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Abstract: 

The broad objective of this line of research is to understand how auditory feedback 

manipulations may be used to elicit involuntary changes in speech articulation. We 

examine speech sensorimotor adaptation to supplement the development of speech 

rehabilitation applications that benefit from this learning phenomenon.  By manipulating 

the acoustics of one’s auditory feedback, it is possible to elicit involuntary changes in 

speech articulation. We seek to understand how virtually manipulating participants’ 

perception of vowel space affects their speech movements by assessing acoustic variables 

such as formant frequency changes. Participants speak through a digital audio processing 

device that virtually alters the perceived size of their vocal tract.  It is hypothesized that 

this modification to auditory feedback will facilitate adaptive changes in motor behavior 

as indicated by acoustic changes resulting from speech articulation. This study will 

determine how modifying the perception of vocal tract size affects articulatory behavior, 

indicated by changes in formant frequencies and changes in vowel space area.  This work 

will also determine if and how the size of the virtual vowel space affects the magnitude 

and direction of sensorimotor adaptation for speech. The ultimate aim is to determine 

how important it is for the virtual vowel space to mimic the talker’s real vowel space, and 

whether or not perturbing the size of the perceived vowel space may facilitate or impede 

involuntary adaptive learning for speech. 

 

 

 

 



Sensorimotor Adaptation of Speech Through a Virtual Vocal Tract 

 
3 

Introduction:      

The purpose of this research is to evaluate the effectiveness of auditory feedback 

manipulations used to elicit involuntary changes in speech articulation. Previous research 

in other fields indicates that adaptation occurs when there is a change in movement based 

on a perceived sensory error (Bastian, 2008). When individuals make involuntary 

changes in speech articulation due to perceived speech errors, it is referred to as 

sensorimotor adaptation.  Sensorimotor adaptation of speech is the learning phenomenon 

that is evaluated in the current study.  By manipulating the acoustics of one’s auditory 

feedback in experimental conditions, it is possible to elicit involuntary changes in speech 

articulation (Houde & Jordan, 1998, 2002). The altered speech patterns can be made to 

persist for some time, even after the signal modifications end, which suggests that speech 

can be re-learned (Perkell, 2012). The experimental methodology used in this research 

study may be further developed to help rehabilitate individuals with motor speech 

disorders, such as dysarthria, who do not benefit from traditional, voluntary therapy 

techniques. This is hypothesized because currently there are no effective treatments for 

those with severe motor speech disorders; which is partly due to the therapy techniques 

requiring voluntary modifications to articulation, which may be ineffective.  

Additionally, effective rehabilitation strategies for other sensorimotor skills such as 

walking have utilized adaptation paradigms (c.f., Bastian, 2008). 

The goal is to understand how virtually manipulating subjects’ vowel space 

affects their speech movements by assessing formant frequency changes.  The vowel 

space is the acoustic space defined by the first and second resonance frequencies, called 

formants (F1 and F2) of the four vowels that define the extreme points of tongue 
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articulation (/i/, /æ/, /u/, and /ɑ/) (Kent & Read, 1992, 2002). Every other vowel in 

English is within this space. 

 The acoustic vowel quadrilateral can be used to describe the vowel working 

space, which is a key component of the current study.  The size of a vowel space can help 

quantify speech intelligibility in various disorders. It has been established that the vowel 

space is reduced in several adult speech disorders (Turner, Tjaden, & Weismer, 1995; 

Ziegler & von Cramon, 1983). The reason for reduced vowel space in some speech 

disorders is that a smaller acoustic space indicates a constricted articulatory space. If 

one’s articulatory space is constricted, this implies less range of movement for key 

articulators such as the tongue, lips, and jaw (Kent & Read, 2002).  Reduced range of 

movement results in reduced perceptual contrast between different speech sounds, 

affecting the intelligibility of speech. 

Having subjects speak through a virtually shortened vocal tract size (as compared 

to their actual vocal tract size) may be facilitative to adaptive motor behavior indicated by 

acoustic changes in speech articulation. One consideration for having participants speak 

through a virtually shortened vocal tract would be that a smaller vocal tract correlates 

with a larger acoustic space, and manipulating the acoustic vowel space would likely 

create changes in vowel production as indicated by changes in formant values.  Some 

studies indicate that subjects with greater impairments tend to make greater progress with 

virtual reality intervention as compared to typically functioning individuals (Fluet & 

Deutsch, 2013).  In order to virtually manipulate participants’ vocal tract sizes, the TC 

Helicon VoiceWorks Plus© hardware was used. The TC Helicon is a speech signal 

manipulation hardware that virtually shifts the size of the subjects’ vocal tracts by scaling 
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formant frequencies based on a formant parameter setting.  In the current study, each 

parameter setting, ranging from values of 0 to 50, served as a completely novel vocal 

tract through which the participants spoke. The intention was to determine which 

parameter values on the TC Helicon elicit the greatest amount of adaptive change in 

speakers, which is indicated either by changes in the talker’s true formant values or 

changes in vowel space area.   Furthermore, the degree to which the size of the new 

vowel space affects the magnitude and direction of compensatory and adaptive speech 

behaviors was evaluated. Ultimately, the objective was to understand if this type of 

speech adaptation study can generalize to disordered speakers’ normal everyday speech.  

The current hypothesis is that when participants’ vowel space area is perturbed to 

be bigger than their actual vowel space area (which is the acoustic correlate of a 

shortened vocal tract), they will respond by lowering their formant frequency values and 

reducing their vowel space area. This hypothesis is due to the correlation between bigger 

vowel space area and higher formant frequency values; thus compensatory learning 

behaviors would be indicated by participants changing their own formant values and 

vowel space area in the opposite direction of the perceived vocal tract perturbation. 

Review of the Literature: 

 

Sensorimotor adaptation is the foundation of this study due to its link with 

potential rehabilitative applications for those with motor speech disorders.  Sensorimotor 

adaptation is a form of involuntary, short-term sensorimotor learning.  Adaption for all 

types of motor learning consists of a nervous system response in which a change occurs 

in movement based on sensory feedback errors.  These sensory prediction errors are 
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discrepancies between the brain’s expected outcome of a movement and the actual 

sensory consequences of that movement (Bastian, 2008).   

Houde & Jordan (1998) developed a method for measuring and altering formant 

patterns in real time. Formant patterns are determined by vocal tract shape during speech, 

and varying shapes creates different vocal tract resonances (Kent & Read, 1992).  Houde 

and Jordan’s experimental method of altering formant patterns generates a synthetic 

version of speech, which allows a speaker to hear the manipulated feedback in real time. 

Houde and Jordan’s work formed a foundation for the current study, which generated 

synthetic speech, creating auditory feedback perturbations for participants. 

The current study focused on the acoustic consequences of large-scale auditory 

feedback manipulations. Acoustic changes that participants exhibited were evaluated 

throughout the experiment by measuring their formant frequencies across varying TC 

Helicon parameter values. Formants are acoustic resonance patterns measured in hertz 

that reflect positions of articulators during the production of speech sounds. The two 

lowest frequency formants (F1 and F2) are the main quantitative measures in this study.  

The first two formants are sufficient to measure because they have the greatest impact on 

the acoustics and perception of vowels (Hixon, Weismer, & Hoit, 2008).  In a previous 

study in which participants were asked to recognize another’s voice when exposed to 

recorded vocal stimuli, results indicated that both the formants of F1 and F2 heavily 

contribute to voice recognition (Xu, et al., 2013).  Thus, tracking the resulting acoustics 

of these manipulations provides key insights into articulatory behaviors of individuals in 

the current study.  
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In experimental conditions, the formant patterns can be shifted to make speakers 

think that they are producing the wrong vowel or consonant.  Manipulating a speaker’s 

formants in real time typically elicits compensatory changes in the positions of the 

articulators such as the tongue, lips, and jaw (Houde & Jordan, 1998).  Results from 

Houde and Jordan (2002) indicate that some participants in these sensorimotor adaptation 

experiments do indeed adapt their speech to change articulatory positions, and that these 

changes can continue, suggesting short-term, involuntary motor learning.  Houde and 

Jordan’s work supports the idea of sensorimotor adaptation of speech as a relationship 

between articulatory movement patterns and auditory feedback.  The current work will 

expand upon Houde and Jordan’s work not by manipulating individual formant frequency 

values, but rather by manipulating the entire acoustic working space as a whole through 

each virtual vocal tract parameter.  In perceptual terms, acoustic manipulations in the 

current work make a talker’s voice sound like another person. 

 The goal of the current research is to assess speech motor control in healthy 

speakers in order to better understand adaptation as a tool for rehabilitation for those with 

motor speech disorders.  Motor speech disorders such as dysarthria, which is the 

prospective clinical focus of this study, are characterized by paralysis, incoordination, or 

reduced range of motion in the muscular control necessary to produce intelligible speech.  

This is manifested in symptoms such as slowness or incoordination of the speech 

mechanism caused by nervous system damage.  Different sub-types of dysarthria are due 

to damage to specific parts of either the central or peripheral nervous system (Darley 

Aronson, & Brown, 1969).   
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There are various etiologies associated with dysarthria, the primary ones being 

traumatic brain injury (TBI), stroke, dystonia, and degenerative diseases such as multiple 

sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Parkinson’s Disease (Dysarthria, 

2014).  Because there is so much variability among different types and severities of 

dysarthria, it is a clinically challenging population to address and treatment methods are 

still being developed.   

Currently, there is a large gap in the literature regarding successful treatment 

methods for dysarthria.  The current study sought to gain a better understanding of speech 

adaptation for healthy speakers. This goal was achieved by comparing information about 

how participants used their articulators to produce speech under normal conditions and 

how they produced an acoustic signal when speaking through a virtually shortened vocal 

tract. Assessing these factors let us have a better understanding of how feasible it is to 

create changes in articulation when speaking through a virtual vocal tract.  Future work 

along this line of research will be utilizing the same experimental methods for those with 

dysarthria. Such research may be a stepping-stone for developing successful treatments 

for this population.  Thus, the current work will evaluate the importance of the perceived 

vocal tract size in eliciting adaptation. This knowledge will then be applied to the RASS 

system (Rehabilitative Articulatory Speech Synthesizer) (Berry, North, Meyers, & 

Johnson, 2013).  The RASS system places sensors on the articulators, has talkers produce 

speech movements without requiring an acoustic signal, and subsequently manipulates 

the acoustic output of the virtual vocal tract, which has potential to elicit speech 

adaptation.  The RASS system previously could not match the size of a talker’s vowel 
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space.  Thus, the current work will address the implications of this technological 

limitation. 

 Speech is considered to have both auditory and somatosensory targets, which are 

predictions formulated by the brain about the outcome of speech sounds. Auditory targets 

are defined by formant frequencies, whereas somatosensory targets are defined by 

articulator positions (Tourville & Guenther, 2011). The forward model is a significant 

component of the current study. The forward model is the brain’s estimation of the 

sensory consequences of a motor command (Christoffels, et al., 2011). This means that 

before speech is even produced, the brain creates sensory targets, which are expectations 

of how the sound will be perceived acoustically as well as how it will feel to physically 

produce that sound in one’s vocal tract (Tourville & Guenther, 2011). Thus, manipulating 

auditory feedback in this study causes subjects to recognize an error in their speech 

production and may lead to a remapping of their motor plan for forward control of speech 

output. 

One hypothesis states that neural structures such as the basal ganglia and the 

cerebellum (which may be damaged in various types of dysarthria), contribute to a 

talker’s ability to process sensory information and affect the ability to execute precise and 

intelligible speech (Kent, Kent, Weismer, & Duffy, 2000).  This may imply that those 

with dysarthria have “target regions” for speech sound production that are larger than the 

target regions of healthy speakers, which signifies that their brain no longer efficiently 

registers errors in articulation. This error recognition deficit indicates that when 

experiencing auditory feedback perturbations, those with dysarthria have less competition 

with their old target regions, meaning that they are more likely to re-map new target 
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regions for speech sounds. This concept serves as the justification for potentially using 

auditory feedback perturbations as a form of therapy for those with dysarthria.   

As of now, there are no treatment approaches that use speech adaptation as a 

rehabilitative approach for dysarthria. One plan of assessing speech behaviors that was 

implemented was measuring participants’ vowel spaces and mapping out their targets for 

various speech sounds. Typically, those with dysarthria, specifically associated with 

ALS, are perceived to have imprecise vowel productions.  This is likely due to the 

characteristics of incoordination and motor planning as well as motor programming 

deficits (Kent, et al., 2000).  These deficits are likely due to physiological damage to the 

orofacial muscles required for speech production or limitations in the range and speed of 

articulator movements (Turner, Tjaden, & Weismer, 1995). Thus, gaining a greater 

understanding of how vowel space influences auditory feedback driven articulatory 

learning in healthy speakers may serve as a stepping-stone towards better understanding 

treatment options for those with dysarthria. 

A major problem that persists in those with dysarthria is that their target region 

for vowel production is too large.  Too large of a target region means those individuals 

perceive errors in articulation as acceptable, due to an inability to produce fine phonemic 

contrasts.  The target space is the acceptable articulatory posture for a particular speech 

sound, whereas the vowel space is the acoustic working space for all vowels.  Typically, 

those with ALS as well as those with closed head trauma or cerebellar lesions are known 

to have a reduction in their vowel space (Turner, Tjaden, & Weismer, 1995). Smaller 

vowel spaces are associated with less intelligibility, meaning that these types of patients 

are harder to understand when speaking.  Thus, artificially changing the perceived size of 
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one’s vowel space may have potential for rehabilitative purposes in this population.  

When those with dysarthria speak through a virtual vocal tract, there is likelihood for 

them to re-map their own vowel spaces in order to form more precise articulatory targets. 

Currently, there are various methods used when seeking to treat dysarthria.  A 

compensatory treatment approach that has been implemented is having patients slow 

down the rate of their speech.  Another compensatory approach for those with dysarthria 

is having patients increase their loudness during speech production (Tjaden & Wilding, 

2010). However, these methods, along with others, may help facilitate communication 

but may be contrary to rehabilitation, since they do not exploit sensorimotor learning 

principles. The hope for the current work is that utilizing sensorimotor adaptation as a 

rehabilitation tool will create effective changes in articulation for those with dysarthria 

with less conscious effort than traditional therapy techniques. 

Methodology: 

       

The current work focuses on the issue of interactions between articulation and 

voice.  Participants in this study experienced a virtual voice in order to define the 

relationship between adapting to a virtual voice and changes in articulatory speech 

behaviors. 

The TC Helicon VoiceWorks Plus© speech signal manipulation hardware allowed 

the manipulation of the acoustics of a talker’s speech in real time.  The talker heard this 

modified speech acoustic signal via headphones. The TC Helicon virtually manipulated 

the size of the subjects’ vocal tracts across different formant parameter values.  The 

acoustic manipulations caused subjects to perceive themselves to be speaking through a 

vocal tract of decreased size.  Each parameter on the TC Helicon creates a global 
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recalibration of the speech sensorimotor control system. Vocal tract size corresponds with 

the size of the speaker; thus, small children have much smaller vocal tract sizes than 

fully-grown adults.  The size of the vocal tract is inversely correlated with one’s vowel 

space. Thus, those with smaller vocal tract sizes have larger vowel spaces, and vice-versa 

(Turner, Tjaden, &Weismer, 1995).  The size of one’s vocal tract determines the formant 

working space of the subject.  To artificially perturb a speaker’s vocal tract size, there 

was a manipulation of the formant parameter setting on the TC Helicon that ranged from 

-50 to +50. The 0 dial setting is a subject’s speech output without any apparent 

perturbation to his or her speech signal.  According to previous research with virtual 

environments, the more convincing the virtual environment, the greater the motor 

response (Wright, 2014). By increasing the formant parameter value in the negative 

direction to the -50 setting, this virtually shifts a subject’s vocal tract to be smaller 

(making him or her sound more like a child). By increasing the formant parameter value 

in the positive direction, this shifts the subject’s perceived vocal tract size to be larger.   

In creating synthetic acoustic manipulations in the speech, this method causes the talker 

to perceive a completely altered acoustic working space.  The talkers thus had to learn an 

unfamiliar mapping between their articulatory movements and the resulting auditory 

feedback that they heard themselves saying. This method served as a global recalibration 

because it had effects on multiple acoustic cues for all speech sounds produced. 

In order to set up the experiment, participants’ vowel spaces at each TC Helicon 

parameter were recorded first. This phase was labeled “No TC Helicon Feedback.”  

During this phase, participants were neither wearing earphones nor a bone conduction 

vibrator.  Participants were asked to say the words /hid/, /hæd/, /hud/, and /hɑd/; and the 
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phrase “I owe you a yo-yo”, repeated a total of five times at each parameter setting.  The 

reason these words were chosen was because the /h/ phoneme has essentially no acoustic 

significance, because it is a glottal sound with little impact on the acoustics of 

surrounding speech sounds. The goal was to be able to easily track the changes in vowel 

formants without any coarticulatory influence of surrounding consonant sounds.  The 

phrase “I owe you a yo-yo” was used because it is a sentence that consists entirely of 

vowels.   In this experiment the acoustic changes were not tracked in the phrase; 

however, the plan is to use it for a continuation of this study in the future.  Participants’ 

vowel spaces were measured from each parameter setting on the TC Helicon which they 

heard their own auditory feedback, and their speech was recorded from the 0 setting all 

the way to negative 50, in intervals of 5.  The purpose in doing this was to determine a 

reference point for the virtual vocal tract without any perturbed sensory input. 

After the phase with no auditory feedback from the TC Helicon, a loudness test 

was performed for each participant.  During this phase, participants were wearing a 

headset with a microphone that was placed at the corner of their mouth, as they did in the 

previous phase.  However, for the loudness test, participants were then asked to wear 

earphones.  In addition, subjects wore a bone conduction vibrator.  The purpose in doing 

this was to prevent subjects from hearing their own bone conduction, in order to create a 

false bone conduction for the voice that they would be hearing through the TC Helicon.  

However, there are believed to be some effects to the output signal under the 0 setting 

due to the fact that subjects cannot hear their own voice through bone conduction, as they 

would typically.   Again, participants were asked to say the words /hid/, /hæd/, /hud/, and 

/hɑd/; and the phrase “I owe you a yo-yo”, repeated a total of one time.  They were then 
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asked to read The Bamboo Passage (Green, Beukelman, & Ball, 2004), which is one of 

the standard passages that are read in speech studies.  The Bamboo Passage was read 

during the loudness test in order to ensure that participants would not hear themselves 

while producing connected speech.  While subjects were speaking, they indicated to the 

experimenters whether they reached a loudness in which they could no longer hear their 

own auditory feedback at the loudest comfortable setting. 

Following the loudness test, subjects’ vowel spaces were recorded at Baseline, 

which was the 0 setting on the TC Helicon.  This was a condition in which the TC 

Helicon did not create any acoustic manipulations.  Formant frequency values for the 

vowel repetitions from this phase were measured acoustically.  During Baseline, subjects 

said the words /hid/, /hæd/, /hud/, and /hɑd/; and the phrase “I owe you a yo-yo”, 

repeated a total of five times.  They were also prompted to say /hɔ̅ɪ/, /hɑ̅ʊ̅/, and /he/.  

These three words were added to this phase in order to test generalization.  

Generalization was noted if subjects changed their articulation when producing these 

vowel sounds (/ɔ̅ɪ/, / ɑ̅ʊ̅/, and /e/) that they never said under the experimental condition of 

a virtually shifted vocal tract.  Testing generalization is important because it serves as an 

indication that speech adaptation may carryover to different phonetic contexts that were 

not trained during the perturbed auditory feedback.  When generalization occurs, it 

suggests that adaptation as a form of speech rehabilitation is possible.  If generalization 

does not occur, this means that essentially all linguistic contexts would have to be trained 

individually.  Thus, generalization is useful because it makes rehabilitation more 

efficient; however, rehabilitation is still possible even if generalization does not occur. 

The purpose of the Baseline phase was to provide a reference point that is nearly 
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equivalent to participants’ pure voices in order to measure the learning process through 

each repetition. 

The next phase, called “Two Channel TC Helicon Feedback” consisted of 

participants saying the words /hid/, /hæd/, /hud/, and /hɑd/; and the phrase “I owe you a 

yo-yo”, repeated a total of five times.  After each repetition, subjects were asked to read a 

short paragraph of either the “Stella” (Kunath & Weinberger, 2010), “Caterpillar”, or 

“Bamboo” (Green, Beukelman, & Ball, 2004) passages.  These are passages that were 

created for speech studies such as this one; the “Caterpillar” in particular was designed to 

assess motor speech disorders (Patel, et al., 2013).  Each passage is considered to have a 

phonetically balanced context. The purpose in having participants read these passages 

during each setting of the Two Channel Helicon Feedback phase was to “adapt” them to 

the new virtual vocal tract that they were speaking through.  These passages were edited 

slightly so as to not contain any of the generalization words in the current study.  The 

subjects’ actual voice without the TC Helicon perturbation was also recorded in a 

separate channel.  The purpose of this phase was to quantify the learning process of the 

perturbation in both the real and virtual domains. 

Following the Two Channel Helicon Feedback phase was the Masking Phase.  

During the Masking Phase, participants said the words /hid/, /hæd/, /hud/, and /hɑd/; and 

the phrase “I owe you a yo-yo”, repeated a total of five times.  They were also prompted 

to say the generalization words /hɔ̅ɪ/, /hɑ̅ʊ̅/, and /he/.  During this phase, participants 

heard white noise played into their earphones. The white noise was tuned to the 

frequency range of human speech. White noise was played in order to prevent subjects 

from hearing their own auditory feedback. The overall purpose of the Masking Phase was 
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to determine if adaptation and generalization occur while the sensory input of the 

perturbation is absent. 

The final phase of the experiment was De-adaptation.  During this phase, 

participants were asked to say the words /hid/, /hæd/, /hud/, and /hɑd/; and the phrase “I 

owe you a yo-yo”, repeated a total of five times.  They were also prompted to say /hɔ̅ɪ/, 

/hɑ̅ʊ̅/, and /he/.  This phase was to measure a “second baseline” following each vocal 

tract shift. Thus, this phase was recorded at the 0 setting on the TC Helicon, meaning 

there was no apparent perturbation to the participants’ auditory feedback.  The purpose of 

this phase was to quantify the amount of time it takes the subject to return to his or her 

baseline vowel space area and assure that the next experimental cycle would not be 

affected by any adaptation that occurred during the current one. 

Each of the phases (Baseline, Two Channel TC Helicon Feedback, Masking, and 

De-adaptation) was repeated at each parameter setting of the TC Helicon.  The reason in 

doing so was to measure how subjects adapted to each individual vocal tract shift. 

Various questions were addressed with this experimental design.  Results were 

compared between subjects and within subjects. The amount of acoustic articulatory 

change that took place with the magnitude of the shift parameter of the TC Helicon was 

evaluated.   

Results: 

 

 In order to measure changes in articulation, tables were created indicating changes 

in vowel space area values across different parameters on the TC Helicon, and this 

quadrilateral circumscribed by the corner vowels was calculated using a convex hull 

method. This was done in order to assess how the subjects’ own formant values changed 
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across different parameters.  The goal was to identify which settings on the TC Helicon 

were most effective in creating adaptive articulatory behaviors.  Figure 1, found below, 

indicates vowel space areas across parameters ranging from 0 to 50 for two subjects, NH 

and ER. 

Vowel Space Areas (Hz2) 

Parameter NH ER 
0 375439 492162 

10 355476 412240 
20 437772.5 258104 

30 437806 380320 
40 396770 289943 
50 391619 257917 

Figure 1: Vowel Space Areas, participants NH and ER. 

Vowel space areas serve as an overall measure of the acoustic working space.  Participant 

NH has a tendency to start with a small vowel space area and then increase her vowel 

space area as the perceived vocal tract size shortens.  This indicates a following, or 

mimicking response, which is contrary to the expectation.  Participant ER, however, 

tends to start with a large vowel space area and decreases the size of her own vowel space 

area, indicating a compensatory response, which is consistent with the expectation.   

 Another method that was used to analyze this data was creating vowel spaces 

indicating the change in F1 and F2 space. Simply put, F1 corresponds inversely with 

tongue height and F2 corresponds directly with tongue forwardness.  Thus, an increase in 

F1 (located on the x-axis) indicates a lowering of the tongue, and an increase in F2 

(located on the y-axis) indicates moving the tongue farther forward in the vocal tract. 

These two variables were plotted on an X-Y coordinate system. Coordinates indicate 

where subjects typically produce their formant values for specific vowel sounds at each 

TC Helicon formant parameter value, indicated in the legend at the bottom right.  
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Figure 2: Vowel Space by Parameter for Participant NH. 

Figure 2 shows the acoustic vowel spaces for baseline (0) and masking conditions at 

different parameter values (10-50).  Each parameter serves as a different vocal tract size.  

This comparison assesses involuntary (adaptive) learning.  NH demonstrates vowel 

specific changes, primarily /i/ and /u/, that correspond with movement of the tongue up 

and backward as the perceived vocal tract shortens. This trend is not consistent, since 

extreme values appear to move back towards baseline, suggesting that when the 

perceived vocal tract is extremely different from the talker’s, adaptive changes may be 

reduced. 
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   Figure 3: Vowel Space by Parameter for Participant ER. 

Figure 3 above suggests that ER demonstrates vowel specific changes, primarily for /u/, 

that correspond with movement of the tongue down and forward as the perceived vocal 

tract shortens.  This trend is quite strict, although the effect is almost exclusively related 

to the vowel /u/.   

Conclusions:   

The acoustic results indicate idiosyncratic responses in both the magnitude and 

direction of the articulatory adaptation effects for both vowel space area and vowel space 

by parameter measures.  Participant NH followed, or mimicked, the perceived changes in 

vowel space area by moving the tongue up and backward as the perceived vocal tract 

shortened.  On the other hand, participant ER compensated for the perceived changes in 

vowel space area by moving the tongue down and forward as the perceived vocal tract 

shortened.   

In terms of changes in formant frequency values, NH’s movement of the tongue 

up and backward suggests that both F1 and F2 decreased, which indicates a 

compensatory response in regards to formant values.  Conversely, ER’s movement of the 
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tongue down and forward suggests that both F1 and F2 increased, which is contrary to the 

hypothesis. 

Overall, the results indicate that participant NH follows the perturbation in terms 

of vowel space area, but compensates in terms of formant frequencies.  ER demonstrates 

a completely different behavioral response, because ER compensates in terms of vowel 

space area but follows in terms of formant frequency values.  These results are complex 

but suggest that it is possible to elicit involuntary changes in articulation when speaking 

through a virtually shortened vocal tract, indicating potential rehabilitation applications.  

In conclusion, the purpose is to further develop these methods to determine whether 

having participants speak through a virtual vocal tract can be an effective means of 

eliciting involuntary changes in speech articulation for those with motor speech disorders. 
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