9 research outputs found

    The brain network organization during sleep onset after deprivation

    Get PDF
    Objective: Aim of the present study is to investigate the alterations of brain networks derived from EEG analysis in pre- and post-sleep onset conditions after 40 h of sleep deprivation (SD) compared to sleep onset after normal sleep in 39 healthy subjects. Methods: Functional connectivity analysis was made on electroencelographic (EEG) cortical sources of current density and small world (SW) index was evaluated in the EEG frequency bands (delta, theta, alpha, sigma and beta). Results: Comparing pre- vs. post-sleep onset conditions after a night of SD a significant decrease of SW in delta and theta bands in post-sleep onset condition was found together with an increase of SW in sigma band. Comparing pre-sleep onset after sleep SD versus pre-sleep onset after a night of normal sleep a decreased of SW index in beta band in pre-sleep onset in SD compared to pre-sleep onset in normal sleep was evidenced. Conclusions: Brain functional network architecture is influenced by the SD in different ways. Brain networks topology during wake resting state needs to be further explored to reveal SD-related changes in order to prevent possible negative effects of SD on behaviour and brain function during wakefulness. Significance: The SW modulations as revealed by the current study could be used as an index of an altered balance between brain integration and segregation processes after SD

    Brain complexity in stroke recovery after bihemispheric transcranial direct current stimulation in mice

    Get PDF
    Stroke is one of the leading causes of disability worldwide. There are many different rehabilitation approaches aimed at improving clinical outcomes for stroke survivors. One of the latest therapeutic techniques is the non-invasive brain stimulation. Among non-invasive brain stimulation, transcranial direct current stimulation has shown promising results in enhancing motor and cognitive recovery both in animal models of stroke and stroke survivors. In this framework, one of the most innovative methods is the bihemispheric transcranial direct current stimulation that simultaneously increases excitability in one hemisphere and decreases excitability in the contralateral one. As bihemispheric transcranial direct current stimulation can create a more balanced modulation of brain activity, this approach may be particularly useful in counteracting imbalanced brain activity, such as in stroke. Given these premises, the aim of the current study has been to explore the recovery after stroke in mice that underwent a bihemispheric transcranial direct current stimulation treatment, by recording their electric brain activity with local field potential and by measuring behavioural outcomes of Grip Strength test. An innovative parameter that explores the complexity of signals, namely the Entropy, recently adopted to describe brain activity in physiopathological states, was evaluated to analyse local field potential data. Results showed that stroke mice had higher values of Entropy compared to healthy mice, indicating an increase in brain complexity and signal disorder due to the stroke. Additionally, the bihemispheric transcranial direct current stimulation reduced Entropy in both healthy and stroke mice compared to sham stimulated mice, with a greater effect in stroke mice. Moreover, correlation analysis showed a negative correlation between Entropy and Grip Strength values, indicating that higher Entropy values resulted in lower Grip Strength engagement. Concluding, the current evidence suggests that the Entropy index of brain complexity characterizes stroke pathology and recovery. Together with this, bihemispheric transcranial direct current stimulation can modulate brain rhythms in animal models of stroke, providing potentially new avenues for rehabilitation in humans.Miraglia et al. demonstrated-in a stroke mouse model-that brain activity changes, measured by Entropy index, correlate with stroke. They also demonstrated that transcranial direct current stimulation ameliorates post-stroke deficits and Entropy correlates with functional recovery. The authors concluded that Entropy could characterize stroke pathology and predict stroke outcomes.Graphical Abstrac

    Brain Networks Modulation in Young and Old Subjects During Transcranial Direct Current Stimulation Applied on Prefrontal and Parietal Cortex

    Get PDF
    Published Online 15 October 2021Evidence indicates that the transcranial direct current stimulation (tDCS) has the potential to transiently modulate cognitive function, including age-related changes in brain performance. Only a small number of studies have explored the interaction between the stimulation sites on the scalp, task performance, and brain network connectivity within the frame of physiological aging. We aimed to evaluate the spread of brain activation in both young and older adults in response to anodal tDCS applied to two different scalp stimulation sites: Prefrontal cortex (PFC) and posterior parietal cortex (PPC). EEG data were recorded during tDCS stimulation and evaluated using the Small World (SW) index as a graph theory metric. Before and after tDCS, participants performed a behavioral task; a performance accuracy index was computed and correlated with the SW index. Results showed that the SW index increased during tDCS of the PPC compared to the PFC at higher EEG frequencies only in young participants. tDCS at the PPC site did not exert significant effects on the performance, while tDCS at the PFC site appeared to influence task reaction times in the same direction in both young and older participants. In conclusion, studies using tDCS to modulate functional connectivity and influence behavior can help identify suitable protocols for the aging brain.This work was partially supported by the Italian Ministry of Health for Institutional Research (Ricerca corrente) and by Basque Government through the BERC 2018–2021 progra

    Early diagnosis of Alzheimer's disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts

    Get PDF
    Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly with a progressive decline in cognitive function significantly affecting quality of life. Both the prevalence and emotional and financial burdens of AD on patients, their families, and society are predicted to grow significantly in the near future, due to a prolongation of the lifespan. Several lines of evidence suggest that modifications of risk-enhancing life styles and initiation of pharmacological and non-pharmacological treatments in the early stage of disease, although not able to modify its course, helps to maintain personal autonomy in daily activities and significantly reduces the total costs of disease management. Moreover, many clinical trials with potentially disease-modifying drugs are devoted to prodromal stages of AD. Thus, the identification of markers of conversion from prodromal form to clinically AD may be crucial for developing strategies of early interventions. The current available markers, including volumetric magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebral spinal fluid (CSF) analysis are expensive, poorly available in community health facilities, and relatively invasive. Taking into account its low cost, widespread availability and non-invasiveness, electroencephalography (EEG) would represent a candidate for tracking the prodromal phases of cognitive decline in routine clinical settings eventually in combination with other markers. In this scenario, the present paper provides an overview of epidemiology, genetic risk factors, neuropsychological, fluid and neuroimaging biomarkers in AD and describes the potential role of EEG in AD investigation, trying in particular to point out whether advanced analysis of EEG rhythms exploring brain function has sufficient specificity/sensitivity/accuracy for the early diagnosis of AD

    Effects of transcranial direct current stimulation on the functional coupling of the sensorimotor cortical network

    No full text
    Transcranial direct current stimulation (tDCS) is well established\u2014among the non-invasive brain stimulation techniques\u2014as a method to modulate brain excitability. Polarity-dependent modulations of membrane potentials are detected after the application of anodal and cathodal stimulation, leading to changes in the electrical activity of the neurons. The main aim of the present study was to test the hypothesis that tDCS can affect\u2014in a polarity-specific manner\u2014the functional coupling of the sensorimotor areas during the eyes-open resting condition as revealed by total EEG coherence (i.e., coherence across the average of all combinations of the electrode pairs placed around the stimulation electrode). The changes in the total EEG coherence were evaluated pre-, during, and post-anodal and cathodal tDCS. While no differences were observed in the connectivity characteristics of the two pre-stimulation periods, a connectivity increase was observed in the alpha 2 band in the post-anodal tDCS with respect to pre-anodal and post-cathodal tDCS. The present study suggests that a specific approach based on the analyses of the functional coupling of EEG rhythms might enhance understanding of tDCS-induced effects on cortical connectivity. Moreover, this result suggests that anodal tDCS could possibly modify cortical connectivity more effectively with respect to cathodal tDCS

    Humanphysiologische Korrelate für plastische Modulation verschiedener kortikaler Areale

    Get PDF

    Humanphysiologische Korrelate für plastische Modulation verschiedener kortikaler Areale

    Get PDF
    corecore