3 research outputs found

    Structures MOS-IGBT sur technologie SOI en vue de l'amélioration des performances à haute température de composants de puissance et de protections ESD

    Get PDF
    Dans le cadre du projet FNRAE COTECH, nos travaux avaient pour objectifs d'améliorer le fonctionnement des structures électroniques à haute température d'une technologie SOI (200°C). La technologie choisie pour ce travail est une technologie de puissance intelligente comprenant une bibliothèque CMOS basse tension (5V), des transistors de puissance LDMOS (25V, 45V et 80V) et des transistors bipolaires NPN et PNP. Afin de caractériser cette technologie en température, dans un premier temps, nous avons conçu un véhicule de test en introduisant certaines règles de dessin bénéfiques pour le comportement en température, à la fois pour les composants basse et haute puissance. Nous avons également étudié une nouvelle architecture de composants combinant au sein d'un même composant un composant MOS et un composant IGBT, dans un objectif d'auto-compensation des effets négatifs de la température. Afin d'optimiser la conception de ces composants mixtes MOS-IGBT, la méthodologie que nous avons adoptée s'est appuyée sur des simulations 2D et 3D sur Sentaurus. Dans le cadre de ce travail, deux véhicules de test ont été réalisés et caractérisés. Ces structures mixtes MOS-IGBT ont été proposées en tant que structures de protection contre les décharges électrostatiques (ESD) pour remplacer une structure de protection de type "power clamp". En s'appuyant sur la simulation 3D, nous avons proposé plusieurs solutions, à la fois topologiques et d'architecture, permettant d'augmenter significativement le niveau de ce courant. Ces diverses solutions ont été validées expérimentalement. Enfin, les bonnes performances de ces structures mixtes ont motivé leur étude en tant que structures de puissance.Within the framework of COTECH FNRAE project, the objectives of our work were the improvement of the SOI electronic structures at high-temperature operation (200°C). The chosen technology in this work is a smart power technology including low voltage CMOS (5 V), LDMOS power transistors (25 V, 45 V and 80 V), NPN and PNP bipolar transistor. To characterize this technology at different temperatures, as a first step, we designed a test vehicle by introducing specific design rules beneficial for the temperature behavior, both for low and high power components. We also studied new components architecture by combining in a single component a MOS and an IGBT, with an objective of self-compensation of the negative effects of temperature. To optimize the performance of these components (mixed MOS-IGBT), our methodology was based on using 2D and 3D Sentaurus physical simulation. As part of this work, two test vehicles were produced and characterized. These mixed structures MOS-IGBT have been proposed as ESD protection structures (Electro Static Discharge protection structures), to replace the LDMOS of a power clamp circuit. Based on 3D simulation, we have proposed several solutions, both topological and architectural, to significantly increase the level of the holding current. These various solutions have been experimentally validated. Finally, the good performance of these mixed structures have motivated their study as power structures

    Caractérisation électrique et modélisation du transport dans matériaux et dispositifs SOI avancés

    Get PDF
    This thesis is dedicated to the electrical characterization and transport modeling in advanced SOImaterials and devices for ultimate micro-nano-electronics. SOI technology is an efficient solution tothe technical challenges facing further downscaling and integration. Our goal was to developappropriate characterization methods and determine the key parameters. Firstly, the conventionalpseudo-MOSFET characterization was extended to heavily-doped SOI wafers and an adapted modelfor parameters extraction was proposed. We developed a nondestructive electrical method to estimatethe quality of bonding interface in metal-bonded wafers for 3D integration. In ultra-thin fully-depletedSOI MOSFETs, we evidenced the parasitic bipolar effect induced by band-to-band tunneling, andproposed new methods to extract the bipolar gain. We investigated multiple-gate transistors byfocusing on the coupling effect in inversion-mode vertical double-gate SOI FinFETs. An analyticalmodel was proposed and subsequently adapted to the full depletion region of junctionless SOI FinFETs.We also proposed a compact model of carrier profile and adequate parameter extraction techniques forjunctionless nanowires.Cette thèse est consacrée à la caractérisation et la modélisation du transport électronique dans des matériaux et dispositifs SOI avancés pour la microélectronique. Tous les matériaux innovants étudiés(ex: SOI fortement dopé, plaques obtenues par collage etc.) et les dispositifs SOI sont des solutions possibles aux défis technologiques liés à la réduction de taille et à l'intégration. Dans ce contexte,l'extraction des paramètres électriques clés, comme la mobilité, la tension de seuil et les courants de fuite est importante. Tout d'abord, la caractérisation classique pseudo-MOSFET a été étendue aux plaques SOI fortement dopées et un modèle adapté pour l'extraction de paramètres a été proposé. Nous avons également développé une méthode électrique pour estimer la qualité de l'interface de collage pour des plaquettes métalliques. Nous avons montré l'effet bipolaire parasite dans des MOSFET SOI totalement désertés. Il est induit par l’effet tunnel bande-à-bande et peut être entièrement supprimé par une polarisation arrière. Sur cette base, une nouvelle méthode a été développée pour extraire le gain bipolaire. Enfin, nous avons étudié l'effet de couplage dans le FinFET SOI double grille, en mode d’inversion. Un modèle analytique a été proposé et a été ensuite adapté aux FinFETs sans jonction(junctionless). Nous avons mis au point un modèle compact pour le profil des porteurs et des techniques d’extraction de paramètres

    Conception, fabrication, caractérisation et modélisation de transistors MOSFET haute tension en technologie avancée SOI (Silicon-On-Insulator)

    Get PDF
    Nowadays the scaling of bulk silicon CMOS technologies is reaching physical limits. In this context, the FDSOI technology (fully depleted silicon-on-insulator) becomes an alternative for the industry because of its superior performances. The use of an ultra-thin SOI substrate provides an improvement of the MOSFETs behaviour and guarantees their electrostatic integrity for devices of 28nm and below. The development of high-voltage applications such DC/DC converters, voltage regulators and power amplifiers become necessary to integrate new functionalities in the technology. However, the standard devices are not designed to handle such high voltages. To overcome this limitation, this work is focused on the design of a high voltage MOSFET in FDSOI. Through simulations and electrical characterizations, we are exploring several solutions such as the hybridization of the SOI substrate (local opening of the buried oxide) or the implementation in the silicon film. An innovative architecture on SOI, the Dual Ground Plane EDMOS, is proposed, characterized and modelled. It relies on the biasing of a dedicated ground plane introduced below the device to offer promising RON.S/BV trade-off for the targeted applications.A l’heure où la miniaturisation des technologies CMOS sur substrat massif atteint des limites, la technologie FDSOI (silicium sur isolant totalement déserté) s’impose comme une alternative pour l’industrie en raison de ses meilleures performances. Dans cette technologie, l’utilisation d’un substrat SOI ultramince améliore le comportement des transistors MOSFETs et garantit leur intégrité électrostatique pour des dimensions en deçà de 28nm. Afin de lui intégrer de nouvelles fonctionnalités, il devient nécessaire de développer des applications dites « haute tension » comme les convertisseurs DC/DC, les régulateurs de tension ou encore les amplificateurs de puissance. Cependant les composants standards de la technologie CMOS ne sont pas capables de fonctionner sous les hautes tensions requises. Pour répondre à cette limitation, ces travaux portent sur le développement et l’étude de transistors MOS haute tension en technologie FDSOI. Plusieurs solutions sont étudiées à l’aide de simulations numériques et de caractérisations électriques : l’hybridation du substrat (gravure localisée de l’oxyde enterré) et la transposition sur le film mince. Une architecture innovante sur SOI, le Dual Gound Plane EDMOS, est alors proposée, caractérisée et modélisée. Cette architecture repose sur la polarisation d’une seconde grille arrière pour offrir un compromis RON.S/BV prometteur pour les applications visées
    corecore