58,272 research outputs found

    Efficient and Perfect domination on circular-arc graphs

    Get PDF
    Given a graph G=(V,E)G = (V,E), a \emph{perfect dominating set} is a subset of vertices VV(G)V' \subseteq V(G) such that each vertex vV(G)Vv \in V(G)\setminus V' is dominated by exactly one vertex vVv' \in V'. An \emph{efficient dominating set} is a perfect dominating set VV' where VV' is also an independent set. These problems are usually posed in terms of edges instead of vertices. Both problems, either for the vertex or edge variant, remains NP-Hard, even when restricted to certain graphs families. We study both variants of the problems for the circular-arc graphs, and show efficient algorithms for all of them

    Algorithms for Stable Matching and Clustering in a Grid

    Full text link
    We study a discrete version of a geometric stable marriage problem originally proposed in a continuous setting by Hoffman, Holroyd, and Peres, in which points in the plane are stably matched to cluster centers, as prioritized by their distances, so that each cluster center is apportioned a set of points of equal area. We show that, for a discretization of the problem to an n×nn\times n grid of pixels with kk centers, the problem can be solved in time O(n2log5n)O(n^2 \log^5 n), and we experiment with two slower but more practical algorithms and a hybrid method that switches from one of these algorithms to the other to gain greater efficiency than either algorithm alone. We also show how to combine geometric stable matchings with a kk-means clustering algorithm, so as to provide a geometric political-districting algorithm that views distance in economic terms, and we experiment with weighted versions of stable kk-means in order to improve the connectivity of the resulting clusters.Comment: 23 pages, 12 figures. To appear (without the appendices) at the 18th International Workshop on Combinatorial Image Analysis, June 19-21, 2017, Plovdiv, Bulgari

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Exact algorithms for L1L^1-TV regularization of real-valued or circle-valued signals

    Full text link
    We consider L1L^1-TV regularization of univariate signals with values on the real line or on the unit circle. While the real data space leads to a convex optimization problem, the problem is non-convex for circle-valued data. In this paper, we derive exact algorithms for both data spaces. A key ingredient is the reduction of the infinite search spaces to a finite set of configurations, which can be scanned by the Viterbi algorithm. To reduce the computational complexity of the involved tabulations, we extend the technique of distance transforms to non-uniform grids and to the circular data space. In total, the proposed algorithms have complexity O(KN)\mathscr{O}(KN) where NN is the length of the signal and KK is the number of different values in the data set. In particular, the complexity is O(N)\mathscr{O}(N) for quantized data. It is the first exact algorithm for TV regularization with circle-valued data, and it is competitive with the state-of-the-art methods for scalar data, assuming that the latter are quantized

    Exploration versus Exploitation Using Kriging Surrogate Modelling in Electromagnetic Design

    No full text
    This paper discusses the use of kriging surrogate modelling in multiobjective design optimisation in electromagnetics. The importance of achieving appropriate balance between exploration and exploitation is emphasised when searching for the global optimum. It is argued that this approach will yield a procedure to solve time consuming electromagnetic design problems efficiently and will also assist the decision making process to achieve a robust design of practical devices considering tolerances and uncertainties

    Optimal Point Placement for Mesh Smoothing

    Full text link
    We study the problem of moving a vertex in an unstructured mesh of triangular, quadrilateral, or tetrahedral elements to optimize the shapes of adjacent elements. We show that many such problems can be solved in linear time using generalized linear programming. We also give efficient algorithms for some mesh smoothing problems that do not fit into the generalized linear programming paradigm.Comment: 12 pages, 3 figures. A preliminary version of this paper was presented at the 8th ACM/SIAM Symp. on Discrete Algorithms (SODA '97). This is the final version, and will appear in a special issue of J. Algorithms for papers from SODA '9
    corecore