14,561 research outputs found

    Opportunistic linked data querying through approximate membership metadata

    Get PDF
    Between URI dereferencing and the SPARQL protocol lies a largely unexplored axis of possible interfaces to Linked Data, each with its own combination of trade-offs. One of these interfaces is Triple Pattern Fragments, which allows clients to execute SPARQL queries against low-cost servers, at the cost of higher bandwidth. Increasing a client's efficiency means lowering the number of requests, which can among others be achieved through additional metadata in responses. We noted that typical SPARQL query evaluations against Triple Pattern Fragments require a significant portion of membership subqueries, which check the presence of a specific triple, rather than a variable pattern. This paper studies the impact of providing approximate membership functions, i.e., Bloom filters and Golomb-coded sets, as extra metadata. In addition to reducing HTTP requests, such functions allow to achieve full result recall earlier when temporarily allowing lower precision. Half of the tested queries from a WatDiv benchmark test set could be executed with up to a third fewer HTTP requests with only marginally higher server cost. Query times, however, did not improve, likely due to slower metadata generation and transfer. This indicates that approximate membership functions can partly improve the client-side query process with minimal impact on the server and its interface

    Efficiency in Multi-objective Games

    Full text link
    In a multi-objective game, each agent individually evaluates each overall action-profile on multiple objectives. I generalize the price of anarchy to multi-objective games and provide a polynomial-time algorithm to assess it. This work asserts that policies on tobacco promote a higher economic efficiency

    Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

    Full text link
    We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark's data-parallel model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance

    Computing Competencies for Undergraduate Data Science Curricula: ACM Data Science Task Force

    Get PDF
    At the August 2017 ACM Education Council meeting, a task force was formed to explore a process to add to the broad, interdisciplinary conversation on data science, with an articulation of the role of computing discipline-specific contributions to this emerging field. Specifically, the task force would seek to define what the computing/computational contributions are to this new field, and provide guidance on computing-specific competencies in data science for departments offering such programs of study at the undergraduate level. There are many stakeholders in the discussion of data science – these include colleges and universities that (hope to) offer data science programs, employers who hope to hire a workforce with knowledge and experience in data science, as well as individuals and professional societies representing the fields of computing, statistics, machine learning, computational biology, computational social sciences, digital humanities, and others. There is a shared desire to form a broad interdisciplinary definition of data science and to develop curriculum guidance for degree programs in data science. This volume builds upon the important work of other groups who have published guidelines for data science education. There is a need to acknowledge the definition and description of the individual contributions to this interdisciplinary field. For instance, those interested in the business context for these concepts generally use the term “analytics”; in some cases, the abbreviation DSA appears, meaning Data Science and Analytics. This volume is the third draft articulation of computing-focused competencies for data science. It recognizes the inherent interdisciplinarity of data science and situates computing-specific competencies within the broader interdisciplinary space
    • …
    corecore