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1.  INTRODUCTION
With the rapid development of computer vision 

technology, multiple existing methods are used to automatically 
detect meaningful targets from airborne sensing images1-5. 
Simultaneously, some new aviation applications such as 
enhanced flight vision, vision-aided landing and runway 
incursion detection have an urgent demand to detect runway 
target in real-time and recognise it accurately6-10. Therefore, 
airport runway detection from airborne forward-looking 
images has gained strategic importance in both military and 
civilian domains. However, airport runway real-time detection 
still faces with severe challenges. First, runway detection 
from a large field of view and high-resolution images often 
brings large time and space complexity. It is necessary to 
detect runway in real time in order to ensure flight safety. 
Second, the airports are often located in urban and suburban 
regions in which riverbank, highway, cornfield and taxiway 
are morphologically similar to runway. To detect and recognise 
runway accurately, these distracters should be eliminated from 
the images thoroughly.

Existing works on airport runway detection can be 
broadly divided into two categories: feature-based11-28 and 
template-based11,29,30. The first category relies on the detection 
of such features as intensity edges, high-contrast corners, or 
texture primitives. They can be further characterised as line 
feature-based11-15, SIFT feature-based18-20, and texture feature-
based21-28. The line feature-based methods aim to detect the 

straight line of runway mainly using Hough transform11, radon 
transform12, line segment detector (LSD)13,14, and Heuristic line 
extraction15. Although these methods can reach a high speed 
and a relatively good result, they can be distracted by the edges 
of rivers, roads, and taxiways and then may cause false alarms 
easily. In addition, the SIFT feature-based methods apply SIFT 
features to detect airport runway. Wang17, et al. extract SIFT 
feature from regions of candidates and classify them by trained 
hierarchical discriminant regression (HDR) tree to recognise 
the airport runway18. Tao19, et al. obtain a set of SIFT key 
points and use an improved SIFT matching strategy to detect 
runway. Yao20 , et al. adopt the sparse codes of SIFT as the 
feature to capture more salient properties of visual patterns 
instead of raw SIFT features. However, SIFT features still 
fail to offer sufficiently discriminative power especially for 
heavily clustered airport regions. Besides, it is time-consuming 
if the entire blocks of images require to extract SIFT features. 
Furthermore, the texture feature-based methods focused on 
characterising, analysing, and interpreting textural features 
of airport region using machine learning algorithms such as 
kernel matching pursuits (KMP)21, support vector machine 
(SVM)22,23, Adboost learning24, texture model25,26, and Pulse 
coupled neural network27. Nevertheless, these algorithms 
require plenty of positive and negative sample data acquired 
in different imaging condition such as view angle, time, and 
weather, they are unsatisfying in the real applications due 
to high request for support conditions. Moreover, since they 
are always involved with sliding and overlapped windows, 
the bottleneck of efficiency will appear. The other category 
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which is called template-based commonly operates by making 
point-by-point comparisons between an input image and a pre-
stored reference image28. They can also be classified into two 
categories: rigid template-based29 and deformable template-
based11,30,31. The former cannot be suitable for all kinds of the 
airport, however the later cannot be satisfied with real-time 
requirement due to high time complexity. Although the above 
algorithms have achieved remarkable progress in runway 
detection, they neither meet the requirements of real-time and 
robustness of airborne runway detection nor take full advantage 
of airborne navigation information.

A novel method for real-time runway detection based on 
airborne multi-sensor data fusion is proposed. It works in a 
coarse-to-fine hierarchical architecture. At the coarse layer, 
a vision projection model from world coordinate system 
to image coordinate system is built by combining airborne 
navigation system with image sensor, and then a relatively 
accurate runway region of interest (ROI) can be extracted. 
Thus surrounding useless objects and complex background 
texture can be excluded from ROI so as to reduce false alarms. 
At the fine layer, EDLines detector is used to extract straight 
line segments from ROI, and then fragmented line segments 
generated by EDLines are linked into long line segments based 
on the direction of runway and angle between two edge lines 
of runway. Finally, the airport runway is recognised by using 
vanishing point and angle between two runway edge lines.

2. METHODOLOGY
This paper adopts a hierarchical method from coarse to 

fine to detect runway. Primarily the coarse layer is in charge 
of runway ROI segmentation based on navigation parameters 
and navigation database. Through a series of coordinate 
transformation, an airport runway can be projected onto image 
plane. Considering the accuracy of navigation parameters, 
runway ROI based on confidence interval can be estimated. 
Finally, runway line extraction, linking and recognition are 
deployed in the fine layer, respectively.

2.1 ROI Estimation
To improve runway search efficiency and reduce false 

alarm rate of runway detection, an estimated runway ROI 
should be as accurate as possible. 

2.1.1 Vision Projection Model
Modern aircrafts are established with inertial navigation 

instrument (e.g., AHRS, gPS), vision sensors (e.g., FILR, 
Visible camera), and navigation database. AHRS can sense 
the motion state of the aircraft and outputs the aircraft attitude 
(roll: φ , pitch: q , and yaw: ψ ) in real time. gPS can compute 
and output geographical coordinates (longitude, latitude, and 
altitude) of the aircraft. Vision sensors such as FLIR and 
visible light camera can capture and output forward-looking 
images of different bands continuously. Navigation database 
usually includes terrain database and airport database which 
contains runway details. These above mentioned provide full 
information to set up a vision projection model. As shown 
in Fig. 1, It involves four matrix transformations among five 
coordinate systems. 

Firstly, the point Pw is mapped to the point Pn in the 
navigation coordinate system through matrix transformation 
[ ,n nR T ]. Secondly, the point nP is projected to point bP in 
the body coordinate system through matrix transformation [

,b b
n nR T ]. Thirdly, the point bP is transformed to the point cP

( )c c cx , y ,z in the camera coordinate system through matrix[
,c c

b bR T ]. Finally, the point cP is projected to the pixel iP ( )r,c
in the image coordinate system by the principle of pinhole 
camera model32, as shown in Fig. 2.

Figure 1.  Correlation among different coordinate systems.

Figure 2.  Projection model during approach.

Thus, mathematical model of vision projection can be 
established as follow.
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where ρ is the normalisation coefficient, uf f= α , vf f= β . α
and β  are the scale factors in image u and v axes, and f is the 
focal length of the pinhole camera.

2.1.2 Runway Region Estimation
 Due these errors of camera parameters and navigation 

parameters, the projection of runway zone in the image 
coordinate system is inaccurate by using projection model 
simply. The error of navigation parameters has more prominent 
influence on the accuracy of runway projection region. 
Especially, the aircraft attitude errors have larger impact than 
position errors on pixel projection accuracy and belong to 
primary factors. Therefore, the errors transfer equations of 
vision projection model can be given as follow:
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where ax∆ , ay∆ , and az∆ are position errors, ∆φ , ∆q , and ∆ψ
are attitude errors. r∆ is the error of pixel row and c∆ is the 
error of pixel column. 

 Though simulating a real landing procedure under 
different parameters noise level, the projection zone of runway 
can be estimated and the ratio of the pixel numbers in ROI 
to the pixel numbers in CCD can be computed. As shown in 
Fig. 3, the projection zone of runway in the image coordinate 
system is a quadrangle. At the 100 feet above runway elevation 
the projection region of runway becomes larger gradually with 
the noise level of position-attitude parameters increasing. 

requirements. However, EDLines runs up to 11 times faster 
than LSD36, which makes it more suitable for real-time runway 
detection. As shown in Fig. 4, line segments are extracted from 
the same two images through EDLines Detector and LSD 
respectively. 

EDLines detector uses edge drawing algorithm39,40 to 
detect image and produce a set of clean, contiguous chains of 
pixel which intuitively correspond to object boundaries. Sobel 
operator is applied to each pixel and to obtain gradient values

xG and yG . If 
x yG G+  is bigger than a given threshold. If x yG G> , 

then a vertical edge is pass through this pixel; Otherwise 
a horizontal edge is assumed to pass through. Then, line 
segments are extracted from the generated chains of pixel by 
the Least Squares Line Fitting Method. Finally, the Helmholtz 
principle is used to eliminate false line segment detections. Let 
A be a segment of length n with at least k points having their 
direction align with the direction of A in an image of size N×
N pixels. ‘number of false alarms (NFA)’ of a line segment is 
defined as:

Figure 3. Effects of Gaussian noise on the projection zone.

The above simulation results show that when equipped 
with high precision navigation device, the ratio of pixels in 
quadrangle to total pixels in CCD is less than 10 per cent. 
Obviously, this method is faster than others which process 
the whole image. Even though using low precision navigation 
unit, the pixel ratio is less than 25 per cent. To sum up, image 
processing efficiency is significantly improved by using 
runway region estimation.

2.2 Runway Detection and Recognition
To detect and recognise runway lines from ROI accurately, 

an real-time line segments detection and a robust runway 
recognition are essential and indispensable.

2.2.1  Line Segments Detection
Due to its special geometry, line segments give a high-

level description of airport runway. An ideal line segment 
detection algorithm could process any images regardless of 
its origin, orientation or size, and produce robust and accurate 
line segments in real-time without parameters tuning. Among 
existing algorithms, line segments detector (LSD)33-35 and 
EDLines detector36-38 are able to satisfy the above-mentioned 

( ) ( )4, 1
n

n ii

i k
NFA n k N p p −

=

= ⋅ ⋅ −∑                                  (5)

If ( ),NFA n k ≤ ε , it is a valid line segment. EDLines not 
only extract perfectly line segments, but it also achieves this in 
blazing speed compared to other line detectors41.

2.2.2 Line Segments Linking
Due to low illumination, weak contrast, blurry, occlusion, 

or clutter in the original image, there are three major problems 
when the current line segments detectors (e.g. Hough, LSD, 
and EDLines) are applied to practical images: (1) the detected 
object edges are composed of small line segments with 
different orientations, (2) there are often missing line segments 
(gap-filling segments), leading to discontinuity of edges of the 
infrastructure objects, and (3) all endpoints of object edges are 
successfully detected42. Our purpose is to link the fragmented 
line segments together to present the runway as a whole. 

Figure 4. Runway lines detection results from EDLines and 
LsD: (a) EDLines: 180 lines, 163 ms, (b) LsD: 818 
lines, 678 ms, (c) EDLines: 198 lines, 179 ms, and (d) 
LsD: 755 lines, 626 ms.

(b)(a)

(c) (d)
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As shown in Fig. 5, straight lines Lab and Lcd (red) are ideal 
runway lines calculated by vision projection model based on 
runway prior knowledge. There are many small line segments 
generated by EDLines in each neighbourhood of the ideal 
runway lines. 

When the aircraft is still far from the runway, the 
projection region of runway onto the image plane is relatively 
small. So the neighbourhood of the left runway line abL
and the neighbourhood of the right runway line cdL will 
partially overlap. Some of the line segments will fall into two 
neighbourhoods simultaneously. It is necessary to distinguish 
these line segments which belong to its neighbourhood. Then, 
line segments in each neighbourhood are linked together 
individually to present a complete runway.

be excluded from runway lines candidates. So some stable 
features should be used to recognise runway accurately. They 
can be easily obtained from the results of image detection and 
be insensitive to weather and surroundings, such as the runway 
direction, length, the angle between two edge lines, and the 
vanishing point. Finally, these runway features detected 
from image should be compared with ideal values estimated 
by vision projection model. If the detected values from the 
image are coincide with the estimates, then the runway can be 
identified. These criterions to identify the airport runway are 
formalised as follow:
       The slop of left or right runway edge line:

 r r
left

c c

a bslop
a b

−
=

−                                                            
 (6)
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        The length of left or right runway edge line:
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        The angle between two edge lines:
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       The vanishing point coordinate of runway parallel lines:
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where ( )r , ca a , ( )r , cb b , ( )r , cc c , and ( )r , cd d are the pixel 
coordinates of runway four vertices ( wa , wb , wc , and wd ), 
which can be computed individually by the vision projection 
model. Especially as an intersection point of two runway 
lines at infinity, the vanishing point should fall into a specific 
small area in image coordinate system based on corresponding 
probability. It is an ideal feature with stable and accurate 
characteristic to recognise runway lines in practice. Through 
the above theoretical computation in section 2.1.2, the 
approximate location of a vanishing point with corresponding 
probability can be estimated.

3.  ALGORITHM AND COMPLEXITY
The complete algorithm in pseudo-code is as the follow:
Inputs: an image Imag, these coordinates of runway four 

vertices( wa , wb , wc , and wd ) in the world coordinate system, 
and navigation parameters ( ), , , , ,a a ax y z andφ q ψ .

 Outputs: runway detected in image Imag.
1 ROI ← EstimateROI ( ), , , , ,a a ax y z φ q ψ ; // Apply project 

Figure 5.  Runway line segments linking.

This paper proposes a fast method to classify and fit two 
sets of adjacent line segments into two long runway lines. Firstly, 
some formal symbols should be defined to depict these line 
segments quantitatively. ( )i abd L ,L  or ( ),i cdd L L  is the distance 
from the center of straight line segment to the ideal runway 
line abL or cdL . Td is the width of runway line neighbourhood.

( )i abL ,Lq or ( )i cdL ,Lq is the angle between any line segment
iL and the ideal runway line abL or cdL .Tq is the threshold of 

angle between any line segment iL  and the ideal runway line 
abL or cdL . Secondly, if ( ),i ab dd L L T≤ , ( ),i abL L Tqq ≤ , and 
( ) ( ), ,i ab i cdd L L d L L≤ then the line segment iL belongs to the 

neighbourhood of line abL . If ( ),i cd dd L L T≤ , ( ),i cdL L Tqq ≤ , 
and ( ) ( ), ,i cd i abd L L d L L≤  then the line segment iL belongs to 
the neighbourhood of line cdL . Therefore, these line segments 
are divided into two sets( LS and RS ). Thirdly, fragmented line 
segments in each set are condensed into a long runway line by 
the Least Squares Line Fitting Method. As shown in Fig. 5, 
straight line segments ( )1, , , ,i kL L L  in the neighbourhood 
of line abL are linked into the left runway line a bL ′ ′ (in blue). 
Meanwhile, straight line segments( )1, , , ,j mL L L 

 
in the 

neighbourhood of line cdL are connected into the right runway 
line c dL ′ ′ (in blue). 

2.2.3 Features Recognition
Although the target has been detected after extracting 

the ROI, but there are still some false targets which should 
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model to estimate runway region of candidate
2  Imag = AdaptHistogramEquation(ROI); // Apply Adaptive 

Histogram Equation on ROI to enhance image
3  V = EDLines (Imag); // Apply EDLines Detector on image 

Imag to get a set of line segments V
4 Left ← φ ; // Initialise the set of runway left edge line 

segments
5 Right ← φ ; // Initialise the set of runway right edge line 

segments
6  for each line segment iL V∈  // Select line segments which 

are adjacent to abL or cdL  
7 if ( )i ab dd L ,L T≤  and ( ),i abL L Tqq ≤  and 
 ( ) ( )i ab i cdd L ,L d L ,L≤  then
8  iLeft Left L← ∪ ;
9  else if ( )i cd dd L ,L T≤  and ( ),i cdL L Tqq ≤  and 
 ( ) ( )i cd i abd L ,L d L ,L≤  then
10  iRight Right L← ∪ ;
11  end
12  end
13 ( )_Runway Left_Line LineFit Left= ; // To fit runway left 

edge line by the Least Squares Method
14 ( )Runway_Right_Line LineFit Right= ; // To fit runway 

right edge line by the Least Squares Method
15 qLRLRè Angle(Runway_Left_Line,Runway_Right_Line)= ; // 

Compute the angle between left edge line and right edge 
line

16 ( ) introw columnVp ,Vp VPo (Runway_Left_Line,Runway_Right_Line)= ; 
 // Compute the vanishing point pixel coordinate of two 
runway edge lines

17  if min maxLR LR LRq ≤ q ≤ q  and ( ),row column zoneVp Vp VP∈  
then

18  draw (Imag, Runway_Left_Line, Runway_ Right_Line); // 
Mark runway in image Imag

19  end
This algorithm has four parts: extraction of ROI, line 

segment detection, line segment linking, and runway lines 
recognition. Extraction of ROI has an O(1) time complexity 
and an O(n) space complexity where n is total pixel number 
in the ROI. The image enhancement using adaptive histogram 
equalisation has an O(n) time complexity. Meanwhile, 
the runtime complexity of EDLines reveals O(n) as a 
linear algorithm. Because many line segments outside the 
neighbourhood of ideal runway lines are excluded, the number 
of remaining line segments that need to be linked into long 
lines is less. To link line segments is not very time consuming, 
the complexity is O(m + p), m is the number of fragmented 
line segments extracted from the ROI, p is the number of line 
segments which is collinear with line abL or cdL . The last step 
of runway lines recognition consumes time O(q2), q is a number 
of candidate runway lines. To sum up, the whole process has a 
runtime complexity of O(n+m+p+q2).

4.  EXPERIMENTs AND REsULTs
All experiments are performed on a computer with Intel 

Core i7-5500u processor clocked at 2.40gHz and 8.0 gB 
memory. All codes are run in Matlab 2013a. 

4.1 Experimental Condition
In order to verify the proposed method, the authors take 

advantage of VT MAK virtual reality simulation development 
software (VT-MAK simulator) to generate visual and infrared 
video corresponding with airborne navigation parameters. 
This high-fidelity video provides a realistic view of out-of-
cabin environment with different weather conditions, time of 
day, atmosphere conditions, sky textures. The focus length of 
camera is 36 mm, and the pixel size of CCD is 17 um. The 
resolution of forward-looking image is 600×800 pixels. The 
accuracy of position parameters follows: ( )2~ 0,0.1ax N∆ , 

( )2~ 0,0.1ay N∆ , and ( )2~ 0,0.1az N∆ . The accuracy of attitude 
parameters follows: ( )2~ 0,0.01N∆φ , ( )2~ 0,0.01N∆q , and 

( )2~ 0,0.02N∆ψ . In addition, the airport runway is 3,000 m 
long and 60 m wide, and the carrier deck is 326 m long and 76 
m wide. The aircraft approaches and descends along the glide 
path above runway smoothly. 

4.2 Experimental Results
In Fig. 6, this paper presents some detection results of our 

proposed method. Both visible image and infrared image are 
all applicable to the proposed method, and better results are 
obtained. Scenario-1 infrared images (IR) in row 1 are obtained 
above the airport with latitude (Lat) = 21.306869°N, longitude 
(Lon) = -157.970263°E, altitude(Alt) = 771m, -109φ = ° , 

7.8q = ° , and -49ψ = ° . Scenario-2 visual images (Vis) in row 
2 are obtained with Lat= 21.306897°N, Lon= -157.948612°E, 
Alt=93m, -112.7φ = ° , -4.8q = ° , and -55.1ψ = ° . Scenario-3 
visual images in row 3 are obtained with Lat= 21.299724°N, 
Lon= -157.952523°E, Alt=384m, -119.4φ = ° , -21.5q = °
, and -43.6ψ = ° , Scenario-4 infrared images in row 4 are 
obtained above the aircraft carrier with Lat= 21.290395°N, 
Lon= -157.935106°E, Alt=167m, 159.0φ = ° , -38.5q = ° , and 

42ψ = ° . Scenario-5 visual images in row 5 are obtained with 
Lat= 21.294766°N, Lon= -157.940865°E, Alt=77m, -175.8φ = °
, -68.2q = ° , and 17.6ψ = ° . Scenario-6 visual images in row 
4 are obtained with Lat= 21.300316°N, Lon= -157.940726°E, 
Alt=107m, 133.9φ = ° , 74.2q = ° , and 152.5ψ = ° . At the 
coarse layer of our model, the ROI is highlighted in blue at the 
left column with the detected line segments in red. At the fine 
layer of our model, the detected line segments are linked into 
two long lines which are shown in red at the right column. 

The proposed method is applied to different approach 
scenarios, and the experimental results are shown in Table 1.  
The experimental result shows that the proposed algorithm is 
real time to detect runway target and robust to various approach 
scenarios.

4.3 Parameter selection
To statically analyse the effect of different parameter 

values on runway detection efficiency, airport images under 
different approach scenarios are tested. In this experiment, 
each parameter value is adjusted so as to achieve the best 
detection effect. For dT , the optimal parameter is around 7 
pixels, and the detection performance is generally robust when 
5 10dT≤ ≤ . If this value is too large, the distance between 
estimated vanishing point and detected vanishing point will 
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statistic histograms of r∆ and c∆ represent their probability 
distribution functions (pdf). Both the pdf of r∆  and the pdf of 

c∆ obey gaussian with low level noise. Statistic data can also 
be achieved: 0.6181rδ = , 5.4519e-04r∆ = , 0.5303cδ = , 

0.0088c∆ = − , ( )2 2 0.9443P r r r− ∗δ ≤ ∆ ≤ ∗δ = , and 
( )2 2 0.9381P c c c− ∗δ ≤ ∆ ≤ ∗δ = . The probability of 

vanishing point appeared in estimated area is 0.886 when 
2 2r r r− ∗δ ≤ ∆ ≤ ∗δ and 2 c 2c c− ∗δ ≤ ∆ ≤ ∗δ .

4.4 Comparison with other Algorithm
This paper compares the proposed method with the two 

scenarios Vis/IR ROI (pixels) ROI/CCD ratio Lines Time (ms) Vp rδ Vp cδ Estimated Vp (r,c) Detected Vp (i)

1 IR 3005 0.0063 23 62 0.6771 0.5633 340.4103
-45.2869

339.4243
-46.2446

2 Vis 70794 0.1475 84 228 0.6181 0.5303 367.9412
132.8195

368.9302
132.2792

3 Vis 4769 0.0099 128 349 0.6053 0.5453 3423.7053
-876.6417

3422.6
-877.6863

4 IR 7406 0.0154 45 44 0.6109 0.5994 438.1768
-15.8315

437.3359
-15.3316

5 Vis 20667 0.0431 54 123 0.6244 0.6201 428.4943
160.7787

427.9946
161.4777

6 Vis 4493 0.0094 53 144 0.6333 0.5591 -299.1825
-223.5697

-298.5402
-222.5707

Table 1. Experimental results under different scenarios

become longer. Then the detected vanishing point maybe fall 
out of its expected region. Furthermore, the runway cannot be 
recognised correctly. For Tq , the detection performance is ideal 
when -2 2Tq° ≤ ≤ ° . when Tq  is larger than 3° , the runway 
detection rate declines dramatically. 

 The runway detection rate also increases dramatically with 
the projection region ( ˆ-r r r r r∆ ≤ ≤ + ∆ , ˆ-c c c c c∆ ≤ ≤ + ∆ ) of 
vanishing point rising. Obviously, the selection of projection 
errors ( r∆ , c∆ ) of vanishing point will affect detection result 
directly. In Scenario-2, Monte Carlo simulation is run over 
each of four scenarios to analyse the probability distribution 
of pixel errors of vanishing point. As shown in Fig.7, 

Figure 6.  Airport runway detection results under different position and attitude.

(1) (4)

(2) (5)

(6)(3)
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methods11. The reason why these two algorithms are chosen 
for comparison is that they follow a similar coarse-to-fine 
framework to the proposed method. Different from the 
proposed method, they use horizon to extract search region 
and then recognise the airport runway individually by edge 
detection and template matching. 

 The search space for runway detection11 is only restricted 
to below the horizon. However, the runway detection region in 
the proposed method is relatively accurate, so it can save more 
time. Comparison with other algorithms under scenario 1 is as 
shown in Table 2.

on the embedded computer to test its efficiency. Furthermore, 
the proposed method will be applied to real-time airborne 
applications such as vision-aided navigation and enhanced 
flight vision. 
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