134,127 research outputs found

    Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States

    Full text link
    Motivated by the problem of predicting sleep states, we develop a mixed effects model for binary time series with a stochastic component represented by a Gaussian process. The fixed component captures the effects of covariates on the binary-valued response. The Gaussian process captures the residual variations in the binary response that are not explained by covariates and past realizations. We develop a frequentist modeling framework that provides efficient inference and more accurate predictions. Results demonstrate the advantages of improved prediction rates over existing approaches such as logistic regression, generalized additive mixed model, models for ordinal data, gradient boosting, decision tree and random forest. Using our proposed model, we show that previous sleep state and heart rates are significant predictors for future sleep states. Simulation studies also show that our proposed method is promising and robust. To handle computational complexity, we utilize Laplace approximation, golden section search and successive parabolic interpolation. With this paper, we also submit an R-package (HIBITS) that implements the proposed procedure.Comment: Journal of Classification (2018

    Time-Scale Block Bootstrap tests for non Gaussian finite variance self-similar processes with stationary increments

    Get PDF
    Scaling analysis is nowadays becoming a standard tool in statistical signal processing. It mostly consists of estimating scaling attributes which in turns are involved in standard tasks such as detection, identification or classification. Recently, we proposed that confidence interval or hypothesis test design for scaling analysis could be based on non parametric bootstrap approaches. We showed that such procedures are efficient to decide whether data are better modeled with Gaussian fractional Brownian motion or with multifractal processes. In the present contribution, we investigate the relevance of such bootstrap procedures to discriminate between non Gaussian finite variance self similar processes with stationary increments (such as Rosenblatt process) and multifractal processes. To do so, we introduce a new joint time-scale block based bootstrap scheme and make use of the most recent scaling analysis tools, based on wavelet leaders

    Multiple Kernel Learning: A Unifying Probabilistic Viewpoint

    Get PDF
    We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classification that is lower bound of the marginal likelihood and contains many regularised risk approaches as special cases. Furthermore, we derive an efficient and provably convergent optimisation algorithm

    A New Monte Carlo Based Algorithm for the Gaussian Process Classification Problem

    Full text link
    Gaussian process is a very promising novel technology that has been applied to both the regression problem and the classification problem. While for the regression problem it yields simple exact solutions, this is not the case for the classification problem, because we encounter intractable integrals. In this paper we develop a new derivation that transforms the problem into that of evaluating the ratio of multivariate Gaussian orthant integrals. Moreover, we develop a new Monte Carlo procedure that evaluates these integrals. It is based on some aspects of bootstrap sampling and acceptancerejection. The proposed approach has beneficial properties compared to the existing Markov Chain Monte Carlo approach, such as simplicity, reliability, and speed
    • …
    corecore