10,616 research outputs found

    Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems

    Get PDF
    In this paper we explore the practical use of the corner transfer matrix and its higher-dimensional generalization, the corner tensor, to develop tensor network algorithms for the classical simulation of quantum lattice systems of infinite size. This exploration is done mainly in one and two spatial dimensions (1d and 2d). We describe a number of numerical algorithms based on corner matri- ces and tensors to approximate different ground state properties of these systems. The proposed methods make also use of matrix product operators and projected entangled pair operators, and naturally preserve spatial symmetries of the system such as translation invariance. In order to assess the validity of our algorithms, we provide preliminary benchmarking calculations for the spin-1/2 quantum Ising model in a transverse field in both 1d and 2d. Our methods are a plausible alternative to other well-established tensor network approaches such as iDMRG and iTEBD in 1d, and iPEPS and TERG in 2d. The computational complexity of the proposed algorithms is also considered and, in 2d, important differences are found depending on the chosen simulation scheme. We also discuss further possibilities, such as 3d quantum lattice systems, periodic boundary conditions, and real time evolution. This discussion leads us to reinterpret the standard iTEBD and iPEPS algorithms in terms of corner transfer matrices and corner tensors. Our paper also offers a perspective on many properties of the corner transfer matrix and its higher-dimensional generalizations in the light of novel tensor network methods.Comment: 25 pages, 32 figures, 2 tables. Revised version. Technical details on some of the algorithms have been moved to appendices. To appear in PR

    Lecture Notes of Tensor Network Contractions

    Get PDF
    Tensor network (TN), a young mathematical tool of high vitality and great potential, has been undergoing extremely rapid developments in the last two decades, gaining tremendous success in condensed matter physics, atomic physics, quantum information science, statistical physics, and so on. In this lecture notes, we focus on the contraction algorithms of TN as well as some of the applications to the simulations of quantum many-body systems. Starting from basic concepts and definitions, we first explain the relations between TN and physical problems, including the TN representations of classical partition functions, quantum many-body states (by matrix product state, tree TN, and projected entangled pair state), time evolution simulations, etc. These problems, which are challenging to solve, can be transformed to TN contraction problems. We present then several paradigm algorithms based on the ideas of the numerical renormalization group and/or boundary states, including density matrix renormalization group, time-evolving block decimation, coarse-graining/corner tensor renormalization group, and several distinguished variational algorithms. Finally, we revisit the TN approaches from the perspective of multi-linear algebra (also known as tensor algebra or tensor decompositions) and quantum simulation. Despite the apparent differences in the ideas and strategies of different TN algorithms, we aim at revealing the underlying relations and resemblances in order to present a systematic picture to understand the TN contraction approaches.Comment: 134 pages, 68 figures. In this version, the manuscript has been changed into the format of book; new sections about tensor network and quantum circuits have been adde

    Classical simulation versus universality in measurement based quantum computation

    Get PDF
    We investigate for which resource states an efficient classical simulation of measurement based quantum computation is possible. We show that the Schmidt--rank width, a measure recently introduced to assess universality of resource states, plays a crucial role in also this context. We relate Schmidt--rank width to the optimal description of states in terms of tree tensor networks and show that an efficient classical simulation of measurement based quantum computation is possible for all states with logarithmically bounded Schmidt--rank width (with respect to the system size). For graph states where the Schmidt--rank width scales in this way, we efficiently construct the optimal tree tensor network descriptions, and provide several examples. We highlight parallels in the efficient description of complex systems in quantum information theory and graph theory.Comment: 16 pages, 4 figure

    Classical simulation of quantum many-body systems with a tree tensor network

    Get PDF
    We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement is bounded for any bipartite split along an edge of the tree. This is achieved by expanding the {\em time-evolving block decimation} simulation algorithm for time evolution from a one dimensional lattice to a tree graph, while replacing a {\em matrix product state} with a {\em tree tensor network}. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.Comment: 4 pages,7 figure
    • …
    corecore