30 research outputs found

    Оптимизационный подход к канальной трассировке с учетом помехоустойчивости

    No full text
    Получено решение научно-технической задачи повышения эффективности систем автоматизации проектирования топологии микроэлектронных устройств с учетом помехоустойчивости. Предложены алгоритмы проектирования с учетом помехоустойчивости топологии в канале.Отримано рішення науково-технічної задачі підвищення ефективності систем автоматизації проектування топології мікроелектронних пристроїв з урахуванням завадостійкості. Запропоновано алгоритми проектування з урахуванням завадостійкості топології в каналі.Optimization noise stability based approach to channel routin

    ОПТИМИЗАЦИОННЫЙ ПОДХОД К КАНАЛЬНОЙ ТРАССИРОВКЕ С УЧЕТОМ ПОМЕХОУСТОЙЧИВОСТИ

    Get PDF
    A solution to an efficiency improvement problem for microelectronic device topology design automation systems is obtained with allowance for noise stability. Noise-stable channel topology designing algorithms are introduced.Получено решение научно-технической задачи повышения эффективности систем автоматизации проектирования топологии микроэлектронных устройств с учетом помехоустойчивости. Предложены алгоритмы проектирования с учетом помехоустойчивости топологии в канале.Отримано рішення науково-технічної задачі підвищення ефективності систем автоматизації проектування топології мікроелектронних пристроїв з урахуванням завадостійкості. Запропоновано алгоритми проектування з урахуванням завадостійкості топології в каналі

    Crossing-aware channel routing for photonic waveguides

    Get PDF
    pre-printAbstract-Silicon photonics technology is progressing at a rapid pace. Despite greatly expanded manufacturing capability, physical design of integrated optical circuits currently lacks the level of automation found in VLSI design. A key component of integrated optic design is waveguide routing; however, unlike VLSI, where signal nets are routed with metal layers and vias, photonic waveguides are fabricated in planar substrates. For many applications, our studies show that the waveguide routing problem can be formulated as planar channel routing. Signal losses become a major factor due to the insertion losses of planar waveguide crossings. Channel routing must therefore take into account these losses. This paper investigates methods for adapting traditional VLSI channel routing techniques for integrated optics - specifically, a technique based on left-edge-style track assignment. We show how incorporating waveguide crossing constraints into the underlying constraint model affects the routing solution, and describe the necessary modifications and extensions to the routing technique to properly exploit optical technology. We implement the channel router, describe the experimental results, and compare the cost of solutions with respect to waveguide crossings, corresponding to signal loss, and channel height

    Channel routing for integrated optics

    Get PDF
    pre-printIncreasing scope and applications of integrated optics necessitates the development of automated techniques for physical design of optical systems. This paper presents an automated, planar channel routing technique for integrated optical waveguides. Integrated optics is a planar technology and lacks the inherent signal restoration capabilities of static-CMOS. Therefore, signal loss minimization-as a function of waveguide crossings and bends-is the primary objective of this technique. This is in contrast to track and wire-length minimization of traditional VLSI routing. Our optical channel router guarantees minimal waveguide crossings by drawing upon sorting-based techniques for waveguide routing. To further improve our solutions in terms of signal loss, we extend the router to reduce the number of bends produced during routing. Finally, we implement the optical channel routing technique and describe the experimental results, comparing the costs of routing solutions with respect to waveguide crossings, bends, and channel height

    MulCh: a Multi-layer Channel Router using One, Two, and Three Layer Partitions

    Get PDF
    Chameleon, a channel router for three layers of interconnect, has been implemented to accept specification of an arbitrary number of layers. Chameleon is based on a strategy of decomposing the multilayer problem into two- and three-layer problems in which one of the layers is reserved primarily for vertical wire runs and the other layer(s) for horizontal runs. In some situations, however, it is advantageous to consider also layers that allow the routing of entire nets, using both horizontal and vertical wires. MulCh is a multilayer channel router that extends the algorithms of Chameleon in this direction. MulCh can route channels with any number of layers and automatically chooses a good assignment of wiring strategies to the different layers. In test cases, MulCh shows significant improvement over Chameleon in terms of channel width, net length, and number of vias

    QCA channel routing with wire crossing minimization

    Full text link

    A Heuristic for Manhattan Routing

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratorySemiconductor Research Corporation / RSCH 83-01-03
    corecore