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ABSTRACT

Scaling analysis is nowadays becoming a standard tool in statisti-

cal signal processing. It mostly consists of estimating scaling at-

tributes which in turns are involved in standard tasks such as detec-

tion, identification or classification. Recently, we proposed that con-

fidence interval or hypothesis test design for scaling analysis could

be based on non parametric bootstrap approaches. We showed that

such procedures are efficient to decide whether data are better mod-

eled with Gaussian fractional Brownian motion or with multifractal

processes. In the present contribution, we investigate the relevance

of such bootstrap procedures to discriminate between non Gaus-

sian finite variance self similar processes with stationary increments

(such as Rosenblatt process) and multifractal processes. To do so, we

introduce a new joint time-scale block based bootstrap scheme and

make use of the most recent scaling analysis tools, based on wavelet

leaders.

Index Terms— Scaling Analysis, Self similar process, Rosen-

blatt process, Wavelet Leader, Non Parametric Bootstrap, Confidence

Intervals, Hypothesis Tests.

1. INTRODUCTION

Scaling analysis. Scaling analysis is becoming a standard tool in

empirical time series analysis. Essentially, it can be summarized as

follows. LetX(t) denote the time series to be analyzed and TX(a, t)
some multiresolution quantities, that depend jointly on an analysis

scale a and time t. Wavelet coefficients are typical examples of such

TX(a, t). X is said to possess scaling properties when its structure

functions,

S(a, q) = 1/na

naX

k=1

|TX(a, t)|q, (1)

behave as power laws with respect to the analysis scale a, for given

ranges of analysis scales a ∈ [am, aM ] (aM/am ≫ 1) and statisti-

cal orders q:

S(a, q) ∼ Fq|a|
ζ(q). (2)

Scaling analysis consists of estimating the scaling exponents, ζ(q),

which, in turns, are involved in standard signal processing tasks such

as detection, identification or classification. Scaling exponents can

be related to the multifractal spectrum and properties ofX . This will

not be discussed here and the reader is referred to e.g., [1, 2].

Scaling modeling. A key practical issue consists of deciding which

scaling model better fits the data. There exist to major classes of

scaling processes: Self similar processes with stationary increments
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(H-sssi), whose most popular member is fractional Brownian mo-

tion (FBM), and multifractal (MF) processes. In most of the litera-

ture related to practical analysis of scaling (or multifractal) proper-

ties of empirical data, practitioners are trying to assess whether the

data they analyze are better described by one class of processes or by

the other. Such a systematic concern corresponds to both theoretical

and practical preoccupations:

First, while self similar processes with stationary increments are

deeply tied to additive random walks, the most prominent examples

of multifractal processes (such as the celebrated Mandelbrot’s cas-

cades) are based on recursive multiplicative constructions. Thus, one

can naturally imagine that the physical or biological mechanisms un-

derlying the data are likely to be significantly different for data that

can be associated to additive or to multiplicative structures.

Second, while the scaling properties of self similar processes are

entirely described by a single parameter H , referred to as the self-

similarity parameter, those of multifractal processes involve a whole

collection of such parameters. Since the goal of practitioners con-

sists of relating these scaling parameters to physical parameters con-

trolling the data or the experiment, there is a need to decide on the

actual number of independent scaling parameters to be involved.

Third, while practitioners often prefer multifractal models whose in-

creased number of parameters brings extra degrees of freedom and

hence better fits of the data, this additional flexibility is achieved

at the price of significantly increased practical difficulties. Indeed,

while self similar processes correspond to a well-defined fully para-

metric class of stochastic additive processes mostly depending on

a single scaling exponent, multifractal processes fall into a much

broader and less well-defined class of multiplicative processes in-

volving a larger number of scaling parameters, for which the deriva-

tion of estimation or hypothesis test procedures and the assessment

of their statistical performance is much more delicate.

These arguments (addition vs. multiplication, single vs. many pa-

rameters, significant extra technical and practical difficulties in es-

timation and modeling) underline the need for practical procedures

helping in deciding whether MF processes are needed to model data,

or whether they are satisfactorily well modeled by self-similar ones.

Self similar versus multifractal processes. In the remainder of the

text, we discuss only processes with finite variance. For H-sssi pro-

cesses, the scaling exponents take the specific form ζ(q) = qH . In

contrast, for most MF processes of interest, ζ(q) is a non linear (con-

cave) function of q. We will use this property as a definition for MF

processes. Note that such a definition is not strictly correct (cf. [1,2]

for a mathematically correct definition). It is nevertheless sufficient

for the context of this contribution and will be seen as a practical

or operational definition for MF processes. Therefore, discriminat-

ing between these two classes of models mostly amounts to deciding

on the linearity of ζ(q) with respect to q. To this end, the scaling



exponents can be fruitfully expanded as ζ(q) =
P
p≥1 cpq

p/p!. In-

deed, for H-sssi processes, c1 = H and cp ≡ 0, ∀p ≥ 2, while

for MF processes c2 6= 0. This explains why a key issue in scaling

analysis consists of accurately estimating the parameters c2 and c3
and/or of performing hypothesis tests such as cp = 0 vs. cp 6= 0 (for

p = 2, 3). Because scaling processes are characterized by intricate

properties (long range dependency, non Gaussianity), it is difficult,

and so far unachieved, to derive analytically, even asymptotically, the

statistical performance of the estimation and test procedures used in

scaling analysis. Hence, the lack of confidence intervals for esti-

mates or performance for tests constitutes a major practical limita-

tion in empirical scaling analysis.

Time-scale block Bootstrap. To overcome such difficulties, we

studied, in a previous work (cf. [3]), how non parametric bootstrap

based approaches can provide the practitioners with both accurate

confidence intervals for the estimation of scaling attributes, ζ(q) and

cp, and meaningful hypothesis tests. To do so, we made use of both

wavelet coefficients and wavelet Leaders for scaling analysis [1] and

applied (time-block) bootstrap schemes in these wavelet domains.

This enabled us to derive efficient procedures for discriminating be-

tween (Gaussian) FBM and non Gaussian MF processes [3,4]. In the

present contribution, we further investigate the performance of boot-

strap based approaches when applied to non Gaussian finite variance

self similar processes with stationary increments, and compare them

to those obtained from Gaussian FBM. The Rosenblatt process [5]

(ROS) will be used as a very example for such processes.

Wavelet coefficients are usually characterized by a joint time and

scale dependence structure, which theoretically needs to be taken

into account in bootstrap procedures. Our previous scheme consisted

of time-block bootstrap for each given scale a = 2j independently,

hence accounting for the time dependence structure of the wavelet

coefficients but neglecting the scale one. For Gaussian FBM, it has

been shown (see e.g., [6]) that correlation and hence dependence

between and amongst scales decreases fast. For non Gaussian H-

sssi, while inter-scale correlations decrease as that of Gaussian FBM,

inter-scale dependence are likely to remain larger. This may decrease

the performance of time-only block bootstrap procedures.

To correct for this weakness, we introduce, in the present contribu-

tion, a wavelet domain joint time-scale block bootstrap procedure.

We study the performance of such bootstrap schemes and show that

they provide practitioners with satisfactory confidence intervals for

scaling attributes and powerful hypothesis tests aiming at discrimi-

nating between potentially non Gaussian H-sssi and MF processes.

2. FINITE VARIANCE SELF SIMILAR PROCESSES

Self similar processes with stationary increments, and self-similarity

parameter H , 0 < H < 1, referred to as H-sssi processes, satisfy:

{X(t)}t∈R

fdd
= {aHX(t/a)}t∈R, ∀a > 0, (3)

{X(t+ a) −X(t)}t∈R

fdd
= {X(a)}a∈R, (4)

where
fdd
= stands for the equality of all finite dimensional distribu-

tions [7]. FBM is the only Gaussian H-sssi process [7]. There also

exist finite variance non Gaussian H−sssi processes, the most well

known being the Rosenblatt process (ROS) [5]. The Rosenblatt pro-

cess, with H ∈ (1/2, 1), is defined as

ZH(t) = kH

Z ′

R2

Z t

0

(s− u)
H
2
−1

+ (s− v)
H
2
−1

+ ds

ff
dB(u)dB(v),

(5)
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Fig. 1: Quantile-quantile plots of normalized empirical distributions

of increments (left) and wavelet coefficients (right) versus standard

normal (quantiles given by abscissa) for FBM (top) and Rosenblatt

(bottom). Whereas the distributions for FBM are Gaussian, the dis-

tributions for ROS are highly non Gaussian and skewed.

where kH is a normalizing constant (e.g. such that EZH(1)2 = 1),R ′

R2 denotes the double Wiener-Itô integral, x+ = max{x, 0} for

x ∈ R and B(t), t ∈ R, is a standard Brownian motion. For

further technical details on the definition, properties and numeri-

cal simulation procedures, the reader can consult e.g., [8] and ref-

erences therein. Its two major properties of interest are as follows:

ROS has exactly the same covariance function as FBM but more

complex higher order dependence. Also, ROS has a non Gaussian

highly skewed marginal distribution (as illustrated from numerical

simulations in Fig. 1). Such characteristics (complex dependence

and non Gaussianity) are likely to significantly impair scaling anal-

ysis and the capabilities of bootstrap to provide relevant confidence

limits and/or hypothesis tests. This is precisely the question under

analysis in the present contribution.

3. SCALING ANALYSIS

Multiresolution quantities. Scaling analysis is nowadays commonly

performed using wavelet coefficients as multiresolution quantities.

However, it has been shown and explained in [1] that wavelet Lead-

ers can interestingly replace wavelet coefficients, yielding a more

relevant, accurate and general multifractal analysis. We will apply

bootstrap procedures to both wavelet coefficient and Leaders and

compare their performance.

The discrete wavelet transform of X is defined as: dX(j, k) =Z

R

X(t) 2−jψ0(2
−jt − k) dt, where ψ0(t) is an elementary func-

tion, referred to as the mother-wavelet and characterized by its num-

ber of vanishing moments Nψ ≥ 1: ∀k = 0, 1, . . . , Nψ − 1,R
R
tkψ0(t)dt ≡ 0 and

R
R
tNψψ0(t)dt 6= 0.

It is moreover assumed that ψ0 has a compact time support and that

the collection {ψj,k(t) = 2−j/2ψ0(2
−jt− k), j ∈ Z, k ∈ Z} form

an orthonormal basis of L2(R). Let us define dyadic intervals as

λ = λj,k =
ˆ
k2j , (k + 1)2j

´
, and let 3λ denote the union of the

interval λ with its 2 adjacent dyadic intervals: 3λj,k = λj,k−1 ∪
λj,k ∪ λj,k+1. Then, following [1], wavelet Leaders are defined as:

LX(j, k) ≡ Lλ = supλ′⊂3λ |dX,λ′ |.

Scaling properties. Both for H-sssi and MF processes, it has been
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Fig. 2: Illustration of time-scale block bootstrap for n = 26 and l =
23. On top, the set of original coefficients (red dots) in the time-scale

plane. The coefficients marked by blue circles belong to the time-

scale block Bk(1). The bootstrap resampleL
∗(r)
X (bottom) consists of

the coefficients that lie within the B = ⌈ n
2l
⌉ = 4 time-scale blocks

Bk(b), b = 1, · · · , B, drawn independently and with replacement

from all available overlapping circular time-scale blocks.

shown that the scaling properties of X can be expressed as:

S(2j , q) = Fq2
jζ(q), (6)

C(2j , p) = c0p + cp ln 2j , (7)

where S(2j , q) andC(2j , p) denote, respectively, the structure func-

tions as defined in Eq. (1), and the cumulant of order p of the

logarithm of the multiresolution quantities (i.e., of lnLX(j, k) or

ln |dX(j, k)|).

Estimation. Eqs. (6) and (7) suggest that the estimation of the

ζ(q) and cp can be performed by means of linear regressions:

ζ̂(q) =

j2X

j=j1

wj log2 S(2j , q), (8)

ĉp = (log2 e) ·

j2X

j=j1

wjĈ(2j , p), (9)

where S(2j , q) can be read as the standard sample moment estimator

and Ĉ(2j , p) refers to the standard cumulant estimator of order p for

lnLX(j, k) (or ln |dX(j, k)|). The weights wj have to satisfy the

usual constraints
Pj2
j1
jwj ≡ 1 and

Pj2
j1
wj ≡ 0 and reflect the

confidence granted to each log2 S(j, q) or Ĉ(j, p).

Estimates based on Leaders or wavelet coefficients are denoted as

ζ̂L(q), ĉLp and ζ̂d(q), ĉdp, respectively.

4. TIME-SCALE BLOCK BOOTSTRAP

In order to design confidence limits and tests for ζ̂(q) and ĉp, we

extend here the line of work in [3], proposing a time block bootstrap

procedure in the wavelet domain, by applying a time-scale block

bootstrap procedure to either the dX or to the LX . This specific

choice of block construction is expected to ensure that both the time

and the scale dependencies of the coefficients are reproduced by the

bootstrap resamples (cf. [9, 10] for details on resampling methods).

Time-scale block resampling. Let k denote the time index of the

sampled signal X[k] = X(kTs) with sampling period Ts and j′, k′

the indices of the dX and LX of X . Then, the time-scale blocks

are constructed as stripes of time length 2l in the time-scale plane,

overlapping in time :

Bk = {(j′, k′)|k ≤ k′2j
′

≤ k + 2l, 1 ≤ j′ ≤ jmax}, 1 ≤ k ≤ n.

Each of the bootstrap resamples L
∗(r)
X , r = 1, · · · , R is obtained

by first drawing, randomly, and with replacement B = ⌈ n
2l
⌉ such

time-scale blocks Bk(b), b = 1, · · · , B, from the available blocks

and then concatenating in time the time-circularized coefficients,

k′2j
′

> n : LX(j′, k′) = LX(j′, k′ − n/2j
′

), which belong to

each of the drawn blocks:

L
∗(r)
X =

˘
(LX(j′, k′)|(j′, k′) ∈ Bk(b)), b = 1, · · · , B

¯
.

The procedure is illustrated in Fig. 2. The bootstrap resamples

ζ̂(q)∗(r) and ĉ
∗(r)
p are finally obtained by plugging the L

∗(r)
X into

Eqs. (6) and (7) and hence into Eqs. (8) and (9).

Bootstrap variance estimation and confidence limits. The boot-

strap estimation of the variance of Θ̂ ∈ {ζ̂(q), ĉp} is obtained as

the sample variance over the R bootstrap resamples Θ̂∗, σ̂∗2
Θ̂

=

dVar
∗
Θ̂∗. The classical equi-tailed (1−α) percentile confidence limit

for the parameter Θ ∈ {ζ(q), cp} is given by bCIΘ =
h
Θ̂∗
α
2

, Θ̂∗
(1−α

2
)

i
,

where Θ̂∗
α is the α quantile of the empirical distribution of Θ̂∗.

Bootstrap hypothesis tests. We want to test H0 : cp = cp,0
against the double sided alternative cp 6= cp,0, using the test statistic

t̂ = ĉp − cp,0. The bootstrap estimation of the null distribution of t̂

is obtained as the empirical distribution of
n
t̂∗(r) = ĉ

∗(r)
p − ĉp

oR
r=1

with α quantiles t̂∗α. The significance (1 − α) percentile bootstrap

test dα rejects H0 if t̂ is outside of the acceptance region bT(1−α) =

[−t̂∗(1−α
2

), t̂
∗
α
2

], i.e., dα = 1 if t̂ /∈ bT(1−α), and dα = 0 otherwise.

5. RESULTS

Experimental set-up. In order to evaluate the performance of the

proposed estimation and test procedures, we apply them to a large

numberNMC of realizations of length n of FBM and ROS. The sim-

ulation parameters are set to NMC = 500, n = 215 and H = 0.7
for the processes, Nψ = 3 and [j1, j2]= [3, 8] for estimation, and

R = 199 and l = 210 for the bootstrap.

Performance evaluation. The estimation performance are quanti-

fied through the bias γΘ̂ = ÊNMC Θ̂ − Θ, standard deviation σΘ̂ =q
dVarNMC Θ̂ and (root) mean squared error MSEΘ̂ =

p
σΘ̂

2 + γΘ̂
2,

bENMC and dVarNMC stand for sample mean and sample variance es-

timates from NMC independent realizations.

The standard deviation σΘ̂ is compared to its bootstrap counterpart

σΘ̂∗ =

q
bENMC σ̂∗2

Θ . The reliability of the bootstrap based con-

fidence intervals is evaluated through their bias-corrected empirical

coverage: CΘ,bc = bENMC I

n
Θ + γΘ̂ ∈ bCIΘ

o
, where I {·} is the in-

dicator function of the event {·}. The rejection rates of the testsH0 :



FBM dX LX
Θ bias std mse bias std mse

ζ(−2) −1.400 −0.995 1.171 1.537 0.033 0.018 0.038
ζ(−1) −0.700 −0.107 0.323 0.340 0.014 0.009 0.017

ζ(−0.5) −0.350 −0.001 0.029 0.029 0.006 0.004 0.008
ζ(0.5) 0.350 −0.001 0.007 0.007 −0.005 0.005 0.007
ζ(1) 0.700 −0.002 0.012 0.012 −0.009 0.009 0.013
ζ(2) 1.400 −0.004 0.023 0.023 −0.014 0.020 0.024
c1 0.700 −0.002 0.017 0.017 −0.011 0.009 0.014
c2 0.000 −0.001 0.042 0.042 0.005 0.003 0.006
c3 0.000 0.008 0.217 0.217 −0.001 0.001 0.002

ROS dX LX
Θ bias std mse bias std mse

ζ(−2) −1.400 −1.002 1.101 1.489 0.026 0.035 0.043
ζ(−1) −0.700 −0.114 0.266 0.289 0.013 0.018 0.022

ζ(−0.5) −0.350 −0.004 0.023 0.023 0.006 0.009 0.011
ζ(0.5) 0.350 0.001 0.011 0.011 −0.006 0.010 0.012
ζ(1) 0.700 0.001 0.023 0.023 −0.011 0.022 0.024
ζ(2) 1.400 −0.004 0.052 0.052 −0.021 0.050 0.054
c1 0.700 0.004 0.024 0.024 −0.012 0.019 0.023
c2 0.000 −0.006 0.043 0.044 0.002 0.009 0.009
c3 0.000 0.006 0.211 0.211 0.001 0.006 0.006

Table 1: Statistical performance for wavelet coefficient (left) and

Leader (right) based estimation procedures, for FBM (top) and ROS

(bottom). Multifractal parameters are correctly estimated for both

processes. The Leader based estimates for c2 and c3 have signifi-

cantly lower MSEs than the coefficient based ones.

cp = cp,0 are estimated as β̂(α, cp,0, cp) = bENMC
n
d̂α|cp,0, cp

o
.

Performance of estimation. Table 1 shows that for q < 0, wavelet

coefficient based estimations of ζ(q) exhibit large biases and MSEs

and hence are not meaningful, whereas their Leader based counter-

parts perform satisfactorily well for both FBM and ROS. For q > 0,

both the coefficient and the Leader based estimations are satisfactory

for both FBM and ROS. Note that in this situation, the Leader based

estimations are more biased but have smaller standard deviations, re-

sulting in MSEs similar to those of coefficients based ones.

Moreover, we note that for the estimation of the log-cumulants cp,

Leader based estimations have smaller standard deviations and MSEs

- and significantly so for cp, p = 2, 3, the key attributes in discrim-

inating mono- vs. multi-fractal models. The gains in MSEs are of

approximately 1 and 2 orders of magnitude for c2 and c3, respec-

tively. Together with the estimation performance for ζ(q), when

q < 0, these gains in MSE indicate clearly that Leaders are to be

preferred over wavelet coefficients for investigating the precise mul-

tifractal properties of the data under analysis.

We further observe that the non Gaussian nature of ROS results in

larger standard deviations and MSEs - up to a factor 2 as compared

to Gaussian FBM - for both coefficient and Leader based estima-

tions. Nevertheless, the estimation performance remains satisfactory

for the non Gaussian process. In particular, we note that the Leader

based estimations of cp remain excellent. The non Gaussianity of

the wavelet coefficients of ROS is illustrated in Fig. 1.

Performance of bootstrap confidence intervals. Fig. 3 illustrates

the relevance of the bootstrap distribution estimations for ĉ2 by com-

paring the Monte Carlo empirical probability density functions of

(ĉ2− bENMC ĉ2)/σĉ2 to the empirical distributions (ĉ∗2 − bE∗ĉ∗2)/σĉ∗
2

FBM time-scale block time block

dX LX LX
Θ σΘ̂ σΘ̂∗ CΘ,bc σΘ̂ σΘ̂∗ CΘ,bc σΘ̂∗ CΘ,bc

ζ(−2) 1.171 0.718 82.0 0.018 0.017 91.6 0.014 87.0
ζ(−1) 0.323 0.200 88.6 0.009 0.008 91.4 0.007 87.1

ζ(−0.5) 0.029 0.023 91.0 0.004 0.004 91.6 0.003 86.7
ζ(0.5) 0.007 0.006 94.2 0.005 0.004 93.2 0.004 87.2
ζ(1) 0.012 0.012 93.4 0.009 0.009 94.0 0.007 87.4
ζ(2) 0.023 0.023 94.4 0.020 0.019 94.6 0.016 89.0
c1 0.017 0.016 94.2 0.009 0.009 92.2 0.007 87.7
c2 0.042 0.040 91.8 0.003 0.003 93.6 0.003 92.8
c3 0.217 0.200 90.8 0.001 0.001 94.0 0.001 94.7

ROS time-scale block time block

dX LX LX
Θ σΘ̂ σΘ̂∗ CΘ,bc σΘ̂ σΘ̂∗ CΘ,bc σΘ̂∗ CΘ,bc

ζ(−2) 1.101 0.703 81.8 0.035 0.026 88.0 0.020 78.5
ζ(−1) 0.266 0.181 89.4 0.018 0.013 86.8 0.010 76.9

ζ(−0.5) 0.023 0.020 90.8 0.009 0.007 87.0 0.005 76.4
ζ(0.5) 0.011 0.008 84.0 0.010 0.007 85.4 0.006 75.5
ζ(1) 0.023 0.017 84.4 0.022 0.015 85.2 0.012 74.3
ζ(2) 0.052 0.037 84.0 0.050 0.036 83.8 0.030 75.7
c1 0.024 0.019 88.8 0.019 0.014 85.8 0.011 76.0
c2 0.043 0.041 93.2 0.009 0.008 88.8 0.006 85.0
c3 0.211 0.196 91.0 0.006 0.006 87.6 0.005 85.0

Table 2: Performance of time-scale block bootstrap for wavelet co-

efficient (left) and Leader (middle) based estimation, for FBM (top)

and ROS (bottom). Time-scale block bootstrap estimations are ex-

cellent for FBM, and remain satisfactory for ROS. The ordinary time

block bootstrap estimations for LX (right) are worse than time-scale

block bootstrap estimations. The targeted coverage is CΘ,bc = 95%.

estimated by bootstrap (shown are the Monte Carlo median and up-

per and lower 5% quantiles of these bootstrap distributions). We

observe that for both coefficients and Leaders and for both FBM and

ROS, the bootstrap distributions closely reproduce the Monte Carlo

distributions of the estimates.

Table 2 (columns 2 to 7) shows that for FBM, bootstrap standard

deviation estimations for all ĉp and ζ(q), q > 0 and q < 0 are excel-

lent (under-estimation by less than 5%). However, it also indicates

that bootstrap standard deviation estimations are more difficult for

the non Gaussian ROS process, with under-estimations of up to 25%

for ĉ1 and ζ(q). Nevertheless, the bootstrap standard deviation esti-

mations for ĉ2 and ĉ3, the key attributes in discriminating mono- vs.

multi-fractal models, are still excellent for ROS. Similar observa-

tions are obtained for (bias corrected) confidence interval coverages:

They are excellent for all estimates for FBM and for ĉ2, ĉ3 for ROS,

and remain satisfactory for ĉ1, ζ(q) for ROS.

Time block vs. Time-scale block bootstrap. For wavelet coeffi-

cients, the time block and the time-scale block procedures perform

equivalently well for both processes (results not reported here for

space reasons). For wavelet Leaders, Table 2 (columns 8 and 9)

show the standard deviation and confidence interval estimation per-

formance of an ordinary time block bootstrap (cf. [3, 4]). It is ob-

served that the performance of the time block bootstrap are inferior

to those of the time-scale block bootstrap proposed in the present

work. Whereas the difference in performance remains small for

FBM, it becomes more significant for ROS. Such observations lead

us to the conclusion that the non-linear construction of wavelet Lead-
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Fig. 3: Centered and normalized empirical probability density func-

tions of ĉ2, obtained from Monte Carlo simulation (blue dashed

line and circles) and bootstrap (red solid line with crosses and er-

ror bars for median and 5% quantiles, respectively, obtained from

Monte Carlo simulation) for FBM (top) and Rosenblatt (bottom)

with wavelet coefficients (left) and Leaders (right).
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Fig. 4: Rejection rate β̂ of bootstrap tests for FBM (top) and Rosen-

blatt (bottom) for coefficients (blue dashed) and Leaders (red solid).

The true values cp are (c1, c2, c3) = (0.7, 0, 0), the null values cp,0
are given by the abscissa. It is significantly more difficult to reject a

MF hypothesis when data actually are non Gaussian ROS than when

they are Gaussian FBM. The target significance of the tests is set to

α = 5%.

ers causes an increase of inter-scale dependencies as compared to

wavelet coefficients. This justifies the recourse to time-scale block

bootstrap procedures when basing scaling (or multifractal) analysis

on wavelet Leaders.

Performance of bootstrap tests. Because of the duality of confi-

dence interval and test acceptance region constructions, the signif-

icance of the proposed bootstrap tests (in %) for a targeted signifi-

cance of 5% can be read from Table 2 as 100 − CΘ,(bc). Thus, the

conclusion - performance are excellent for FBM and remain satis-

factory for ROS - applies as well to test significance.

Rejection rates (powers) β̂ of tests H0 : cp = cp,0 are shown in Fig.

4 for FBM (top row) and ROS (bottom row) for both Leaders (solid

red lines) and coefficients (dashed blue lines). The powers β̂ of the

tests equal the probabilities of rejecting cp,0 (given by the abscissa)

when the alternatives cp (i.e. {c1, c2, c3} = {0.7, 0, 0}) are true.

Thus, for p = 2, 3, β̂ quantifies the capability of the test to reject a

multifractal hypothesis when the data are self-similar FBM or ROS.

We observe that Leader based tests display larger power than coef-

ficient based ones, and significantly so for the parameters c2 and c3
which discriminate mono- from multi-fractality. However, switching

from Gaussian FBM to non Gaussian ROS results in a non negligible

decrease in test powers. Therefore, it is significantly more difficult

to reject a multifractal hypothesis when the data are non Gaussian

H-sssi processes than when they are Gaussian H-sssi.

6. CONCLUSIONS

In the present contribution, the following results were obtained. First,

multifractal parameter estimations work satisfactorily both for Gaus-

sian and non Gaussian H-sssi processes. Wavelet Leader based esti-

mation generally show better performance than those based on coef-

ficients, the difference being significant for the estimation of the pa-

rameters enabling discrimination between mono- and multi-fractal

models, namely the cps and the ζ(q), when q < 0. Along the same

line, the Leader based tests are consistently and significantly more

powerful. Second, the proposed time-scale block bootstrap proce-

dure provides reliable confidence intervals and test decisions for both

Gaussian and non Gaussian H-sssi processes. It is demonstrated to

be preferable to time block bootstrap procedures when the multi-

resolution quantities display non negligible inter-scale dependencies,

as is the case for Leaders. Third, it is observed that, irrespectively of

the efficiency of bootstrap, the non Gaussian nature of ROS causes a

significant increase in confidence interval sizes and decrease in test

powers, and hence increased difficulties in discriminating between

multifractality and non Gaussian self-similarity.
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