural synthesis approach that empha­
sizes constraint satisfaction techniques and lower bound design analyses. 
Although all architectural synthesis systems try to optimize a design for a 
given set of constraints and goals, our solution strategy is different than most 
of the existing approaches. Instead of focusing on the optimization of objective 
functions, constraint satisfaction is emphasized in our approach. This 
difference in focus leads to a number of advantages. 

It was shown that a very accurate lower bound functional area vs. time (AT) 
curve can be calculated for a design. It was shown that, even for unrestricted 
module libraries, such a calculation can be performed efficiently as well. AT 
curves are of considerable importance in an (interactive) system design 
environment. They can be used to rapidly explore the design space and to 
evaluate the quality of an implementation. Furthermore, an accurate AT 
curve is a good starting poip.t for a concise trade-off between functional, 
memory and interconnect costs. So the ability to calculate accurate lower 
bound AT curves efficiently is very important in an architectural, and system 
level, design environment. 

A designer or a synthesis system must be able to enforce certain sets of 
constraints in order to have control over the design process. As an example, 
a design specification could start with a throughput constraint, and in a 
subsequent step a module set could be added as a resource constraint. In such 
cases constraint satisfaction techniques are important, because it is gen­
erally difficult to comply to a set of different constraints. An important part 
of constraint satisfaction is domain reduction, i.e., the pruning of the search 
space of a synthesis tool. In this thesis, a new, efficient, domain reduction 
algorithm algorithm is introduced, namely the execution interval analysis. 

Another aspect of constraint satisfaction is variable and value selection. A 
new scheduling technique is presented, which is based on analyzing the 
topology of bipartite schedule graphs (BSGs). Based on this graph analysis, 
an explicit variable selection is performed. This is, together with an efficient 
formulation of the scheduling problem, the reason why the BSG scheduling 
approach achieves an optimal solution in many cases and in short run times. 
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A touchstone of the solution strategy introduced in this thesis is when a 
design is fully constrained and 'only' a feasible schedule and mapping scheme 
has to be found. This is in fact the last step of the proposed synthesis flow, 
which is equivalent to the code generation problem. Benchmark results on 
real life examples show that it is possible to achieve optimal code generation 
results run time efficiently. These results thus show the· value of an 
architectural synthesis approach based on constraint satisfaction techniques 
and lower bound design analyses. 

Discussion 

Although we presented a promising first approach towards an architectural 
synthesis system based on design analyses and constraint satisfaction 
techniques, still a lot of research needs to be done to make such an approach 
mature. In the following, a number of topics that have not been addressed in 
the thesis are listed. 

This thesis has not dealt with memories, e.g., register files. For instance, the 
code generation approach of Chapter 5 does not consider register files with 
limited sizes. Furthermore, it does also not account for register binding. 
However, memories can have a huge impact on the total cost of a design, 
especially in high throughput applications as occur in the video domain. Some 
work has been done on lower bound analyses for memory area [Shar94], and 
at IMEC work has been done on constraint satisfaction techniques for limited 
register file sizes [Depu94]. The proposed methods could possibly fit in the 
synthesis approach of this thesis. 

Another topic related to constraint satisfaction is domain reduction which 
may result in a reduction of the solution space. The execution interval 
analysis presented in Chapter 2 reduces the search space, but does not reduce 
the solution space. However, consider the case in which only a feasible 
solution has to be found, while no objective function has to be optimized. Then 
it is perfectly legitimate to reduce the solution space, as long as it does not 
become empty. If such a step results in a faster, more efficient, traversal of the 
search space, a solution can possibly be found more efficiently as well. The 
following two paragraphs give examples of such domain reductions. 

A first 'feasibility preserving' domain reduction can possibly be achieved by 
exploiting symmetries in a DFG [Gruij92]. If one can detect that some partial 
ordering of operations does not influence the decision proMem described 
above, then an order can be enforced on these operations without influencing 
the corresponding decision problem. An example is the cas~ in which two 
operations must be mapped on the same module, have the same delay, and 
have the same predecessors and successors as well. I 
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Another 'feasibility preserving' domain reduction is the application of a 
property of the node packing problem; see Definition 4.4. It was shown in 
Section 4.3.3. that time and resource constrained scheduling can be formu­
lated as a node packing problem. A unique property of the node packing 
problem is the following: if not all variables are integral in a solution of the 
LP relaxation, then there is an optimum solution for which the variables that 
are integral in the LP relaxation remain integral [Nemh88]. This property 
can be used for a further reduction of the search space which may result in 
a reduction of the solution space. However, this is still the topic of future 
research. 
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IXI 

#X 

XuY 

XnY 

X\Y 

X~Y 

X:dY 

XE X 

0 

P(X) 

Q 

Q+ 

N 

lxJ 

rx] 

[x, y] 

xmody 

set of elements x1, x2, x3, ... 

cardinality ofX 

cardinality of X 

set union 

set intersection 

set difference 

Xis a proper subset ofY 

Y is a proper subset of X 

x is an element of X 

empty set 

power set of X 

set of non-negative rational numbers 

set of positive rational numbers 

set of non-negative natural numbers 

set of positive natural numbers 

floor ofx 

ceiling ofx 

2-tuple denoting the interval between x and y 

modulo y ofx 
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Objects page: 

DFG = (V, E) data flow graph 18 

v set of DFG vertices (operations) 18 

E set of DFG arcs 18 

DFG* = (V, E*) transitive closure of DFG 19 

E* set of DFG* arcs 19 

To set of operation types 18 

TM set of module types 19 

M set of modules 19 

c list of cycle steps 19 

D list of time potentials 99 

<I> set of feasible schedules 21 

<j> E <l> feasible schedule 21 

K,Km k M set of modules with type m 26 

BSG = (N, A) bipartite schedule graph 32 

N=WUR set of BSG vertices 32 

W,Wm kV set of operations implemented by type m 26 

R set of indices related to MEis 32 

A set of BSG arcs 32 

BSG = (N,A) conservative estimate of BSG 34 

A conservative estimate of A 34 

C1ow lower bound estimate of I C I 51 

Ccoei same as C10 w, all v E Vin COEI(v) 51 

Coei same as C10 w, all v E Vin OEl(v) 52 

I Cup I upper bound estimate of I C I 52 
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Notation 

operations to be mapped to type m in cycle c 

conflict graph 

instruction set conflict graph 

overall conflict graph 
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Functions on operations and their types (v E Vand ts~ To) 

-r(v) operation type of v 18 

pred(v) immediate predecessors of v 18 

pred*(v) predecessors of v 19 

preds'\v) predecessors of v, with v in same BSG 37 

succ(v) immediate successors ofv 18 

succ*(v) successors of v 19 

succs*(v) successors of v, with v in same BSG 37 

dmin(V) minimal delay of v 20 

<!>(v) = [$1(v), $2(v)] schedule interval of v 20 

<!>1(v) start time of v 20 

<!>2(v) completion time of v 20 

$o(v) time potential of v 102 

CASAP(v) classical 'as soon as possible' time of v 21 

ASAP(v) 'as soon as possible' time of v 22 

ASAP(v) conservative estimate of ASAP(v) 23 

MASAP(v) conservative estimate of ASAP(v) mod ID I 104 

CALAP(v) classical 'as late as possible' time of v 21 

ALAP(v) 'as late as possible' time ofv 22 
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ALAP(v) conservative estimate of ALAP(v) 

MALAP(v) conservative estimate of ALAP(v) mod ID I 

COEI(v) classical operation execution interval 

OEI(v) operation execution interval 

OEI(v) conservative estimate of OEI(v) 

OTI(v) operation time potential interval 

OTI(v) conservative estimate of OTI(v) 

µ(ts) set of module types implementing ts 

£(ts) set of disjoint distribution intervals 

<$ linear ordering induced by schedule <P 

nq,(i) 'ith operation' in schedule <P 

<1>1 (i) start time of ith operation in schedule <P 

<l>2(i) completion time of ith operation in schedule <P 

<l>n(D time potential of ith operation in schedule <P 

F(v) freedom, i.e., slack ofv 

AF(V) average freedom of the set V 

DF(ts,c) probability distribution function for cycle c 

x(v,c) binary variable expressing l<P1(v)J = c 

x(v,c,k) same as x(v,c), v executed by module k 

Functions on modules and their types (k E M and m E TM) 

~(k) 

d(m) 

dii(m) 

area(m) 

module type of k 

delay ofm 

data introduction interval of m 

area ofm 

23 

104 

21 

22 

23 

101 

101 

19 

56 

26 

26 

26 

26 

102 

46 

46 

78 

81 

84 

19 

20 

20 

55 
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n(m) number of (selected) modules of type m 55 

MEI(i) = [M1(i), M2(i)] ith module execution interval 26 

Mi(i) first clock cycle of MEl(i) 27 

M2(i) last clock cycle of MEI(i) 27 

MEl(i) conservative estimate of MEl(i) 27 

M1(i) conservative estimate of Mi(i) 27 

M2(i) conservative estimate of M2(i) 27 

cap(m,e) capacity of a module type in a had-interval 58 

m(m,ts,t) number of preliminary mappings 57 
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Stellingen 

behorende bij het proefschrift 

From Design Space Exploration to Code Generation 
van Adwin H. Timmer 



1. Een architectuur-synthese-systeem met een goede oplosstrategie kan 
ook herprogrammeerbaarheid aan [dit proefschrift]. 

2. Met een nauwkeuriger onderverdeling in klassen kan een niet-triviale 
klasse van module bibliotheken gedefinieerd worden, waarvoor het 
functionele oppervlakte-probleem van definitie 3.5 toch in 
polynomiale tijd oplosbaar is [dit proefschrift]. 

3. De kans dat een digitale signaal-processor goed te programmeren is 
met een hoog-niveau taal neemt sterk toe, indien zowel de 
architectuur als de compiler ervan gelijktijdig en in samenhang 
ontworpen zijn. 

4. De verklaring dat architectuur-synthese een uitgegroeid vakgebied is 
en dat men andere onderwerpen zoekt, heeft meer te makeh met het 
gebrek aan vooruitgang op dat gebied dan met het feit dat er geen 
belangrijke vooruitgang meer geboekt zou kunnen worden. 

5. Wetenschappelijke kringen waarin men een goede positie kan 
verwerven met een artikel waarvan de samenvatting eindigt met: 
"This research breaks new ground by( ... ) providing a polynomial run 
time algorithm for solving this NP-complete problem" zijn niet erg 
hoog te achten [C.H. Gebotys and M.I. Elmasry, "A Global 
Optimization Approach for Architectural Synthesis", Proc. of the 
ICCAD, 1990]. 

6. Omdat ontwikkelaars van architectuur-synthese-methoden vertrouwd 
zijn met software, hebben zij een betere uitgangspositie voor 
onderzoek naar hardware-software codesign dan ontwikkelaars van 
software-methoden. 

7. Het minutieus bijhouden van vakliteratuur is contra-produktief. 

8. Het schrijven van een proefschrift duurt minder lang dan de 



evaluatie-cyclus van menig tijdschriftartikel; dientengevolge kan men 
van een promovendus niet verwachten dat er referenties naar 
dergelijke artikelen van eigen hand in zijn proefschrift staan. 

9. Het bestaansrecht van een universiteit is omgekeerd evenredig met de 
frequentie waarmee zij haar missiedocument verandert en de mate 
waarin zij zich bezig houdt met businessplannen in plaats van 
onderzoek. 

10. Gezien de maatschappelijke status van de wetenschap is het dragen 
van een toga door hoogleraren een anachronisme. 

11. Vooral wiskundigen en informatici wijzen op syntactische 
onjuistheden in een proefschrift; net als compilers testen zij bij het 
parsen blijkbaar eerst of de grammatica wel context-vrij is. 

12. Dat in Eindhoven nooit iemand met lof promoveert en in Delft wel is 
een rechtsongelijkheid onder promovendi, welke te wijten is aan de 
vrees van de Technische Universiteit Eindhoven om de nek uit te 
steken. 

13. Gezien de vroegere connotatie van 'traveling salesman' in de 
Verenigde Staten, is het handelsreizigersprobleem in het huidige 
AIDS-tijdperk pas echt een lastig probleem geworden 
[H.L. Mencken, "The American Language: An Inquiry into the 
Development of English in the United States", 4th edn., pp. 360-I, 
New York: Alfred A. Knopf, 1937]. 

14. De aard van de boeren-protesten tegen het mestbeleid laat zien, hoe 
snel de betekenis van woorden als 'boerenslimheid' kunnen 
veranderen. 

15. Uitzonderingen daargelaten hebben niet-bergbeklimmers geen enkele 
nut. 


