21,979 research outputs found

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Prismatic adaptation modulates oscillatory EEG correlates of motor preparation but not visual attention in healthy participants

    Get PDF
    Prismatic adaption (PA) has been proposed as a tool to induce neural plasticity and is used to help neglect rehabilitation. It leads to a recalibration of visuo-motor coordination during pointing as well as to after-effects on a number of sensorimotor and attention tasks, but whether these effects originate at a motor or attentional level remains a matter of debate. Our aim was to further characterise PA after-effects by using an approach that allows distinguishing between effects on attentional and motor processes. We recorded electroencephalography (EEG) in healthy human participants (9 females and 7 males) while performing a new double step, anticipatory attention/motor preparation paradigm before and after adaptation to rightward shifting prisms, with neutral lenses as a control. We then examined PA after-effects through changes in known oscillatory EEG signatures of spatial attention orienting and motor preparation in the alpha and beta frequency bands. Our results were twofold. First, we found PA to rightward shifting prisms to selectively affect EEG signatures of motor but not attentional processes. More specifically, PA modulated preparatory motor EEG activity over central electrodes in the right hemisphere, contralateral to the PA-induced, compensatory leftward shift in pointing movements. No effects were found on EEG signatures of spatial attention orienting over occipito-parietal sites. Second, we found the PA effect on preparatory motor EEG activity to dominate in the beta frequency band. We conclude that changes to intentional visuo-motor rather than attentional visuo-spatial processes underlie the PA after-effect of rightward deviating prisms in healthy participants

    Perception of the Body in Space: Mechanisms

    Get PDF
    The principal topic is the perception of body orientation and motion in space and the extent to which these perceptual abstraction can be related directly to the knowledge of sensory mechanisms, particularly for the vestibular apparatus. Spatial orientation is firmly based on the underlying sensory mechanisms and their central integration. For some of the simplest situations, like rotation about a vertical axis in darkness, the dynamic response of the semicircular canals furnishes almost enough information to explain the sensations of turning and stopping. For more complex conditions involving multiple sensory systems and possible conflicts among their messages, a mechanistic response requires significant speculative assumptions. The models that exist for multisensory spatial orientation are still largely of the non-rational parameter variety. They are capable of predicting relationships among input motions and output perceptions of motion, but they involve computational functions that do not now and perhaps never will have their counterpart in central nervous system machinery. The challenge continues to be in the iterative process of testing models by experiment, correcting them where necessary, and testing them again

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    The “broken escalator” phenomenon: Vestibular dizziness interferes with locomotor adaptation

    Get PDF
    BACKGROUND: Although vestibular lesions degrade postural control we do not know the relative contributions of the magnitude of the vestibular loss and subjective vestibular symptoms to locomotor adaptation. OBJECTIVE: To study how dizzy symptoms interfere with adaptive locomotor learning. METHODS: We examined patients with contrasting peripheral vestibular deficits, vestibular neuritis in the chronic stable phase (n = 20) and strongly symptomatic unilateral Meniere’s disease (n = 15), compared to age-matched healthy controls (n = 15). We measured locomotor adaptive learning using the “broken escalator” aftereffect, simulated on a motorised moving sled. RESULTS: Patients with Meniere’s disease had an enhanced “broken escalator” postural aftereffect. More generally, the size of the locomotor aftereffect was related to how symptomatic patients were across both groups. Contrastingly, the degree of peripheral vestibular loss was not correlated with symptom load or locomotor aftereffect size. During the MOVING trials, both patient groups had larger levels of instability (trunk sway) and reduced adaptation than normal controls. CONCLUSION: Dizziness symptoms influence locomotor adaptation and its subsequent expression through motor aftereffects. Given that the unsteadiness experienced during the “broken escalator” paradigm is internally driven, the enhanced aftereffect found represents a new type of self-generated postural challenge for vestibular/unsteady patients

    Brittany Bernal - Sensorimotor Adaptation of Speech Through a Virtually Shortened Vocal Tract

    Get PDF
    The broad objective of this line of research is to understand how auditory feedback manipulations may be used to elicit involuntary changes in speech articulation. We examine speech sensorimotor adaptation to supplement the development of speech rehabilitation applications that benefit from this learning phenomenon. By manipulating the acoustics of one’s auditory feedback, it is possible to elicit involuntary changes in speech articulation. We seek to understand how virtually manipulating participants’ perception of vowel space affects their speech movements by assessing acoustic variables such as formant frequency changes. Participants speak through a digital audio processing device that virtually alters the perceived size of their vocal tract. It is hypothesized that this modification to auditory feedback will facilitate adaptive changes in motor behavior as indicated by acoustic changes resulting from speech articulation. This study will determine how modifying the perception of vocal tract size affects articulatory behavior, indicated by changes in formant frequencies and changes in vowel space area. This work will also determine if and how the size of the virtual vowel space affects the magnitude and direction of sensorimotor adaptation for speech. The ultimate aim is to determine how important it is for the virtual vowel space to mimic the talker’s real vowel space, and whether or not perturbing the size of the perceived vowel space may facilitate or impede involuntary adaptive learning for speech. Sensorimotor Adaptation of Speech Through a Virtually Shortened Vocal Tract by Brittany Bernal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.https://epublications.marquette.edu/mcnair_2014/1009/thumbnail.jp

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 141)

    Get PDF
    This special bibliography lists 267 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1975

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 217, March 1981

    Get PDF
    Approximately 130 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981 are included in this bibliography. Topics include aerospace medicine and biology
    • …
    corecore