41 research outputs found

    Motion Estimation and Compensation in the Redundant Wavelet Domain

    Get PDF
    Despite being the prefered approach for still-image compression for nearly a decade, wavelet-based coding for video has been slow to emerge, due primarily to the fact that the shift variance of the discrete wavelet transform hinders motion estimation and compensation crucial to modern video coders. Recently it has been recognized that a redundant, or overcomplete, wavelet transform is shift invariant and thus permits motion prediction in the wavelet domain. In this dissertation, other uses for the redundancy of overcomplete wavelet transforms in video coding are explored. First, it is demonstrated that the redundant-wavelet domain facilitates the placement of an irregular triangular mesh to video images, thereby exploiting transform redundancy to implement geometries for motion estimation and compensation more general than the traditional block structure widely employed. As the second contribution of this dissertation, a new form of multihypothesis prediction, redundant wavelet multihypothesis, is presented. This new approach to motion estimation and compensation produces motion predictions that are diverse in transform phase to increase prediction accuracy. Finally, it is demonstrated that the proposed redundant-wavelet strategies complement existing advanced video-coding techniques and produce significant performance improvements in a battery of experimental results

    H. 264 Error Resilience Coding Based on Multihypothesis Motion Compensated Prediction

    Get PDF
    [[abstract]]In this paper, we propose efficient schemes for enhancing the error robustness of multi-hypothesis motion-compensate predictive (MHMCP) coder without sacrificing the coding efficiency significantly. The proposed schemes utilize the concept of reference picture interleaving and data partitioning to make the MHMCP-coded video more resilient to channel errors, especially for burst channel error. Besides, we also propose a scheme of integrating adaptive intra-refresh into the proposed MHMCP coder to further improve the error recovery speed. Extensive simulation results show that the proposed methods can effectively and quickly mitigate the error propagation and the penalty on coding efficiency for clean channels due to the inserted error resilience features is rather minor[[fileno]]2030144030009[[department]]電機工程學

    Fully Scalable Video Coding Using Redundant-Wavelet Multihypothesis and Motion-Compensated Temporal Filtering

    Get PDF
    In this dissertation, a fully scalable video coding system is proposed. This system achieves full temporal, resolution, and fidelity scalability by combining mesh-based motion-compensated temporal filtering, multihypothesis motion compensation, and an embedded 3D wavelet-coefficient coder. The first major contribution of this work is the introduction of the redundant-wavelet multihypothesis paradigm into motion-compensated temporal filtering, which is achieved by deploying temporal filtering in the domain of a spatially redundant wavelet transform. A regular triangle mesh is used to track motion between frames, and an affine transform between mesh triangles implements motion compensation within a lifting-based temporal transform. Experimental results reveal that the incorporation of redundant-wavelet multihypothesis into mesh-based motion-compensated temporal filtering significantly improves the rate-distortion performance of the scalable coder. The second major contribution is the introduction of a sliding-window implementation of motion-compensated temporal filtering such that video sequences of arbitrarily length may be temporally filtered using a finite-length frame buffer without suffering from severe degradation at buffer boundaries. Finally, as a third major contribution, a novel 3D coder is designed for the coding of the 3D volume of coefficients resulting from the redundant-wavelet based temporal filtering. This coder employs an explicit estimate of the probability of coefficient significance to drive a nonadaptive arithmetic coder, resulting in a simple software implementation. Additionally, the coder offers the possibility of a high degree of vectorization particularly well suited to the data-parallel capabilities of modern general-purpose processors or customized hardware. Results show that the proposed coder yields nearly the same rate-distortion performance as a more complicated coefficient coder considered to be state of the art

    On the performance of temporal error concealment for long-term motion-compensated prediction

    Get PDF

    Motion-Compensated Coding and Frame-Rate Up-Conversion: Models and Analysis

    Full text link
    Block-based motion estimation (ME) and compensation (MC) techniques are widely used in modern video processing algorithms and compression systems. The great variety of video applications and devices results in numerous compression specifications. Specifically, there is a diversity of frame-rates and bit-rates. In this paper, we study the effect of frame-rate and compression bit-rate on block-based ME and MC as commonly utilized in inter-frame coding and frame-rate up conversion (FRUC). This joint examination yields a comprehensive foundation for comparing MC procedures in coding and FRUC. First, the video signal is modeled as a noisy translational motion of an image. Then, we theoretically model the motion-compensated prediction of an available and absent frames as in coding and FRUC applications, respectively. The theoretic MC-prediction error is further analyzed and its autocorrelation function is calculated for coding and FRUC applications. We show a linear relation between the variance of the MC-prediction error and temporal-distance. While the affecting distance in MC-coding is between the predicted and reference frames, MC-FRUC is affected by the distance between the available frames used for the interpolation. Moreover, the dependency in temporal-distance implies an inverse effect of the frame-rate. FRUC performance analysis considers the prediction error variance, since it equals to the mean-squared-error of the interpolation. However, MC-coding analysis requires the entire autocorrelation function of the error; hence, analytic simplicity is beneficial. Therefore, we propose two constructions of a separable autocorrelation function for prediction error in MC-coding. We conclude by comparing our estimations with experimental results

    Error Concealment for Frame Losses in MDC

    Full text link

    Motion Estimation at the Decoder

    Get PDF

    Weighted bi-prediction for light field image coding

    Get PDF
    Light field imaging based on a single-tier camera equipped with a microlens array – also known as integral, holoscopic, and plenoptic imaging – has currently risen up as a practical and prospective approach for future visual applications and services. However, successfully deploying actual light field imaging applications and services will require developing adequate coding solutions to efficiently handle the massive amount of data involved in these systems. In this context, self-similarity compensated prediction is a non-local spatial prediction scheme based on block matching that has been shown to achieve high efficiency for light field image coding based on the High Efficiency Video Coding (HEVC) standard. As previously shown by the authors, this is possible by simply averaging two predictor blocks that are jointly estimated from a causal search window in the current frame itself, referred to as self-similarity bi-prediction. However, theoretical analyses for motion compensated bi-prediction have suggested that it is still possible to achieve further rate-distortion performance improvements by adaptively estimating the weighting coefficients of the two predictor blocks. Therefore, this paper presents a comprehensive study of the rate-distortion performance for HEVC-based light field image coding when using different sets of weighting coefficients for self-similarity bi-prediction. Experimental results demonstrate that it is possible to extend the previous theoretical conclusions to light field image coding and show that the proposed adaptive weighting coefficient selection leads to up to 5 % of bit savings compared to the previous self-similarity bi-prediction scheme.info:eu-repo/semantics/acceptedVersio

    Transforms for prediction residuals in video coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 135-140).Typically the same transform, the 2-D Discrete Cosine Transform (DCT), is used to compress both image intensities in image coding and prediction residuals in video coding. Major prediction residuals include the motion compensated prediction residual, the resolution enhancement residual in scalable video coding, and the intra prediction residual in intra-frame coding. The 2-D DCT is efficient at decorrelating images, but the spatial characteristics of prediction residuals can be significantly different from the spatial characteristics of images, and developing transforms that are adapted to the characteristics of prediction residuals can improve their compression efficiency. In this thesis, we explore the differences between the characteristics of images and prediction residuals by analyzing their local anisotropic characteristics and develop transforms adapted to the local anisotropic characteristics of some types of prediction residuals. The analysis shows that local regions in images have 2-D anisotropic characteristics and many regions in several types of prediction residuals have 1-D anisotropic characteristics. Based on this insight, we develop 1-D transforms for these residuals. We perform experiments to evaluate the potential gains achievable from using these transforms within the H.264 codec, and the experimental results indicate that these transforms can increase the compression efficiency of these residuals.by Fatih Kamışlı.Ph.D
    corecore