3 research outputs found

    Real-time Accurate Runway Detection based on Airborne Multi-sensors Fusion

    Get PDF
    Existing methods of runway detection are more focused on image processing for remote sensing images based on computer vision techniques. However, these algorithms are too complicated and time-consuming to meet the demand for real-time airborne application. This paper proposes a novel runway detection method based on airborne multi-sensors data fusion which works in a coarse-to-fine hierarchical architecture. At the coarse layer, a vision projection model from world coordinate system to image coordinate system is built by fusing airborne navigation data and forward-looking sensing images, then a runway region of interest (ROI) is extracted from a whole image by the model. Furthermore, EDLines which is a real-time line segments detector is applied to extract straight line segments from ROI at the fine layer, and fragmented line segments generated by EDLines are linked into two long runway lines. Finally, some unique runway features (e.g. vanishing point and runway direction) are used to recognise airport runway. The proposed method is tested on an image dataset provided by a flight simulation system. The experimental results show that the method has advantages in terms of speed, recognition rate and false alarm rate

    Fast automatic airport detection in remote sensing images using convolutional neural networks

    Get PDF
    Fast and automatic detection of airports from remote sensing images is useful for many military and civilian applications. In this paper, a fast automatic detection method is proposed to detect airports from remote sensing images based on convolutional neural networks using the Faster R-CNN algorithm. This method first applies a convolutional neural network to generate candidate airport regions. Based on the features extracted from these proposals, it then uses another convolutional neural network to perform airport detection. By taking the typical elongated linear geometric shape of airports into consideration, some specific improvements to the method are proposed. These approaches successfully improve the quality of positive samples and achieve a better accuracy in the final detection results. Experimental results on an airport dataset, Landsat 8 images, and a Gaofen-1 satellite scene demonstrate the effectiveness and efficiency of the proposed method

    Efficient Airport Detection Using Line Segment Detector and Fisher Vector Representation

    No full text
    In this letter, a two-stage method for airport detection on remote sensing images is proposed. In the first stage, a new algorithm composed of several line-based processing steps is used for extraction of candidate airport regions. In the second stage, the scale-invariant feature transformation and Fisher vector coding are used for efficient representation of the airport and nonairport regions and support vector machines employed for classification. In order to evaluate the performance of the proposed method, extensive experiments are conducted on airports around the world with different layouts. The measures used in the evaluation are accuracy, sensitivity, and specificity. The proposed method achieved an accuracy of 94.6%, which was benchmarked with two previous methods to prove its superiority
    corecore