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Exploring corner transfer matrices and corner tensors
for the classical simulation of quantum lattice systems

Romén Orts!
! Maz-Planck-Institut fiir Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

In this paper we explore the practical use of the corner transfer matrix and its higher-dimensional
generalization, the corner tensor, to develop tensor network algorithms for the classical simulation
of quantum lattice systems of infinite size. This exploration is done mainly in one and two spatial
dimensions (1d and 2d). We describe a number of numerical algorithms based on corner matri-
ces and tensors to approximate different ground state properties of these systems. The proposed
methods make also use of matrix product operators and projected entangled pair operators, and
naturally preserve spatial symmetries of the system such as translation invariance. In order to assess
the validity of our algorithms, we provide preliminary benchmarking calculations for the spin-1/2
quantum Ising model in a transverse field in both 1d and 2d. Our methods are a plausible alternative
to other well-established tensor network approaches such as iDMRG and iTEBD in 1d, and iPEPS
and TERG in 2d. The computational complexity of the proposed algorithms is also considered and,
in 2d, important differences are found depending on the chosen simulation scheme. We also discuss
further possibilities, such as 3d quantum lattice systems, periodic boundary conditions, and real
time evolution. This discussion leads us to reinterpret the standard iTEBD and iPEPS algorithms
in terms of corner transfer matrices and corner tensors. Our paper also offers a perspective on many
properties of the corner transfer matrix and its higher-dimensional generalizations in the light of

novel tensor network methods.

PACS numbers: 02.70.-¢, 05.10.Cc, 03.67.-a

I. INTRODUCTION

It is commonly accepted that understanding the prop-
erties of quantum systems of many particles is one of
the most important and challenging problems in con-
densed matter physics. In this sense, much remains yet
to be understood. For instance, and in spite of many
efforts, it is still unclear what is the mechanism respon-
sible for high-T, superconductivity in cuprates’, not to
mention iron-based” and organic’ superconductors, for
which this mechanism is also a mistery to a great ex-
tent. Many other condensed matter phenomena beyond
Landau’s paradigm of phase transitions have also proven
non-trivial to understand. In this respect, a great in-
terest in ezotic (i.e. beyond Landau’s paradigm) phases
of matter has arised recently. Examples of this are, to
name a few, topologically ordered phases (where a pat-
tern of long-range entanglement prevades over the whole
system)*, quantum spin liquids (phases of matter that
do not break any symmetry)”, and deconfined quantum
criticality (quantum critical points between phases of
fundamentally-different symmetries)”".

The standard approach to understand these systems is
based on proposing some simplified, physical model that
is believed to mimic the relevant interactions responsible
for the observed physics. This is the case of e.g. the
Hubbard and ¢ — J models for high-T, cuprate supercon-
ductors, as well as quantum Heisenberg antiferromagnets
with frustrating interactions for some magnetic materials
with a spin liquid ground state®. Sometimes we are lucky,
and these models are exactly solvable. In practice, this
means that one can compute some (if not all) relevant
properties analitically. But this is not usually the case

and, in spite of their apparent simplicity, these models
turn out to have such an outstandingly complex behavior
that one needs to rely on alternative approaches. Quan-
tum simulations, as proposed by Feyman”, are certainly
a possibility. Recent experimental results in this direc-
tion using e.g. ultracold atoms in optical lattices are in
fact really promising'”. However, the current technolog-
ical status does not allow yet to fully understand many
interesting systems. Thus, one needs to rely on faithful
methods to implement numerical (classical) simulations.

From the point of view of numerical simulation al-
gorithms, there has been increasing interest in recent
years in the so-called tensor network methods to sim-
ulate strongly correlated systems In these methods
the wave function of the system is described in terms
of a network of interconnected tensors (a tensor net-
work). As such, tensor network techniques offer efficient
descriptions of quantum many-body states of the system
that are based on the amount of entanglement in the
wave function. The amount and structure of entangle-
ment is a consequence of the chosen network pattern and
the number of parameters in the tensors. The most fa-
mous example of a tensor network method is probably the
Density Matrix Renormalization Group (DMRG)"™ ",
introduced by White in 1992, and which has been the
technique of reference for the last 20 years to compute
ground state properties of 1d quantum lattice systems.
Recently, though, many important insights coming from
quantum information science have motivated the appear-
ance of a host of new tensor network methods. Now-
days it is easy to get lost in the zoo of names for all
these methods, e.g. Time-Evolving Block Decimation
(TEBD)'®, Folding Algorithms'’, Projected Entagled



Pair States (PEPS)'®, Tensor-Entanglement Renormal-
ization Group (TERG)'’, Tensor Product Variational

Approach®’, Weighted Graph States®', Entanglement
Renormalization (ER)**?’, String-Bond States®"*”,
Entangled-Plaquette States””, Monte Carlo Matrix Prod-

uct States”’, Tree Tensor Networks and Continuous
Matrix Product States’”, just to name some of the most
recent ones. Each particular method has its own ad-
vantages and disadvantages, as well as optimal range of
applicability.

Tensor network methods are also an interesting ap-
proach to many-body systems since they offer a lot
of flexibility. For instance, with tensor networks one
can study a variety of systems in different dimensions,
of finite or infinite size , with different boundary
conditions™”" ", symmetries , as well as systems of
bosons’ '+’ fermions and frustrated spins . Dif-
ferent types of phase transitions”” as well as the robust-
ness of topological order to local perturbations have
also been studied in this context. The fact that it is possi-
ble to develop algorithms for infinite-size systems is quite
relevant, since this means that it is possible to approxi-
mate the properties of a given system directly in the ther-
modynamic limit and without having to rely on finite-size
scaling extrapolations. This is achieved by cleverly ex-
ploiting the translational invariance of the system. Ex-
amples of methods using this approach are iDMRG”
and iTEBD”>*" in 1d (the i’ means infinite), as well as
iPEPS”" " and TERG'” in 2d.

The possible variations of all these methods are, in
practice, unending. In this respect, we feel that a use-
ful tool still relatively unexplored in this context (albeit
with exceptions) is the so-called Corner Transfer Matrix
(CTM) " This was originally introduced by Baxter
in 1968 in the context of classical statistical mechanics
and exactly solvable models” The CTM has very
nice properties, specially regarding its spectrum of eigen-
values, and has been a standard tool to find the exact
solution of many classical 2d models such as the hard-
hexagon and related models''»'~. However, its practical
use goes well beyond analytical solutions, and numerical
algorithms can be developed to approximate the proper-
ties of 2d classical lattice models based on clever trunca-
tions in the eigenvalue spectrum of CTMs. Baxter him-
self was the first to explore this possibility by means of
a variational method’” " that was an extension of the
so-called Krammers-Wannier approximation In fact,
Baxter’s method can be understood as a precursor of
DMRG but in the context of classical lattice models (this
statement will be made more precise later on). The for-
mal combination of CTMs and DMRG was later on put
forward by Nishino and Okunishi in the so-called Corner
Transfer Matrix Renormalzation Group (CTMRG)
Since then, numerical algorithms using CTMs have been
widely used, mostly focusing on classical lattice mod-
els. From the point of view of quantum lattice systems,
Ref.">"" already discussed the possibility of simulating 1d
quantum systems by using CTMs and a Suzuki-Trotter

decomposition of the evolution operator'®'’. Neverthe-
less, we believe that CTMs have not yet been fully ex-
ploited as a tool in the context of the novel tensor network
methods that are being developed for quantum lattice
systems.

Our aim in this paper is to cover in part this gap by
exploring the applicability of the CTM to develop algo-
rithms for the simulation of quantum lattice systems. We
do this mainly in 1d and 2d, which naturally leads us to
consider the generalization of the CTM to higher dimen-
sional systems. Following the convention from previous
works' %Y we call this generalization corner tensor.
More specifically, in this paper we describe a number of
numerical algorithms based on CTMs and corner ten-
sors to approximate ground state properties of quantum
lattice systems of infinite size. The methods that we
present rely also on the use of Matrix Product Operators
in 1d and Projected Entangled Pair Operators in 2d, and
naturally preserve the spatial symmetries of the system,
including invariance under translations. This, in turn,
is a significant difference with respect to some previous
approaches for infinite systems that slightly break trans-
lational invariance’” " Also, we will see that these
methods produce, in a natural way, individual tensors
for the 'bra’ and ’ket’ parts of local expectation values,
in a way similar to the so-called single-layer picture
This does not seem to have remarkable consequences in
1d but, as we shall discuss, it has some interesting im-
plications for the 2d algorithms when compared to other
methods such as e.g. iPEPS”"

In order to prove the validity of our algorithms we pro-
vide preliminary benchmarking calculations for the spin-
1/2 quantum Ising model in 1d and 2d. Our methods are
roughly comparable in accuracy to other well-established
approaches such as the iDMRG”””" and iTEBD""
methods in 1d and the iPEPS method and TERG in
2d' 72"V thus offering a possible alternative to them.
Moreover, we will also discuss that it is possible in prin-
ciple to use some of the 2d results for the development
of a 3d algorithm in combination with some tensor up-
dates, in the same spirit as the algorithm in Ref."" for 2d
systems. The computational complexity of all the pro-
posed algorithms is also analyzed and, as we shall see,
important differences are found depending on the dimen-
sionality and chosen simulation scheme.

For completeness, we also discuss briefly in Appendix
B the case of periodic boundary conditions, as well as real
time evolution. This discussion will lead us to a beautiful
interpretation of the standard iTEBD and iPEPS algo-
rithms in terms of CTMs and corner tensors. We also
believe that the algorithms described in this paper will
be useful for the pracical implementation and develop-
ment of further tensor network methods in the future.

This work is organised as follows: In Sec.II we present
several preliminary concepts and generalities. These in-
clude notions on tensor networks (Sec.II.A), corner trans-
fer matrices (Sec.I.B,C), Matrix Product States and
Projected Entangled Pair States (Sec.IL.D), and time evo-
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FIG. 1: (color online) (a) Tensor network diagrams repre-
senting a scalar, a vector, a matrix and a three-index tensor.
(b) The grouping of two indices o and S of a tensor pro-
duces another index (a, 8), represented as a thick line. (c)
Diagram representing a matrix multiplication, or contraction
of an index. (c) Diagram for tensor network N/, with four

open (non-contracted) indices «, 8,y and 4. The result of the
contraction is a four-index tensor 7.

B

lution with Matrix Product Operators and Projected En-
tangled Pair Operators (Sec.IL.E). In Sec.III we present
two simple algorithms based on CTMs and corner ten-
sors to approximate ground state properties of infinite-
size quantum lattice systems. More elaborated versions
of these algorithms are presented in Appendix A. After
discussing the general approach in Sec.III.A, we consider
1d systems in Sec.III.B and 2d systems in Sec.III.C. A
summary of the proposed methods and their complexi-
ties is done in Sec.III.E. In Sec.IV we present preliminary
benchmarking numerical calculations for 1d and 2d sys-
tems. Sec. V contains our conclusions and final remarks.
Moreover, in Appendix B we discuss further possibilities,
such as 3d quantum lattice systems, periodic boundary
conditions, and real time evolution.

II. PRELIMINARY CONCEPTS

The goal of this section is to introduce some prelim-
inary concepts that we will need in the presentation of
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FIG. 2: (color online) Different orderings in the contraction
lead to different number of operations. Assuming that all the
indices of the tensors can take up to x different values, then
the number of operations is scheme () is O(x®), whereas it is

O(x*) in scheme (b). Thus, scheme (b) is more efficient than
scheme (a).

the algorithms of the forthcoming sections, as well as to
provide some background on relevant topics. We start
by quickly reminding some basic concepts on tensor net-
works and tensor network diagrams. Then, we review
the basics of the CTM and its properties, as well as sev-
eral aspects regarding possible gneralisations. After this,
we quickly remind the basic definition of Matrix Prod-
uct States (MPS) and Projected Entangled Pair States
(PEPS), and then review the implementation from Ref.
of time evolution operators (both in real and imaginary
time) using Matrix Product Operators (MPO) and Pro-
jected Entangled Pair Operators (PEPO).

A. Tensor networks and diagrams

For our purposes, a tensor is a multidimensional ar-
ray of complex numbers. A Tensor Network (TN) is a
network of tensors whose indices are connected according
to some pattern. This connection of indices is done by
summing over all the possible values of common indices
between tensors. Summing over an index is also called
contracting the index. Summing over all the possible in-
dices of a given TN is called contracting the TN.

Instead of using equations, tensors and TNs are more
easily handled by using a diagrammatic notation in terms
of tensor network diagrams, see Fig.(1). In these dia-
grams tensors are represented by shapes, and indices in
the tensors are represented by lines emerging from the
shapes, see Fig.(1.a,b). A TN is thus represented by a
set of shapes interconnected by lines. The lines connect-
ing tensors between each other correspond to contracted
indices, whereas lines that do not go from one tensor
to another correspond to open indices in the TN, see
Fig.(1.c,d). As expected, the contraction of a TN with
some open indices gives as a result another tensor, and
in the case of not having any open indices the result is



FIG. 3: (color online) Partition function Z(3) at inverse tem-
perature 8 of some classical lattice model on the square lat-
tice, defined by a symetric weight matrix 7" between nearest
neighbours (such as e.g. the classical Ising and Potts mod-
els). The partition function can be written as a TN with
either one tensor T per link, or one tensor per site resulting
from the contraction of four v/T tensors (see e.g. Ref.””%)

MPS MPO
gt X gt X
C
(c) PEPS (d) PEPO
D D
q q-2

FIG. 4: (color online) (a) Matrix Product State (MPS). (b)
Matrix Product Operator (MPO). (c¢) Projected Entangled
Pair State (PEPS). (d) Projected Entangled Pair Operator
(PEPO). The physical dimension is ¢ in all cases, whereas
the bond dimension is x for MPS and MPO, and D for PEPS
and PEPO.

a scalar. Notice, though, that the total number of op-
erations that must be done in order to obtain the final
result of the contraction depends strongly on the order
in which tensors in the TN are contracted, see Fig.(2).
To minimize the computational cost of a TN contrac-
tion, one must thus optimize over the different possible
contraction orderings.

There are famous examples of TN in the context of
many-body physics. For instance, the partition function
of a d-dimensional classical lattice model with nearest-
neighbour interactions is a TN in d dimensions (see
Fig.(3)). Also, for quantum lattice systems, the classes of
MPS and PEPS are suitable to describe quantum states
of 1d and 2d systems respectively (see Fig.(4.a,c)). Other
examples make use of an extra ’'holographic’ dimen-
sion accounting for some renormalization group scale®’,
such as Tree Tensor Networks (TTN)** ! (Fig.(5.a)) and
the so-called Multi Scale Entanglement Renormalization
Ansatz (MERA) (Fig.(5.b)), which is at the basis of En-
tanglement Renormalization®*“?. TNs can also be used
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FIG. 5: (color online) (a) Tree Tensor Network (TTN). (b)
1d binary Multi Scale Entanglement Renormalization Ansatz
(MERA), with unitaries v and isommetries w. For details,
see Ref,22:23,28-31

to describe operators, such as MPOs in 1d and PEPOs
in 2d (Fig.(4.b,d)).

B. Corner Transfer Matrix: fundamentals

The concept of Corner Transfer Matrix (CTM) was
introduced by Baxter in the context of exactly solvable
models in 2d classical statistical mechanics’”"*. These
can be defined for any planar TN. However, for the sake
of simplicity, here we shall assume the case of a 2d TN
on a square lattice as in Fig.(6). This TN could repre-
sent, for instance, the partition function of some 2d clas-
sical lattice model as in Fig.(3) or, as we will consider
in Sec.IIl, the imaginary time evolution of a quantum
1d system. In order to define the CTM one makes the
following observation: the contraction of the TN can be
obtained by multplying four matrices C, Csy, Cs and Cy,
one for each corner (see Fig.(5.a)). Thus,

Z = tr (C1C2C5Cy) | (1)

where Z is the scalar resulting from the contraction.

Matrices C1,C5,C3 and C4 are the Corner Transfer
Matrices of the system. They correspond to the contrac-
tion of all the tensors in each one of the four corners of
the 2d lattice of tensors. The nomenclature "transfer ma-
trix’ is appropriate, since the CTM ’transfers’ a vector
in the angular direction around the center of the lattice
by an angle of 7/2 in our case. To further simplify our
explanation, let us assume that the four CTMs are equal,
thati86501202203204.

Sometimes it is convenient to define diagonal CTMs
Cyq = PCP~!. Depending on the symmetries of the sys-
tem (and thus of C'), matrix P may be arbitrary, unitary
or orthogonal. Let us assume that there are x different
eigenvalues v,, with « = 1,2,...,x. Then, the contrac-
tion of the full TN adopts the very simple expression

Z=tr(Cy) = v, (2)

a=1
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FIG. 6: (color online) (a) The contraction of a 2d square
lattice of tensors results in a scalar Z. This contraction can
be understood as the trace of the product of four CTMs, one
for each corner. Notice that the exact CTMs will, in principle,
have indices that can take up to exponentially many different
values (in the size of the system). Thus, their indices are
represented by a thick black line. The aim of CTM numerical
methods is precisely to reduce the size of this index in some
optimal or quasi-optimal way. (b) A possible reduced density
matrix p of a system with the same CTM at every corner.
Open indices of p are shown in red.

The fact that we choose to name the number of different
eigenvalues as y is made on purpose. There is in fact a
direct relation between this parameter and the so-called
bond dimension of an MPS. The relation between these
two seemingly different parameters will be made clearer
later on in Sec.II1.B, when considering 1d quantum lat-
tice systems.

CTMs are of paramount importance in the context
of classical statistical mechanics. They have been used
to solve the hard hexagon model, as well as many
others'"'“. But they have also been useful in the context
of quantum information, since it is known from long ago
that their eigenvalue spectrum can be related to the en-
tanglement spectrum of 1d quantum lattice systems, see
e.g. Ref.”""”. As we will see, this is a key property in
the algorithms that will be further described in Sec.III.B.
Also, from a numerical perspective, a variational method
to approximate the partition function per site of a 2d
classical lattice model was developed by Baxter by trun-
cating in the eigenvalue spectrum of the CTM ", This
idea was later on refined by Nishino and Okunishi, who
developed the so-called Corner Transfer Matrix Renor-
malization Group (CTMRG)'" As such, CTMRG
is an algorithm to approximate properties of 2d classi-
cal lattice models with isotropic interactions (and thus
a high degree of symmetry), and runs by truncating in
the largest eigenvalues in magnitude of the spectrum of
matrix C*, which is a reduced density matrix of the sys-
tem (see Fig.(6.b)). This spectrum, in turn, is given by
the numbers v? in Eq.(2), and is thus in one-to-one cor-
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FIG. 7: (color online) Same as in Fig.(6), but for a cubic
lattice in 3d. (a) A 3d cubic llatice of tensors results in a scalar
Z. This contraction can be understood as the contraction of
eight corner tensors. In the exact case, the corner tensors
have ’fattened’ indices, exactly as in the 2d case. We have
chosen not to draw explicitely the 3d cubic lattice in order to
keep the figure simple. (b) A possible reduced density matrix
p of a system with the same corner tensor at every corner.
Open indices of p are shown in red.

respondence with the spectrum of the CTM C.

As we shall explain later on, from the point of view
of quantum states of 1d quantum lattice systems the
numbers v are, in fact, the spectrum of eigevalues of
the reduced density matrix of half an infinite chain. Or
what is the same, the spectrum of Schmidt coefficients
of half an infinite chain is given by A\, = v2. Thus, in a
way, we can think of Baxter’s variational method as sort
of a precursor of the truncation scheme used in DMRG
and TEBD, but in the context of 2d classical statistical
mechanics Also, it is well known that these CTM
methods work assymptotically in the limit of a system of
infinite size. In fact, the closer the method is to conver-
gence, the more faithful are the truncations in the eigen-
values of the corresponding reduced density matrix. The
convergence and speed of CTMRG for classical 2d mod-
els is also remarkably better than other approaches such
as the so-called Transfer Matrix Renormalization Group
(TMRG)""'"% This is understandable, because in
many situations away from criticality the largest eigen-
value of the CTM is non-degenerate, and there is a rather
big gap to the next lower eigenvalues (as compared to the
gap of the row-to-row transfer matrix)''>. This ensures
a fast numerical convergence of CTM methods.



C. Corner Transfer Matrix: generalizations

Since the foundational works by Baxter, there have
been several attempts to generalize the CTM in a num-
ber of different ways. Here we mention some basic pos-
sibilities.

The first obvious generalization is for 2d lattices dif-
ferent from the square one. Of course, the CTM can be
defined for any planar lattice as long as corners can be
defined. This includes the usual lattices, but also more
exotic constructions such as lattices with hyperbolic ge-
ometry (or negative curvature), e.g. lattice discretiza-
tions of Anti de Sitter (AdS) manifolds

An attempt to improve the efficiency of the truncations
involved in CTMRG was also proposed in Ref."”, where
a directional version of the method was put forward in
the context of 2d iPEPS calculations, and where tensors
were no longer real and broke rotational symmetry. In
Sec.II1.B of this paper we will also propose another plau-
sible way of doing this generalization to non-symmetric
tensors in the context of the algorithms that we explain
here.

Another natural generalization is the case of periodic
boundary conditions. Even if this sounds counterintu-
itive (since a periodic system does not have any corners),
it turns out that the ideas from CTMRG can be general-
ized to deal with this type of systems as well””. We will
briefly comment on how one can perform this generaliza-
tion in Sec.ITL.D.

Moreover, the CTMRG technique can also be general-
ized to deal with stochastic models, see Ref.”” for details.
Also, a quantum counterpart of the CTM is the so-called
Corner Hamiltonian, which essentially is the logarithm of
the CTM. Numerical techniques for Corner Hamiltonians
have also been developed, see e.g. Ref.

Finally, the CTM can also be generalized to higher-
dimensional systems. The natural corner object now is
not a matrix, but a tensor with three indices (for a cubic
lattice) which we call the corner tensor''?, see Fig.(7).
In terms of corner tensors C1, Cy, ..., Cg, the contraction
of a 3d lattice of tensors reads

Z = f(017C2ac3a04705706707a08) ) (3)

where f is a function that performs the corresponding
TN contraction (see Fig.(7.a)). This higher-dimensional
generalization is quite obvious but, yet, it has some non-
trivial consequences since one is dealing now with tensors
instead of matrices. In particular, the corner tensors can
no longer be diagonalized (or more precisely, there is no
unique eigenvalue decomposition since it depends on how
one chooses to split the indices of the tensor). Thus, no
expression like the one in Eq.(2) for the 2d case can be
obtained in general for 3d. Nevertheless, corner tensors
still have interesting spectral properties with respect to
eigenvalue/singular value decomposition of bipartitions
of their indices. The behavior of these singular values will

be the key to define simplified numerical approaches for
higher-dimensional systems, as we shall do in Sec.III.C.

D. Matrix Product States and Projected
Entangled Pair States

Let us now revise briefly the concepts of Matrix Prod-
uct States (MPS) and Projected Entangled Pair States
(PEPS). There is a vast amount of literature on these
two families of states, and we refer the interested reader
to it for further details (see e.g. Ref.'' and references
therein).

Consider a quantum many-body system of N particles.
The quantum state of the system is |¥) € H, where H =
®N_HI"l is the total Hilbert space of the system and
#!"] is the individual Hilbert space of particle r. Let us
assume that each particle is modelled by a g-level system,
so that dim(#!"!) = ¢. Given a local basis i) for each
site r, with i, = 1,2,...,q, the quantum state of the
system reads

W}>: Z ci1i2~--iN|i1i2“'iN>' (4)

G180 +1

The coefficient ¢;,4,...i, can be understood as a tensor of
N indices with O(¢") complex coefficients. Thus, this
is clearly an inneficient representation of the quantum
state because the required number of parameters scales
exponentially with the size of the system. In order to find
an efficient description, one can consider a decomposition
of the above tensor into a MPS for 1d, or a PEPS in 2d.
These decompositions are shown in the tensor network
diagrams of Fig.(4.a.c), where open boundary conditions
are assumed.

Both MPS and PEPS offer an efficient description of
the quantum state |¥) for 1d and 2d respectively. More-
over, MPS and PEPS are known to have many interesting
(and important) properties. For instance, both of them
satisfy the so-called area law scaling of the entanglement
entropy , which is a key property of low-energy states
of most quantum many-body systems (albeit with no-
table exceptions, see Refs.”””"). Moreover, it is known
that ground states of 1d gapped local Hamiltonians can
be efficiently approximated with exponential accuracy by
an MPS’", and the same holds for thermal states in 2d
with PEPS”®. From the numerical point of view, MPS is
the relevant class of states at the heart of efficient meth-
ods for 1d systems such as DMRG and TEBD. PEPS
is also at the basis of simulation methods for 2d systems
such as the finite and infinite PEPS methods ' ®°' | as well
as TERG

We wish to remark here a couple of properties of MPS
and PEPS. First, for a system of size N, the number
of parameters in both families of states scales linearly
with IV, and polynomially in the bond dimension of the
tensors (that is, the number of different values for the
connecting indices in the MPS or PEPS tensor network,
see Fig.(4)). We call this bond dimension y in the case of



MPS, and D in the case of PEPS. Importantly, this bond
dimension can be regarded as a measure of the number of
parameters in the TN, but also as a measure of the maxi-
mum amount of entanglement that can be handled by the
wavefunction (see Ref.'”). Second, for systems invariant
under translations, it is possible to take the thermody-
namic limit N — oo and consider a MPS or PEPS for
a system of infinite size. This is done by repeating the
same unit cell of tensors across the whole lattice
This trick is at the basis of methods to study infinite-
size systems such as iDMRG, iTEBD and iPEPS. The
methods that we shall propose in this paper will be for
infinite-size systems, and thus rely on this idea as well.

E. Time evolution with Matrix Product Operators
and Projected Entangled Pair Operators

Let us now consider the problem of time evolution.
We assume that this evolution is generated by a Hamil-
tonian H that is the sum of local interaction terms on lat-
tice. For simplicity of the explanation, let us also assume
a time-independent Hamiltonian with nearest-neighbour
interactions, namely

H=>" nlrl, (5)

(r,r’)

although time-dependent cases and more generic types
of intereactions could also be considered (including long-
range ones” ). The real time evolution of a given state
| (0)) reads

(B (1)) = e (0)). (6)

It is equally possible to consider the evolution in imagi-
nary time 7 in order to get the ground state |¥ ) of H,
namely

i) 1))

Yo = B e o "
where we have assumed that the initial state |¥(0)) has
a non-zero overlap with the ground state |U,,), and the
appropriate normalization of the state has been included.

As is well known, these two different types of evolutions
can be approximated using a TN approach for 1d and 2d
systems, both for finite and infinite systems. What is
important for us, though, is that the evolution operators
et and e 7T can usually be approximated by a se-
quence of well-behaved MPOs''" in 1d or PEPOs in 2d,
as explained in Ref.””. This MPO and PEPO approxi-
mation will turn out to be a key step in the algorithms
that will be proposed in Sec.III.

Let us now remind the basic steps in obtaining MPO
and PEPO descriptions for the evolutions generated by
H. Here we simply review some of the results from

Ref.”?, but which are important for our purposes. For
concreteness of the explanation, let us imagine that H
corresponds to the spin-1/2 ferromagnetic quantum Ising
model in a homogeneous transverse field,

H=—-Y olloll—ny ol (8)
(') r

where o, and o, are the usual Pauli matrices, and the
sum in the first term is over nearest-neighbours. Let us
now assume, for simplicity, the case of a 1d system of
N particles with periodic boundary conditions. With-
out loss of generality, we also consider the evolution in
imaginary time under this Hamiltonian for a total time
T. The first thing to do, and as also done also in other
approaches” """ is to approximate the whole evolution
by breaking the total evolution time 7" into smaller steps
of size 07 < 1. Then, we have that the evolution oper-
ator U = exp(—HT) can be written as U = [U(d7)]™ =
[exp(—H7)|™, with m = T/dr. Next, we would like to
describe the term U(§7) = exp(—Hd7) by an MPO. We
wish to make it in such a way that the resultant MPO is
invariant under translations and symmetric under space
inversion, since these are symmetries of the original
Hamiltonian, and also favors stabiltity in numerical ma-
nipulations. As explained in Ref."“, this can be achieved
in the following way: first, split H = H, + H,, so that
we can perform a Suzuki-Trotter decomsposition’™
exp(—HOT) ~ exp(—H,07) exp(—H,67) + O(672)"". In
this splitting, H, contains all the terms with o, oper-
ators and H, the terms with o, operators. The term
exp(—H,07) is just a tensor product of one-body opera-
tors,

_ (]

e Hyér _ ®71Y:1ehaw 0T — ®7J)f:1L[r] ’ (9)
and its MPO representation is trivial (see Fig.(8.a)).
However, the term exp(—H,d7) requires a little bit more
consideration. In order to evaluate the MPO for this
term, we first remember that

’

el — cosh ()IMII0] + sinh (w)og]og/] (10)

for any w. Using this property, and a little bit of algebra,
it is easy to arrive at an expression for the MPO. If the
operator is expressed as

5 N slrlglr+1] G180+ .. . .. .
ST Xm0 e T § ’ A2 N g i) (Gge -GN

J1J2 "IN
(11)
where [i,-) is the basis of eigenstates of o, at site r (and

i's,j's

same for the j’s), then the coefficients 0;11322’]% are given
by the MPO
e = w (GG - (M), (12)

where the non-zero components (M;)a,ﬁ’ of tensor M are
(M?)11 = cosh (67)I}, (M) = sinh (67)I,
(]\4]%')12 = (M;.')Ql = /sinh (67) cosh (67)(0.)% , (13)
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FIG. 8: (color online) (a) Diagrammatic representation of the
tensor M in Egs.(12,13). Bond indices are highlighted in pink.
(b) Construction of the 1d MPO. The contraction of tensors L
and M results in the MPO tensor R. (c¢) Construction of the
2d PEPO. The contraction of one tensor L and two tensors M
(one along each direction of the lattice) results in the PEPO
tensor R.

as explained in Ref.®”. This MPO is represented in
Fig.(8.b). Then, in order to obtain a complete MPO
combining the H, and H, terms, we just need to com-
bine the tensors for the two pieces as shown in Fig.(8.b).
This MPO description is particularly convenient for nu-
merics, since it is symmetric with respect to space inver-
sion, the tensors are real numbers, and it is also invariant
under translations. Notice also that one can easily take
the thermodynamic limit N — oo.

It is a good idea to make the tensors in the MPO de-
scription real and as symmetric as possible. This can usu-
ally be achieved by a variety of tricks depending on the
system considered. For instance, as explained in Ref.®?,
for the antiferromagnetic Heisenberg models on bipartite
lattices it may be convenient to perform a sublattice ro-
tation prior to finding the MPO representation in order
to make the MPO tensors real. It is a good idea to ap-
ply tricks like this also to other models, whenever this is
possible.

In 2d it is equally simple to find a PEPO descrip-
tion for the evolution operator. The construction is
based on that of the MPO for 1d. Let us imag-
ine that this time we have the same Hamiltonian as
in Eq.(8) but in a square lattice. Then, we can de-
compose the evolution term generated by H, into a
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FIG. 9: (color online) (a) Time evolution of an MPS for [¥(0))
as driven by an MPO for U (7). (b) Time evolution of a PEPS
for |¥(0)) as driven by a PEPO for U(J7).

sum of two contributions: one for interactions along
the rows, and one for interactions along the columns,
H = H™" + H°'. Then, we have that exp(—H.,67) =

exp(—HT°"67) exp(—H57), where H! contains
the interactions alog the rows/columns. It is clear that,
for each individual row or column, one can find MPO
descriptions as the ones described before for the 1d case.
Therefore, it is just a matter of combining together all
these MPOs in a appropriate way in order to obtain a
PEPO for the desired evolution. This is represented in
the diagram of Fig.(8.c). This PEPO has again nice prop-
erties: it is real, and also is symmetric with respect to
space inversions in the two lattice directions.

The construction of MPOs and PEPOs that we have
reviewed here can be further generalized to a variety
of other models and interactions. Notice that it is of
course possible to use other alternative approaches to
build MPOs and PEPOs for evolution operators. How-
ever, these constructions may not always guarantee the
symmetry conditions of the obtained TN such as space in-
version and translational invariance. As we shall see, it is
important for our purposes that the obtained MPOs and
PEPOs have these nice symmetries, since this improves
the efficiency of the algorithms that we shall propose in



Sec.III.

III. ALGORITHMS

In this section we propose a number of numerical sim-
ulation algorithms that allow to compute ground state
properties of quantum lattice systems of infinite size. Our
main focus is on 1d and 2d, but we also discuss briefly
the possibility of 3d systems, periodic boundary condi-
tions, and real time evolution. Our algorithms are valid
to deal with systems with a different amount of spatial
symmetry. As we shall see, more spatial symmetry means
simpler and more efficient simulation methods. In 1d this
may not be too relevant, since the number of operations
in the proposed methods differ only in subleading and
multiplicative constant terms. But in 2d this is crucial
since the difference in the leading number of operations
turns out to be huge, in fact several orders of magnitude,
depending on the amount of symmetry. The algorithms
that we present here allow to compute ground state prop-
erties. As we shall discuss more quantitatively in Sec.IV,
these methods are a possible alternative to other meth-
ods for systems of infinite size such as iDMRG, iTEBD,
iPEPS and TERG'”77 7" Importantly, all the algo-
rithms of this section preserve at every step the invari-
ance under translations.

First we discuss the general approach, and then we
describe the details of each algorithm. The cases of 3d
and periodic boundary conditions are briefly discussed
in Sec.II1.D. For an overall view of the complexity of the
different the methods, one can jump directly to Sec.IIL.E.

A. General approach

The general idea is quite simple, and can be under-
stood from the diagrams in Fig.(9) and Fig.(10). The
goal is to compute the evolution of some quantum state
as driven by some Hamiltonian with local interactions
for a total time T. As we have explained in the pre-
vious section the time evolution operator, both in real
and imaginary time, can be decomposed as the action of
MPOs or PEPOs for a given time interval 47 on a given
quantum state described by an MPS or PEPS. Thus, the
whole evolution of the system can be represented by some
initial MPS or PEPS, to which one applies the MPO or
PEPO driving the evolution for as many steps m = T/t
as needed, see Fig.(9). In the case of a ground state cal-
culation the number of steps m is infinite or, in practice,
very large until convergence of some relevant quantity is
achieved.

The main goal of our algorithms is the efficient approx-
imation of expectation values of local obsevables. For
instance, let us consider a one-body operator o;. Let us
also consider the evolved state |¥(T)) at some given time
T, as represented in Fig.(10) for an MPS (the case of a
PEPS is a straightforward generalization). The expec-
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FIG. 10: (color online) Diagram for the numerator in Eq.(14).
The expression is hermitian with respect to the vertical in-
dices, hence the TN is symmetric with respect to a specular
reflection across the red dashed line plus complex conjuga-
tion. This means that the individual tensors are symmetric
with respect to transposition of the vertical indices plus com-
plex conjugation.

tation value of operator o; in the evolved state is given
by

(U(T) |01 [(T)) _ (¥(0)|UT01U]¥(0))

= "wmem) ~ o) Y

where U is the corresponding evolution operator that can
be decomposed as U = [U(d7)]™, with U(é7) being ap-
proximated by an MPO or PEPO. Thus, e.g. the nu-
merator in Eq.(14) can be represented diagramatically
as in Fig.(10). The actual expectation value is the ra-
tio of two contracted TNs like the one in the figure, one
with the obserble o; for the numerator, and one with-
out the observable for the denominator. For a quantum
lattice system in d spatial dimensions, these are (d + 1)-
dimensional TNs, where the extra vertical dimension is
time. Therefore, for an MPS one has to deal with the
contraction of a (14 1)d TN, whereas in 2d one has the
contraction of a (2 + 1)d TN.

All the existing TN methods that compute real and
imaginary-time evolutions approximate, in one way or
another, a contraction like the one described above or
similar. For instance, iTEBD and iPEPS methods com-
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FIG. 11: (color online) (a) Symmetries of the MPO tensor
R for the simplfied one-directional 1d method. In the gen-
eral case (full one- and two-directional 1d methods), only the
first equality holds. (b) TN structure for the simplified one-
directional 1d method. (c) General TN structure for the full
one- and two-directional 1d methods.

pute an MPS or PEPS approximation to the dominant
eigenvector of some transfer matrix operator defined as
the MPO or PEPO driving the evolution”” " But
there are more ways of contracting these TNs. For in-
stance, one could think of ’folding’ the TN across the
red dashed line in Fig.(10) accompanied by a transversal
contraction, as has been done in 1d in Ref.

Our approach in this paper is to use CTMs and corner
tensors to approximately contract TNs like the one in
Fig.(10) for different types of systems. This is actually a
direct generalization of the ideas of CTMRG in Ref."
In our case, though, it is worth stressing a peculiarity
inherent to the case of quantum lattice systems: any ex-
pectation value is by construction a hermitian expresison.
This means that the coresponding TN is symmetric with
respect to transposition of the vertical indices and com-
plex conjugation, see Fig.(10). Even if quite obvious, this
property needs to be explicitely taken into account in all
our algorithms.

The methods that we propose are different ways of ap-
proximating these expectation values by using CTMs and
corner tensors. This is done in two steps. First, one finds
a set of renormalized tensors (e.g. renormalized CTMs)
accounting effectivly for the most important correlations
in the TN. Second, expectation values are approximated
by using these renormalized tensors. In what follows we
show how to do this in 1d and 2d.

B. 1d quantum lattice systems

In this paper we consider three algorithms using CTMs
to approximate expectation values as in Fig.(10). The
first algorithm is called ’simplified one-directional 1d
method’, and is very efficient. This approach is de-
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signed for systems such that the MPO is also hermitian
with respect to the horizontal indices and is explained
here. The other two algorithms are considered in Ap-
pendix A.a,b. The second algortithm is the ’full one-
directional 1d method’; valid for an MPO without the
previous symmetry requirement. The third algorithm is
the ’full two-directional 1d method’, which is equivalent
to the CTMRG algorithm generalized to deal with the
MPO considered here without extra symmetry require-
ments. As we shall see, the notion of ’one-directional’
or 'two-directional’ for each approach refers to the num-
ber of directions in which the lattice is simultaneously
expanded at every step.

The relevant parameter in these methods will be ¥,
which is the rank of the renormalized CTMs at every
step. From Egs.(1,2) and Figs.(12.d,13.d,25.¢,26.c,28),
one can see that this is also the rank of the the renor-
malized reduced density matrices of the system. Thus,
some of the truncations performed by the algorithms in
this section are really truncations in the entanglement
spectrum (or, equivalently, the spectrum of Schmidt co-
efficients) of half an infinite chain

The leading scaling of the running time (or complexity)
of the three methods is the same, namely O(x?3). This
is exactly the same complexity as iDMRG and iTEBD
methods. However, the multiplicative corrections to this
overall complexity are very different for each case, which
implies that the total number of operations is also quite
different. The simplfied one-directional 1d method is the
less time-consuming, whereas the full two-directional 1d
method is the one that takes more time.

The procedure in these algorithms is similar to the
directional CTM algorithm from Ref.””. Namely, we (i)
insert rows and columns in the TN in order to expand its
structure, (ii) absorb the inserted tensors by contractions
towards the horizontal (x) and vertical (y) directions, or
towards the corners, and (iii) renormalize the resultant
tensors in some proper way.

1. Simplified one-directional 1d method

Here we assume that the MPO is invariant under trans-
position of the horizontal indices plus complex conjuga-
tion, see Fig.(11.a). This symmetry is taken into account
in order to produce a very efficient algorithm. Thus, the
TN must be invariant under the index transposition plus
complex conjugation both in the horizontal (x) and verti-
cal (y) directions, see Fig.(11.b). This requirement must
be satisfied at all steps in the algorithm. In order to
achieve this, we consider a renormalized TN that is spec-
ified at every step by one CTM C, a half-column transfer
matrix 77, a half-row transfer matrix 75, and the MPO
tensor R, see Fig.(11.b). Notice that tensors 77 and T
can also be interpreted as the tensors of two MPSs re-
spectively in the horizontal and vertical directions (see
e.g. Fig.(14)). The algorithm implements what we call
x- and y-moves. These are as follows:



FIG. 12:
directional 1d method, see text.
density matrices are shown in red.

(color online) z-move for the simplified one-

Open indices in reduced

1. xz-move:

(a) Insertion. We insert one new column in the
TN, as shown in Fig.(12.a).

(b) Absorption. We absorb the new column to-
wards the left, as indicated in Fig.(12.a,b).
At this step we produce the new (unrenormal-

ized) tensors C and Ts.

(c) Renormalization. This is done by means of
the isommetry U as shown in Fig.(12.e). Im-
portantly, this isommetry is obtained from the
singular value decomposition ot the CTM C' as
in Fig.(12.c). As aresult of this, we obtain the
renormalized CTM €’ and half-row transfer
matrix T3, see Fig.(12.e). Notice that U is, in
fact, the unitary matrix that diagonalizes the
reduced density matrix from Fig.(12.d). Fi-
nally, since the system is symmetric with re-
spect to horizontal transposition plus complex
conjugation, we can just use the new tensors
to obtain the complete TN as shown in the
diagram of Fig.(11.b).

2. y-move:

(a) Insertion. We insert one new row in the TN,
as shown in Fig.(13.a).

(b) Absorption. We absorb the new row towards
up, as indicated in Fig.(13.a,b). At this tep
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FIG. 13: (color online) y-move for the simplified one-

directional 1d method, see text.
density matrices are shown in red.
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we produce the new (unrenormalized) tensors

C and T;.

(¢) Renormalization. This is done by means of
the isommetry V' as shown in Fig.(13.e). This
isommetry is obtained again from the singu-
lar value decomposition of the CTM C, see
Fig.(13.c). As in the previous case, V is the
unitary operator that diagonalizes the reduced
density matrix in Fig.(13.d). Finally, we use
the new tensors to obtain once again the com-
plete TN as in Fig.(11.b).

The whole algorithm now proceeds by iterating these
two moves until convergence of some relevant quantity
(e.g. the spectrum of singular values of the CTM). This
approach is valid for computing imaginary time evolu-
tion (and thus ground states) under an MPO with the
required symmetry properties, e.g. the quantum Ising or
antiferromagnetic Heisenberg and XX models described
in Sec.ILLE. The leading number of operations of the
metod is O(x?), where Y is the rank of the CTM C. This
approach has a number of advantages: it is extremely
efficient in finding ground states (the total number of
operations is very low), and also preserves the spatial
symmetries of the evolution operator at every step. Let
us also stress the fact that the net result of the y-move is,
in fact, equivalent to (i) a rotation of the 2d TN by 7/2,
followed by (ii) an a-move, and then followed by (iii) a
rotation of the TN by —n/2. This relation is possible



because of the symmetries of the TN in Fig.(11.b).

Let us stress another important and intriguing fact
about this algorithm, which is that there are no explicit
truncations. That is, the rank y of the CTM is specified
from the very beggining in the initial TN, and does not
grow at all throughout the evolution. This is a key differ-
ence with other methods such as CTMRG and iTEBD,
where the analogous to this rank grows at every step
in the algorithm and thus needs to be truncated at every
step. Here, though, the situation is more subtle. One can
think of the truncation begin implemented implicitely.
The initial choice of rank x for the CTM defines already
this implicit truncation, and then y is preserved all along
the algorithm. Even if this is conceptually strange, it is
really not a problem for the method: every time we in-
sert a column or row, the number of indices of the CTM
proliferates in one direction while it is kept constant in
the other, which means that the rank of the CTM can
not grow. It is this property of the algorithm what imple-
ments an automatic implicit truncation and, thus, we do
not need to truncate explicitely at any step. However, in
Sec.III.D we will see that this property no longer holds in
2d since the indices of the corresponding corner tensors
always proliferate in, at least, two directions, so explicit
truncations will always be needed in that case.

2. Ezpectation values

Once the algorithm has converged, one is in position
of computing expectation values of local operators. For
this, one needs to consider the contraction of the TN
together with the operator for the observable that one
wishes to calculate. The CTM method explained be-
fore allows to approximate such a calculation. We show
this for the general case in Fig.(14) (up to normalization
of the wavefunction'“") for one-site operators, two-site
operators between nearest-neighbours, and also for two-
point correlation functions. As is well known from MPS
methods, all these calculations can also be done in O(x?)
operations.

C. 2d quantum lattice systems

In this section we discuss how to generalize the ideas
from the previous section to the 2d case. This general-
ization is conceptually straightforward, but there are a
number of significant differences with respect to the 1d
case that are worth stressing. Let us summarize these
differences:

(i) Since more spatial dimensions come into play, we
have more possibilities to effectively expand the rel-
evant TN. Thus, we discuss four possible corner al-
gorithms, as opposed to the three discussed in 1d.

(ii) In any of the approaches the indices in the differ-
ent tensors proliferate at every step in, at least, two
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FIG. 14: (color online) Different expectation values, up to
normalization, for a 1d system: (a) one-body operator o1, (b)
two-body operator o2, and (c¢) two-point correlation function
with a separation of seven lattice sites. The normalization is
done by dividing each one of these expressions by the same
expression where observables are replaced by identity opera-
tors.

different directions. Thus, this growth needs to be
always truncated explicitely, regardless of the ap-
proach.

(iii) The spectrums of the corner tensors are no longer
directly associated to the spectrums of the reduced
density matrices of the system. Nevertheless, these
spectrums still carry important information about
the correlations in the system.

(iv) The complexity of each approach depends dramat-
ically on the level of symmetry and chosen renor-
malization scheme. Unlike in the 1d case, where
all the methods had the same complexity (namely
O(x?)), in 2d there are differences in several orders
of magnitude (see Table (I) in Sec.IILE).

(v) Our algorithms produce separate tensors for the
'bra’ and ’ket’ parts of the TN, see Fig.(15). Thus,
the TN is always a positive-definite object by con-
struction. This was also the case in 1d, but was not
found to be of special relevance there. However, in
2d this is important since the truncation approach
differs from the one used in e.g iPEPS and TERG
algorithms. In those algorithms, the ’bra’ and 'ket’
parts of the TN are approximated simultaneously
by some common tensors, which in practice breaks
the positivity requirement and may lead to numer-
ical instabilities (see e.g. the analysis in Ref.””). In
a way, the approach in this paper is similar to the
single-layer methods in Ref.

Before entering into details of the methods, let us men-
tion that another alternative for a 2d algorithm based on
CTMs is actually possible. Namely, one could use some
1d method with CTMs to compute effective environments
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FIG. 15: (color online) (a) Symmetries of the PEPO tensor R
for the simplified one-directional 2d method. In the general
case (full one-, two- and three-directional 2d methods) only
the first equality holds. (b) TN structure for the simplified
one-directional 2d method. (c¢) General TN structure for the
full one-, two- and three-directional 2d methods.

of a 2d iPEPS, and use it in the context of some tensor
update to simulate time evolution (e.g. ’simplified’ or
"full’ updates’>*""). This approach is also valid, and has
already been explored’. However, the algorithms that
we explain in this section are based on a completely dif-
ferent approach.

Here, we first present a ’simplified one-directional 2d
method’. As in the 1d case, this simplified method is
designed for systems such that the tensor defining the
PEPO is hermitian with respect to the two spatial di-
rections independently. The implementation of this al-
gorithm is quite efficient and the steps will be explained
in detail. In Appendix A.c, we discuss three different
'full” 2d methods which are valid for PEPO tensors with-
out the previous symmetry requirement. In increasing
level of complexity, these approaches are called ’full one-
directional, full two-directional, and full three-directional
2d methods’. We only sketch briefly the main idea behind
them, and from here the interested reader can infer very
easily their step-by-step implementation. As we shall see
in the Appendix, these algorithms are less efficient than
the simplified directional 2d method, and the complexity
for each one of them is also very different. In fact, some-
times the complexity may be higher than the calculation
of expectation values itself, as we will see in Sec.IIL.E.
Still, we believe that it is important (at least from a con-
ceptual perspective) to be aware of the existence of all
these possibilities.

For 2d quantum lattice systems, the CTMs are gener-
alized to corner tensors (see Fig.(7)), which are tensors
with at least three indices, one for each direction of the
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lattice. Thus, different singular value decompositions of
corner tenors may have different ranks. In practice, one
can work with an effective rank x for all the decomposi-
tions, and this is the relevant parameter for the 2d meth-
ods. However, it is also possible to work with separate
ranks, e.g. x for the vertical direction and D for the hor-
izontal directions. This choice of ranks would be analo-
gous to the iPEPS algorithm, where we have an iPEPS
of bond dimension D for which an effective environment
with tensors of bond dimension X’ is computed (in our
approach, we have that ' ~ x? very roughly, since we
produce ’bra’ and ’ket’ tensors independently). For sim-
plicity, in this paper we choose always the same rank
when explaining the details of the methods (including
complexity issues). However, we sometimes choose dif-
ferent ranks for the different directions in the numerical
calculations of Sec.IV. Let us also remark that, again and
as in the 1d case, the truncations in the vertical indices
for the full methods are in fact in the entanglement spec-
trum of a corner of the 2d quantum lattice system, e.g.
see again Fig.(7).

As in the 1d case, the procedure for these methods is
always the same: (i) insertion of tensors, (i) absorption
of the inserted tensors towards some direction or towards
some corner, and (iii) renormalization by means of some
isommetry or rectangular matrix. Also, in this section
we use the following notation: the spatial (horizontal)
directions are called x and y, whereas the temporal (ver-
tical) direction is called z (see Fig.(15)). Also, z-indices
refer to indices that connect the tensors in the TN in
the z direction (and similar definitions apply for y and
z-indices).

1. Simplified one-directional 2d method

Here we assume that the PEPO is invariant under
transposition of the z and y indices independently plus
complex conjugation, see Fig.(15.a). As in the 1d case,
this extra symmetry is taken into account in order to
produce a very efficient algorithm. Thus, the TN must
be hermitian in the three directions x,y and z, see
Fig.(15.b). This requirement will be satisfied at all steps
in the algorithm. Therefore, the renormalized TN is spec-
ified at every step by one corner tensor C' (analogue to the
CTM in 1d), three tensors 17, T» and T3 (analogue to the
half-row and half-column transfer matrices in 1d), and
three tensors X,Y and Z (coresponding to some renor-
malized iPEPS for each one of the three planes yz, zz
and zy), see Fig.(15.b) The algorithm now implements
what we call -, y- and z-moves. As in 1d, these moves
are equivalent up to rotations of the whole lattice by /2.
Thus, for simplicity we explain in detail e.g. the z-move,
and then explain how the y- and z-moves can be related
to the x-move by rotations.

1. z-move:



FIG. 16:

(color online) z-move for the simplfied one-
directional 2d method, see text.

(a) Insertion. We insert one new plane of tensors
in y and z directions of the TN, as shown in
Fig.(16.a).

(b) Absorption. We absorb the tensors from the
new plane towards the left hand side in the
z direction, as indicated in Fig.(16.a). At
this step we produce the new (unrenormal-
ized) tensors C,T;,T; and X, see Fig.(16.b).

(c¢) Renormalization. This is done by the isom-
metries U,,U,,W, and W, as shown in
Fig.(16.d). These are found as follows: first,
we find the isommetries ﬁy, ﬁz,wy and Wz
from the singular value decompositions of ten-
sors C', Ty and T35 that are shown in Fig.(16.b).
Then, we perform an explicit truncation in
the x largest singular values respectively of
all these decompositions, and find the isom-
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y-move = 1/2 rot + x-move +'% rot

z-move = 4 rot + x-move + 7% rot

FIG. 17: (color online) Relation between the -, y- and z-
moves in the simplified one-directional 2d method.

metries Uy, U,, W, and W,. With this, we ob-
tain the renormalized tensors C’,T],T} and
X', see Fig.(16.d).

2. y-move: rotate the TN by 7/2 in the zy plane as
shown in Fig.(17), and do an z-move. Then, rotate
the TN back to the original position.

3. z-move: rotate the TN by /2 in the zx plane as
shown in Fig.(17), and do an z-move. Then, rotate
the TN back to the original position.

The algorithm works again by iteration of the above
three steps until convergence of e.g. the singular value
spectrums of the corner tensors. As in the 1d case, this
approach is valid for computing ground states by doing
imaginary time evolution driven by a PEPO with the
required symmetry properties, e.g. the quantum Ising,
Heisenberg and XX models described in Sec.Il.E. The
leading number of operations in this method is O(x7) if
the different contractions are done by making use of the
geometric structure of the TN (remember the example
from Fig.(2)). As in 1d, this approach has the advantage
of being quite efficient, and also keeps the translational
invariance of the evolution operator at every step.

Several remarks are in order. First notice that, as
hinted previously, the indices in the tensors proliferate
in two different directions at each move, and thus one
needs explicit truncations in x. But second, and also
unlike in 1d, this time the different truncations are not
associated to the truncations in any reduced density ma-
trix of the system. We thus can think of this method as
an over-simplified algorithm that implements some ’ac-
ceptable’ truncation scheme in a very efficient way. We
believe that the isommetries found in this way, despite
not being the best possible, are still good choices as long
as the amount of entanglement in the system is not too
large (in a way similar to the simplified update'’"). In
the end, whether this approach is useful or not can only



be assessed by numerical simulations, and this is what
we will do in Sec.IV. Notice also that these truncations
do not correspond to truncations in any entanglement
spectrum of the system. For this, we should construct
explicitely the reduced density matrices of the system,
thus leading to less efficient but probably more accurate
algorithms. This is precisely what we discuss in the al-
gorithms of Appendix A.c.

2. Ezpectation values

As in 1d, once the algorithm has converged it is pos-
sible to compute expectation values of local operators.
This is shown for the general case in Fig.(18) (again up to
normalization of the wavefunction) for one-site and two-
site operators between nearest neighbours as well as for
a two-point function along the x direction. This time the
required calculations can all be done in O(x!!) operations
by choosing the appropriate order in the TN contraction
of the TN. The fact that the complexity is O(x!!) means
that, for the simplfied one-directional 2d method, this is
actually the bottleneck of the calculation, whereas for the
rest of the methods explained in Appendix A.c the bot-
tleneck is the calculation of the reduced density matrices
in Fig.(30).

D. Summary of methods and complexities

In the previous sections we have discussed two differ-
ent approaches to simulate quantum lattice systems with
corner transfer matrices and corner tensors. The first ap-
proach is the one from Ref."": use a (d — 1)-dimensional
corner method to approximate effective environents in
the context of an iPEPS algorithm in d dimensions. This
is the approach that we discussed in Sec.III.D for 3d
quantum lattice systems. The other approach, which is
the one that we presented in detail here, is to imple-
ment directly a corner method in (d + 1) dimensions to
approximate the contraction involved in the calculation
of expectation values of local observables for quantum
lattice systems in d dimensions, assuming an evolution
driven by some suitable MPO or PEPO. This has been
done in Sec.II1.B and Sec.III.C, as well as Appendix A.

The complexity in the algorithms presented in
Sec.II.B, Sec.III.C and Appendix A is summarized in
Table I. In 1d, all the methods that we have studied here
have the same complexity, which is also the same as in
iTEBD and iDMRG. However, in 2d the complexity de-
pends on the chosen method. As expected, 2d methods
are harder to implement numerically than 1d methods.
Nevertheless, these methods can also be implemented in
practice within some limitations
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FIG. 18: (color online) Different expectation values, up to
normalization, for a 2d system: (a) one-body operator o1, (b)
two-body operator o2, and (¢) two-point correlation function
with a separation of four lattice sites. The normalization is
done by dividing each one of these expressions by the same
expression where observables are replaced by identity opera-
tors.

[ Method [ W [ 2a |
Simplified one-directional o(x®) ox")
Full one-directional o(x®) o(x'")
Full two-directional o(x®) O(x*®)
Full three-directional - o(x'")
H Expectation values H o(x®) H o(x') H

TABLE I: Complexity of the methods in Sec.III.B, Sec.III.C
and Appendix A, defined as the leding term in the number
of operations. The calculation of expectation values is also
added for comparison. In 1d the three complexities are the
same, but the total running time for each algorithm is dif-
ferent because of subleading corrections and constant multi-
plicative terms.

IV. BENCHMARK: 1d AND 2d

In what follows we present preliminary numerical re-
sults for some of the algorithms discussed previously.
Specifically, we have considered the calculation of some of
the ground state properties of the ferromagnetic quantum
Ising model in transverse magnetic field h from Eq.(8),
both in 1d and 2d. The properties of this model are well
known """ and hence it is useful as a first benchmark
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FIG. 19: (color online) Entanglement spectrum of half an
infinite chain for the 1d ferromagnetic quantum Ising model
in transverse field, for different field values h.
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FIG. 20: (color online) Critical correlation function Cyz (1)
as a funtion of the spin separation [ for the 1d ferromagnetic
quantum Ising model in transverse field at criticality. The
dashed dotted line is the asymptotic behavior in Eq.(16).

for our methods.

A. 1d

In 1d the algorithm in Sec.III.B and the ones in Ap-
pendix A.a,b seem to produce similar results for this
model. In Fig.(19) we show a calculation of the entangle-
ment spectrum of half an infinite chain for different val-
ues of h (focusing on the first 130 spectral values). This
is computed from the converged spectrum of eigenval-
ues of the CTM as in Eq.(2). The calculated spectrums
coincide with remarkable accuracy with the ones in the
literature (see e.g. Ref.””"")  and were obtained in just a
few minutes with very modest computational resources.

We have also computed the two-point correlation func-
tion Cy, (1), defined as

r] _[r+l
<\1198|‘79[6]U£3 i ]|\IIQS> —m2 (15)
(Wys|Wys) v

Coz(1)

where we have substracted the long-distance term m?2,

with m, the expectation value of o, at one site. This
correlation function can be computed exactly ", and at
criticality (h = 1) it tends to decay algebraically with the
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FIG. 21: (color online) Two different entanglement spectrums
for the 2d ferromagnetic quantum Ising model in a transverse
field for different values of h: for a corner (left), and for a
half-infinite plane (right).

separation distance [ as
a 1
Coa(l) ~ 5 0 53 (16)

for some constant a and large I. In Fig.(20) we plot the
calculated value of this correlator for y = 50 and h = 1.
We see that our simulation is indeed able to reproduce
the assymptotic behavior in Eq.(16) for a large number
of sites even for this small value of x.

B. 2d

In 2d we have computed ground state properties of
the Hamitonian in Eq.(8) by using the simplified one-
directional 2d method from Sec.III.C.1. In particular,
we have computed the ground state energy per site e,
as well as the magnetizations per site m, and m,, defined
respectively as the expectation values of the o, and o,
operators at a given site. For completeness and compar-
ison to the 1d case, we have also computed the entangle-
ment spectrum of a corner of the 2d lattice, as well as of
half an infinite plane. In our numerical calculations we
employed different truncation parameters depending on
the direction. Hence, we used a truncation parameter D
for the indices of tensor Z in Fig.(15.b) in the xy plane,
and a parameter x everywhere else.

In Fig.(21) we plot the entanglement spectrum for dif-
ferent values of h both for a corner of the infinite plane,
as well as for half an infinite plane, as computed with
(D,x) = (4,4). These have been calculated from the
corner tensors as in e.g. Fig.(7). The finite value of x
used in our simulations truncates these spectrums in 4
and 16 values respectively. Our calculations show that
the entanglement spectrum flattens as the critical point
is approached, thus involving a much larger amount of
entanglement. Interestingly, we also see that long tails
in the spectrums tend to be produced close to critical-
ity. When moving slightly away from criticality, we find



FIG. 22: (color online) Energy per site (left) and magneti-
zation mg per site (right) for the 2d ferromagnetic quantum
Ising model in transverse field. The calculation is for the sim-
plified one-directional 2d method with truncation parameters

(D, x) = (4,4)

a crossover region to a regime wehere the spectrums tend
to decay very quickly.

In Fig.(22) we show the energy per site ey and the
magnetization m, as a function of the magnetic field A
for (D,x) = (4,4). They follow the usual behavior for
this 2d quantum system found by other methods (see
e.g. Fig.(4) in Ref.”") with good accuracy. In Fig.(23)
we show the behavior of the magnetization m,, which is
the order parameter, for (D, x) = (4,2), (4,4) and (4,6).
As expected, close to criticality the order parameter goes
to zero according to a critical exponent 5 as

m, ~ b(h, — h)? (17)

for some constant b. The estimated values of 8 as well as
our estimations of the critical point for these values of the
truncation parameters are shown in Fig.(24). Notice that
for (D,x) = (4,2) the value of the critical exponent is
very close to the mean field one Syrp = 1/2, but this gets
closer to the known Montecarlo result Sy ~ 0.327
as higher y is considered. A comparison of the critical
exponents and critical points as computed by different
methods is provided in Table II. We see that this ap-
proach, even if quite simple, already obtains a value for
the critical exponent that is compatible with the iPEPS
approach using CTMs from Ref.””, and a value for the
critical point already better than the Vertical Density
Matrix Approach (VDMA) from Ref.”"

Let us stress that our 2d results are based on the sim-
plest possible 2d algorithm from this paper. At this
point, we wish to remind that this algorithm is sort of an
over-simplified method because the truncating isomme-
tries are not computed from reduced density matrices at
all. Thus, much better accuracies in the critical proper-
ties of the system are expected if instead one implements
some of the ’full’ methods from Appendix A.c. Therefore,
the numerical results in this paper should be considered
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FIG. 23: (color online) Magnetization m. per site for the
2d ferromagnetic quantum Ising model in transverse field.
The calculation is for the simplified one-directional 2d method
with truncation parameters (D,x) = (4,2),(4,4) and (4,6).
The inset shows the behavior around the critical region.
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FIG. 24: (color online) Linear fits to the logarithm of m.
around the critical region of Fig.(23) to extract the critical
exponent 5. The different truncation parameters as well as
the estimated values of 8 and the critical point h. are indi-
cated inside the plots. These fits are done at a region suffi-
ciently close to criticality, but also slightly far from it, in such
a way that the inherent mean-field effective behavior of the
TN ansatz for too large correlation lengths is not observed

only as indicative, and not as representative of the best
possible performance achievable by corner methods for 2d
problems. Nevertheless, we feel that it is quite encourag-
ing that such an over-simplified approach is already able
to capture the essential properties of the system within
some accuracy. The numerical performance of some of
the full 2d methods from Appendix A.c will be consid-
ered in a future work

V. CONCLUSIONS AND FINAL REMARKS

In this paper we have explored the practical use of
CTMs and corner tensors to develop tensor network al-
gorithms for the classical simulation of quantum lattice
systems of infinite size. At every renormalization step,
these methods try to minimize the trucation error by
either (i) keeping the largest singular values of a CTM



H Method | s [ n |

Mean Field Theory 0.5 4
Quantum Montecarlo 0.327 3.044

D =3 VDMA™ - 3.2
0.332 3.06

D =3 MPS + iPEPS
D =3 CTM + iPEPS 0.328 3.04
D =2 TERG 0.333 3.08
D =4, x = 4 simp. one-dir. 2d 0.325 3.14

TABLE II: Critical exponent 8 and critical point h. of the
2d quantum Ising model in a transverse magnetic field, as
computed by different methods. In our case, h. has been
estimated as the point at which m. becomes roughly 1072,

or corner tensor, or (ii) keeping the largest magnitude
eigenvalues of some reduced density matrix. The second
scheme maximizes the fidelity between the unrenormal-
ized and renormalized reduced density matrices. In some
cases, e.g. 1ld systems with some extra symmetries, we
have seen that the truncation in (i) is equivalent to that
in (ii).

We have focused mainly on ground states of 1d and
2d systems, although we have also discussed briefly other
possibilities (3d systems, periodic boundary conditions,
and real time evolution). The methods that have been
proposed preserve the spatial symmetries of the system,
including invariance under translations. We have bench-
marked some of this methods by numerically computing
several ground state properties of the ferromagnetic spin-
1/2 quantum Ising model in 1d and 2d. These numer-
ics, which should be regarded as preliminary, are already
quite encouraging. The algorithms of this paper could be
a possible alternative to other well-established ways to
compute ground state properties of quantum lattice sys-
tems in the thermodynamic limit, such as iDMRG and
iTEBD in 1d, and iPEPS and TERG in 2d. The compu-
tational complexity of the proposed algorithms has also
been analized, and we have seen that in 2d it depends
strongly on the simulation scheme, leading to differences
in several orders of magnitude.

From a broader perspective, it would be interesting to
understand the differences between explicit and implicit
truncations in the rank of the CTMs. In particular, it
would be good to know whether one type of truncation
is, by construction, more accurate than the other. In a
way, this could be similar to the difference between con-
ventional DMRG and single-site DMRG ' “, where single-
site DMRG seems to produce more accurate data with
the same computational resources.

The methods explored in this paper can also be gen-
eralized easily to deal with invariance under translations
every two (or more) lattice sites. In such a case, one
just needs to choose the tensors accordingly in such a
way that everything is compatible with the unit cell
of the lattice. The different renormalizations need also
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to be implemented in accordance with the lattice peri-
odicity. Finally, let us mention that these algorithms
can also be used in the context of further tensor net-
work generalizations in order to study e.g. systems with
internal symetries and fermionic quantum lattice
systems We believe that the methods of this pa-
per will be useful for the practical implementation and
development of further tensor network algorithms in the
future.
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Appendix A: Full 1d and 2d methods
a. Full one-directional 1d method

In this algorithm the only existing symmetry in the
TN is the vertical transposition of the tensors plus com-
plex conjugate, and also translation invariance. Thus,
this time the relevant TN is represented by two CTMs
C4 and Cs, two half-row transfer matrices T and T3, and
one half-column transfer matrix 77, see Fig.(11.c). Notice
that tensors 11, T and T3 can again be interpreted as the
tensors of three MPS respectively in the horizontal and
vertical directions (in the vertical direction there is one
for the left hand side, and one for the right hand side).
The general idea now is the same as in the previous al-
gorithm: insert, absorb and renormalize. However, since
there are less symmetries than in the previous method,
the renormalization needs to be done in a different way.
Here are the main steps of the algorithm:

1. xz-move:

(a) Insertion. We insert two new columns in the
TN, as shown in Fig.(25.a).

(b) Absorption. We absorb one new column to-
wards the left, and one new column towards
the right, as shown in Fig.(25.a,b). At this
step we produce four new (unrenormalized)
tensors C~'1, 52, 1~“2 and fg.

(c) Renormalization. This is done by means
of two isommetries U and V as shown in
Fig.(25.d). This time, these isommetries are
computed by calculating the eigenvalue de-
composition of the reduced density matrices in
Fig.(25.c). We have that U renormalizes ten-

Sors gl and T, whereas V renormalizes 62
and T3, see Fig.(25.d). It is important that
U and V are different, since the TN does not
have extra symmetries in the horizontal direc-
tion.

2. y-move:



FIG. 25: (color online) z-move for the full one-directional 1d
method, see text. Open indices in reduced density matrices
are shown in red.

(a) Insertion. We insert one new row, as shown in
Fig.(26.a).

(b) Absorption. We absorb the row towards up, as
in Fig.(26.a,b). At this tep we _produce three

new (unrenormalized) tensors Cl, C’g and T1

(¢) Renormalization. This is done as in Fig.(26.d)
by means of a matrix P. This matrix is com-
puted by finding the eigenvalue decomposition
of the reduced density matrix in Fig.(26.c).
Importantly, this time PPT is not equal to
the x x x identity matrix, so we must do
the renormalization using P and its inverse
P~'. Notice, however, that the rank of the
reduced density matrix in Fig.(26.c) is always
x. Thus, P is a rectangular matrix, and P!
is the pseudoinverse of P. That is, if the sin-
gular value decomposition of P is given by
P = FSG', then its pseudoinverse is defined
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FIG. 26: (color online) y-move for the full one-directional 1d
method, see text. Open indices in reduced density matrices
are shown in red.

as P~1=GS1FT.

The method proceeds again by iterating the above x-
and y-moves for as long as required until e.g. conver-
gence of the eigenvalue spectrums of the reduced den-
sity matrices. Importantly, we can apply this algorithm
to compute evolutions by MPOs that are not symmet-
ric. Regarding complexity, this algoithm is again O(x?),
with x the rank of the reduced density matrices. Also,
similar conclusions as in the simplified one-directional 1d
method apply for parameter x in this algorithm: it does
not grow throughout the evolution and is fixed from the
beginning of the algorithm. Finally, in the case of having
an MPO invariant under horizontal transposition plus
complex conjugation, this algorithm is just equivalent to
the simplfied directional method, although with a less
efficient implementation.



FIG. 27: (color online) Full two-directional 1d method: ab-
sorptions, see text. Open indices in reduced density matrices
are shown in red.

b.  Full two-directional 1d method: CTMRG revisited

The following algorithm does no longer use a direc-
tional approach with z- and y-moves. Instead, it uses
a complete 'radial’-move, expanding both directions of
the TN at the same time. It is in fact the CTMRG
method " but adapted to our case (time evolution of
a 1d quantum lattice system driven by an MPO). As in
the previous section, the system is assumed not to have
any spatial symmetry in the horizontal direction (apart
from translation invariance). Thus, the relevant TN is de-
scribed again by two CTMs C and Cs, two half-row TM
T, and T3, and one half-column TM T3, as in Fig.(11.c).
Again, the half-row and half-column TMs can be inter-
preted as defining three different MPSs. The details of
the method are as follows:

(a) Insertion. We insert two new rows and two new
columns, as shown in Fig.(27.a).

(b) Absorption. We absorb the new tensors towards the
corners by computing the two (unrenormalized) cor-
ner transfer matrlces 01 and 02, half-row transfer

matrices T2 and T3 and half-column transfer matrix
Ty as in Fig.(27.b).
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FIG. 28: (color online) Full two-directional 1d method: re-

duced density matrices, see text.
density matrices are shown in red.

Open indices in reduced

(¢) Renormalization. Compute the reduced density ma-
trices from Fig.(28), and perform their eigenvalue de-
composition. From these decompositions, obtain the
two unitary matrices U 1% and the matrix P as well as
their inverses UT, VT and P!, Truncate explicitely
in the y largest eigenvalues in magnitude for each
one of these decompositions, and obtain the matrices
U,V,P and their pseudoinverses. Then, renormal-
ize the CTMs, half-row transfer matrices and half-
column transfer matrix as shown in Fig.(29).

These steps are again repeated until convergence of the
spectrum of the reduced density matrices. Notice that
this time the rank of the CTM grows at each iteration of
the method and hence needs to be truncated explicitely in
x at every step. The leading number of operations for this
algorithm is again O(x?). However, the subleading and
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FIG. 29: (color online) Full two-directional 1d method: renor-
malizations, see text.

multiplicative corrections are higher than in the previous
two methods, and hence the total running time is also
higher.

c.  Full one-, two- and three-directional 2d methods

From a generic perspective, the 'full’ methods in 2d
have several things in common. First, the PEPO does
not need to be hermitian in the spatial directions, so we
will deal with TNs like the one in Fig.(15.c). Second, the
renormalizations are implemented by tensors found from
the eigenvalue decomposition of the relevant reduced den-
sity matrix of the indices that one wishes to truncate.
Third, truncations in the z direction are implemented
by isommetries, whereas in the x and y directions one
uses rectangular matrices and their pseudoinverses. And
fourth, and unlike in 1d, now explicit truncations are al-
ways needed.

There are many different ways of puting the above
ideas in practice, see Fig.(30). For instance, one could
think of a full one-directional approach, similar to the
simplified one, but where the tensors that implement
the truncations are computed from the reduced den-
sity matrices as in Fig.(30.a). Another approach is
a full two-directional approach, which keeps the idea
of the full two-directional method in 1d but being re-
stricted to the planes in the (2 4+ 1)d lattice. In this
approach, the relevant reduced density matrices are as in
Fig.(30.b). In fact, one could even think of combining the
one-directional approach in one direction with the two-
directional approach in the other two directions, giving
rise to another possible way of expanding the system. Fi-
nally, one can think of a full three-directional approach,
where the reduced density matrices look as in Fig.(30.c).
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FIG. 30: (color online) Different reduced density matrices
for two indices that appear at some step in the (a) full
one-directional, (b) full two-directional and (c) full three-
directional 2d methods. Reduced density matrices for four
neighbouring indices from the corners may also be considered
in the cases (b) and (c), see text. Open indices are shown in
red.

This last approach is the most direct generalization of
the CTMRG algorithm in Ref.”""" to higher dimensions.
However, this is also the most inneficient alternative. No-
tice also that in Fig.(30) we consider only reduced density
matrices of two indices. However, it would also be possi-
ble to consider reduced density matrices of four neigh-
bouring indices in the same direction within a corner
in the full two- and three-directional 2d methods (not
shown). Such an approach would of course be less effi-
cient, but also more accurate.

We expect stability and numerical accuracy of these
methods to increase as the reduced density matrix cap-
tures more relevant correlations. But the price that
one has to pay is the growth in complexity which, in
practice, makes it very difficult to implement numeri-
cal simulations in some cases. Assuming calculations of
reduced density matrices for two indices (and thus two-
index truncations), we see that the full one-directional
approach has complexity O(x!!), the full two-directional
approach O(x'?), and the full three-directional approach
O(x'7). This is to be compared with the simplified one-



directional method from the previous section, which has
complexity O(x7).

These approaches are expected to produce more accu-
rate results than the simplified one-directional approach.
However, in this paper we have just implemented numer-
ically the simplfied one-directional 2d approach and seen
that this already produces sensible results, see Sec.IV.
Thus, we expect these full methods to work even better,
despite one has to pay a price in the number of operations
required for the different contractions. The numerical
exploration of some of these methods will be presented
elsewhere

Appendix B: Further posibilities

We now discuss briefly some other possibilities for
corner-inspired methods, namely, 3d quantum lattice sys-
tems, periodic boundary conditions, and real time evolu-
tion.

d. 3d quantum lattice systems

3d quantum lattice systems (or equivalently, 4d clas-
sical lattice systems) are also of relevance for the study
of important physical phenomena, e.g. the emergence of
fermions and gauge bosons in 3d string-net models'",
or confinement of quarks in Quantum Chromodynamics.
In principle, it should be possible to generalize all the
approaches discussed so far in this paper to the 3d case.
However, from our experience with the 2d case, we expect
that the complexity of the algorithms will be quite large
and thus they may become unpractical. Yet, another pos-
sibility to deal with a 3d quantum lattice system would
be to follow the same idea as in Ref.’” for the 2d case,
namely, to use some 2d method with corner tensors such
as the one described in Appendix A.c to approximate the
environment of a 3d iPEPS in the context of a 3d iPEPS
algorithm. In fact, this would possibly lead to a quite effi-
cient algorithm for studying 3d quantum lattice systems
if combined with a simplified update of the tensors
For instance, if the full one-directional 2d method is used,
then we would have a 3d method of complexity O(x!!),
which is certainly doable. As in Ref."”, such an approach
may break the traslational invariance by one lattice site
of the lattice, but it would be straightforward to general-
ize our methods accordingly. The numerical exploration
of this approach will also be presented elsewhere

e. Periodic boundary conditions

Indeed, the case of periodic boundary conditions can
be considered as well in the context of full algorithms,
where the renormalizing matrices are computed by eigen-
value decompositions of the relevant reduced density ma-
trices. This is so since, in the end, periodic boundary
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FIG. 31: (color online) Examples reduced density matrices for
e.g. full one-directional methods with periodic boundary con-
ditions in (a) 1d and (b) 2d. In the 2d case periodic boundary
conditions are assumed in one spatial direction only, but these
could also be in both spatial directions. If necessary, further
periodic boundary conditions in the temporal (vertical) di-
rection could also be considered. Open indices are shown in
red.

conditions just add some extra indices to the TN di-
agram that needs to be contracted, see e.g. Fig.(31).
This means that the complexity of the corresponding al-
gorithm will increase (such an increase in complexity is
well-known in the DMRG community, see e.g. Ref.'"
and also Ref.””"*"). From the point of view of the con-
traction of a 2d TN this provides an alternative to the
method in Ref.""”. Let us also remark that the case of
periodic boundary conditions has already been consid-
ered in the literature in the context of CTMRG, see e.g.
Ref.”". Periodic boundary conditions in the temporal di-
rection may also be useful to compute thermal properties,
see e.g. Ref.'""~

f- Real time evolution: iTEBD and iPEPS reinterpreted

So far we have discussed the problem of finding ground
states, which is done by imaginary time evolution. How-
ever, one may wonder whether the techniques and meth-
ods explained here are of any use to compute also the real
time evolution of a quantum lattice system, and hence its
dynamical properties. We discuss this in what follows.

In a real time evolution, the MPO or PEPO driving the
evolution is usually only hermitian with respect to the
vertical (time) indices. Thus, if one wished to implement
a time-evolution method based on CTMs and corner ten-
sors, 'full’ methods (or variations thereof) should be con-
sidered. Moreover, in a real time evolution the total run-
ning time is finite (unlike in an imaginary time evolution
for finding ground states). Therefore, we need to deal
with a ’full’ approach such that the time direction can
grow independently of the spatial directions. The natu-
ral options for algorithms are thus the full one-directional



FIG. 32:

(color online) (a) The action of an MPO over an
MPS can be approximated by e.g. three renormalized tensors.
(b) Reduced density matrix of the bond index of the MPS
obtained after applying the MPO, in terms of four CTMs.
Open indices in the reduced density matrix are shown in red.

approaches from Appendix A.a,b, or in 2d also a combi-
nation of the full one-directional 2D approach in the time
direction and the full two-directional 2d approach in the
space directions (Appendix A.c).

For concreteness let us focus on the 1d case, for which
some variation of the full one-directional approach from
Appendix A.a may be used. Based on the above con-
siderations, one may be tempted to propose the followi-
ing real-time evolution algorithm: at a given step, (i)
repeat many xz-moves until convergence (effectively mak-
ing the size of the system infinite), and (ii) perform one
y-move. This can be understood as approximating the
action of an MPO over an MPS by means of three ten-
sors, see Fig.(32.a). Then, just repeat these operations
for as many (finite) number of steps as required.

The above approach is indeed a possibility. However,
numerical simulations show that its accuracy at long
times is not as good as the one that can be obtained
by using e.g. the standard iTEBD method (results not
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shown). This is understandable, since the truncations
implemented in this approach are more stringent than
the ones in iTEBD.

Let us now think of a different approach: we could
think again on the action of the MPO over the MPS in
terms of CTMs. Then, the aim is to truncate in the hor-
izontal indices by means of some tensor. Following the
spirit of the full algorithms described earlier, this can
done by computing the reduced density matrix of the in-
dices by means of the CTMs C; and Cs, see Fig.(32.b).
Then, we just find its eigenvalue decomposition. With
this procedure we obtain a matrix P and its inverse P~1.
A further truncation in the x largest eigenvalues in mag-
nitude produces the rectangular matrices P and P!,
which we can use to renormalize the horizontal indices of
the tensors.

Remarkably, this procedure is nothing but a reformula-
tion of the the standard iTEBD algorithm for non-unitary
evolutions”””". To see this, notice that iTEBD proceeds
by (i) finding the canonical form of the resultant MPS
after the MPO has been applied, and (ii) truncating its
bond index in the largest x Schmidt coefficients. It is
easy to prove that for an MPS in canonical form, the re-
duced density matrix in Fig.(32.b) is already diagonal. In
our laguage, this diagonalization is actually implemented
by the matrices P and P~!. Introducing these tensors in
the TN actually orthonormalizes and truncates the bond
indices of the evolved MPS. And this is exactly what the
iTEBD algorithm does. Also, it is not difficult to imagine
that if we generalize the same procedure to 2d systems,
then we obtain nothing but a reformulation of the usual
iPEPS algortihm but using PEPOs for the time evolu-
tion. In such a case, the relevant reduced density matri-
ces can not be computed exactly (since they amount to
the contraction of a 2d TN) and must be approximated
somehow. Simple approximations lead to efficient algo-
rithms, whereas more elaborate approximations are less
efficient but also more accurate.

Let us remark that the reinterpretation that we just
found of the iTEBD algorithm in terms of CTMs is in
fact similar to the interpretation of DMRG also in terms
of CTMs, see Ref."
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The aim of this analogy is simply to make manifest that
all these algorithms somehow share the same spirit.

In fact, the largest eigenvalue of the CTM could be degen-
erate. Yet, this does not spoil the performace of CTMRG
if only a finite number of eigenvalues is degenerate. Nev-
ertheless, at criticality all the eigenvalues tend to be de-
generate, which translates into a critical slow-down of the
method

We adopt here the same notation as in Ref.

MPOs were first introduced in Ref.

Here we have used a first-order Suzuki-Trotter decom-
position, but it is possible to consider higher-order de-
compositions to reduce the error, e.g. exp(—HJdT) ~
exp(—Hy07/2) exp(—H.7) exp(—H,671/2) + O(57%).
This analogy is formally valid for the truncations of the
indices along the spatial directions.

Again, we remark that the actual expectation value is the
ratio between these expressions, and the same ones but
where observable operators are replaced by identities.
See e.g. Ref.
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