133 research outputs found

    Efficient, Coercion-free and Universally Verifiable Blockchain-based Voting

    Get PDF
    Most electronic voting systems today satisfy the basic requirements of privacy, unreusability, eligibility and fairness in a natural and rather straightforward way. However, receipt-freeness, incoercibility and universal verifiability are much harder to implement and in many cases they require a large amount of computation and communication overhead. In this work, we propose a blockchain-based voting system which achieves all the properties expected from secure elections without requiring too much from the voter. Coercion resistance and receipt-freeness are ensured by means of a randomizer token -- a tamper-resistance source of randomness which acts as a black box in constructing the ballot for the user. Universal verifiability is ensured by the append-only structure of the blockchain, thus minimizing the trust placed in election authorities. Additionally, the system has linear overhead when tallying the votes, hence it is scalable and practical for large scale elections

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1

    Blockchain, consensus, and cryptography in electronic voting

    Get PDF
    Motivated by the recent trends to conduct electronic elections using blockchain technologies, we review the vast literature on cryptographic voting and assess the status of the field. We analyze the security requirements for voting systems and describe the major ideas behind the most influential cryptographic protocols for electronic voting. We focus on the great importance of consensus in the elimination of trusted third parties. Finally, we examine whether recent blockchain innovations can satisfy the strict requirements set for the security of electronic voting

    A smart contract system for decentralized borda count voting

    Get PDF
    In this article, we propose the first self-tallying decentralized e-voting protocol for a ranked-choice voting system based on Borda count. Our protocol does not need any trusted setup or tallying authority to compute the tally. The voters interact through a publicly accessible bulletin board for executing the protocol in a way that is publicly verifiable. Our main protocol consists of two rounds. In the first round, the voters publish their public keys, and in the second round they publish their randomized ballots. All voters provide Non-interactive Zero-Knowledge (NIZK) proofs to show that they have been following the protocol specification honestly without revealing their secret votes. At the end of the election, anyone including a third-party observer will be able to compute the tally without needing any tallying authority. We provide security proofs to show that our protocol guarantees the maximum privacy for each voter. We have implemented our protocol using Ethereum's blockchain as a public bulletin board to record voting operations as publicly verifiable transactions. The experimental data obtained from our tests show the protocol's potential for the real-world deployment

    Analysis of Blockchain Solutions for E-Voting: A Systematic Literature Review

    Get PDF
    To this day, abstention rates continue to rise, largely due to the need to travel to vote. This is why remote e-voting will increase the turnout by allowing everyone to vote without the need to travel. It will also minimize the risks and obtain results in a faster way compared to a traditional vote with paper ballots. In fact, given the high stakes of an election, a remote e-voting solution must meet the highest standards of security, reliability, and transparency to gain the trust of citizens. In literature, several remote e-voting solutions based on blockchain technology have been proposed. Indeed, the blockchain technology is proposed today as a new technical infrastructure for several types of IT applications because it allows to remove the TTP and decentralize transactions while offering a transparent and fully protected data storage. In addition, it allows to implement in its environment the smart-contracts technology which is used to automate and execute agreements between users. In this paper, we are interested in reviewing the most revealing e-voting solutions based on blockchain technology

    A Review of Blockchain-Based E-Voting Systems: Comparative Analysis and Findings

    Get PDF
    The emergence of blockchain has ushered in a significant transformation in information systems research. Blockchain’s key pillars such as decentralization, immutability, and transparency have paved the path for extensive exploration in various research domains. This particular study is focused on electronic voting, aiming to improve voting procedures by making better use of the benefits offered by blockchain technology. Through a comprehensive review of existing literature, we highlight the potential benefits of blockchain-based electronic voting systems such as transparency, security, and efficiency. However, several challenges, such as scalability, personal data confidentiality, and ensuring robust identity verification, persist. Addressing these issues is necessary to unlock the full potential of blockchain-based electronic voting systems, thereby fostering the development of trustworthy election systems in the future

    Seventh International Joint Conference on Electronic Voting

    Get PDF
    This volume contains papers presented at E-Vote-ID 2022, the Seventh International JointConference on Electronic Voting, held during October 4–7, 2022. This was the first in-personconference following the COVID-19 pandemic, and, as such, it was a very special event forthe community since we returned to the traditional venue in Bregenz, Austria. The E-Vote-IDconference resulted from merging EVOTE and Vote-ID, and 18 years have now elapsed sincethe first EVOTE conference in Austria.Since that conference in 2004, over 1500 experts have attended the venue, including scholars,practitioners, authorities, electoral managers, vendors, and PhD students. E-Vote-ID collectsthe most relevant debates on the development of electronic voting, from aspects relating tosecurity and usability through to practical experiences and applications of voting systems, alsoincluding legal, social, or political aspects, amongst others, turning out to be an importantglobal referent on these issues
    corecore